GPU: что это в компьютере. Виды графических процессоров


Процессоры и графические ускорители очень похожи, они оба сделаны из сотен миллионов транзисторов и могут обрабатывать тысячи операций за секунду. Но чем именно отличаются эти два важных компонента любого домашнего компьютера?

В данной статье мы попытаемся очень просто и доступно рассказать, в чем отличие CPU от GPU. Но сначала нужно рассмотреть два этих процессора по отдельности.

CPU (Central Processing Unit или же Центральное Процессорное Устройство) часто называют "мозгом" компьютера. Внутри центрального процессора расположено около миллиона транзисторов, с помощью которых производятся различные вычисления. В домашних компьютерах обычно устанавливаются процессоры, имеющие от 1 до 4 ядер с тактовой частотой приблизительно от 1 ГГц до 4 ГГц.

Процессор является мощным, потому что может делать все. Компьютер способен выполнить какую-либо задачу, так как процессор способен выполнить эту задачу. Программистам удалось достичь этого благодаря широким наборам инструкций и огромным спискам функций, совместно используемых в современных центральных процессорах.

Что такое GPU?

GPU (Graphics Processing Unit или же Графическое Процессорное Устройство) представляет собой специализированный тип микропроцессора, оптимизированный для очень специфических вычислений и отображения графики. Графический процессор работает на более низкой тактовой частоте в отличие от процессора, но имеет намного больше процессорных ядер.

Также можно сказать, что GPU - это специализированный CPU, сделанный для одной конкретной цели - рендеринг видео. Во время рендеринга графический процессор огромное количество раз выполняет несложные математические вычисления. GPU имеет тысячи ядер, которые будут работать одновременно. Хоть и каждое ядро графического процессора медленнее ядра центрального процессора, это все равно эффективнее для выполнения простых математических вычислений, необходимых для отображения графики. Этот массивный параллелизм является тем, что делает GPU способным к рендерингу сложной 3D графики, требуемой современными играми.

Отличие CPU и GPU

Графический процессор может выполнить лишь часть операций, которые может выполнить центральный процессор, но он делает это с невероятной скоростью. GPU будет использовать сотни ядер, чтобы выполнить срочные вычисления для тысяч пикселей и отобразить при этом сложную 3D графику. Но для достижения высоких скоростей GPU должен выполнять однообразные операции.

Возьмем, например, Nvidia GTX 1080. Данная видеокарта имеет 2560 шейдерных ядер. Благодаря этим ядрам Nvidia GTX 1080 может выполнить 2560 инструкций или операций за один такт. Если вы захотите сделать картинку на 1% ярче, то GPU с этим справится без особого труда. А вот четырехъядерный центральный процессор Intel Core i5 сможет выполнить только 4 инструкции за один такт.

Тем не менее, центральные процессоры более гибкие, чем графические. Центральные процессоры имеют больший набор инструкций, поэтому они могут выполнять более широкий диапазон функций. Также CPU работают на более высоких максимальных тактовых частотах и имеют возможность управлять вводом и выводом компонентов компьютера. Например, центральный процессор может интегрироваться с виртуальной памятью, которая необходима для запуска современной операционной системы. Это как раз то, что графический процессор выполнить не сможет.

Вычисления на GPU

Даже несмотря на то, что графические процессоры предназначены для рендеринга, они способны на большее. Обработка графики - это только вид повторяющихся параллельных вычислений. Другие задачи, такие как майнинг Bitcoin и взломы паролей полагаются на одни и те же виды массивных наборов данных и простых математических вычислений. Именно поэтому некоторые пользователи используют видеокарты для не графических операций. Такое явление называется GPU Computation или же вычисления на GPU.

Выводы

В данной статье мы провели сравнение CPU и GPU. Думаю, всем стало понятно, что GPU и CPU имеют схожие цели, но оптимизированы для разных вычислений. Пишите свое мнение в комментариях, я постараюсь ответить.

Все мы знаем, что у видеокарты и процессора несколько различные задачи, однако знаете ли вы, чем они отличаются друг от друга во внутренней структуре? Как CPU (англ. - central processing unit ), так и GPU (англ. - graphics processing unit ) являются процессорами, и между ними есть много общего, однако сконструированы они были для выполнения различных задач. Подробнее об этом вы узнаете из данной статьи.

CPU

Основная задача CPU, если говорить простыми словами, это выполнение цепочки инструкций за максимально короткое время. CPU спроектирован таким образом, чтобы выполнять несколько таких цепочек одновременно или разбивать один поток инструкций на несколько и, после выполнения их по отдельности, сливать их снова в одну, в правильном порядке. Каждая инструкция в потоке зависит от следующих за ней, и именно поэтому в CPU так мало исполнительных блоков, а весь упор делается на скорость выполнения и уменьшение простоев, что достигается при помощи кэш-памяти и конвейера .

GPU

Основная функция GPU - рендеринг 3D графики и визуальных эффектов, следовательно, в нем все немного проще: ему необходимо получить на входе полигоны, а после проведения над ними необходимых математических и логических операций, на выходе выдать координаты пикселей. По сути, работа GPU сводится к оперированию над огромным количеством независимых между собой задач, следовательно, он содержит большой объем памяти, но не такой быстрой, как в CPU, и огромное количество исполнительных блоков: в современных GPU их 2048 и более, в то время как у CPU их количество может достигать 48, но чаще всего их количество лежит в диапазоне 2-8.

Основные отличия

CPU отличается от GPU в первую очередь способами доступа к памяти. В GPU он связанный и легко предсказуемый - если из памяти читается тексел текстуры, то через некоторое время настанет очередь и соседних текселов. С записью похожая ситуация - пиксель записывается во фреймбуфер, и через несколько тактов будет записываться расположенный рядом с ним. Также графическому процессору, в отличие от универсальных процессоров, просто не нужна кэш-память большого размера, а для текстур требуются лишь 128–256 килобайт. Кроме того, на видеокартах применяется более быстрая память, и в результате GPU доступна в разы большая пропускная способность, что также весьма важно для параллельных расчетов, оперирующих с огромными потоками данных.

Есть множество различий и в поддержке многопоточности: CPU исполняет 12 потока вычислений на одно процессорное ядро, а GPU может поддерживать несколько тысяч потоков на каждый мультипроцессор, которых в чипе несколько штук! И если переключение с одного потока на другой для CPU стоит сотни тактов, то GPU переключает несколько потоков за один такт.

В CPU большая часть площади чипа занята под буферы команд, аппаратное предсказание ветвления и огромные объемы кэш-памяти, а в GPU большая часть площади занята исполнительными блоками. Вышеописанное устройство схематично изображено ниже:

Разница в скорости вычислений

Если CPU - это своего рода «начальник», принимающий решения в соответствии с указаниями программы, то GPU - это «рабочий», который производит огромное количество однотипных вычислений. Выходит, что если подавать на GPU независимые простейшие математические задачи, то он справится значительно быстрее, чем центральный процессор. Данным отличием успешно пользуются майнеры биткоинов.

Майнинг Bitcoin

Суть майнинга заключается в том, что компьютеры, находящиеся в разных точках Земли, решают математические задачи, в результате которых создаются биткоины . Все биткоин-переводы по цепочке передаются майнерам, чья работа состоит в том, чтобы подобрать из миллионов комбинаций один-единственный хэш, подходящий ко всем новым транзакциям и секретному ключу, который и обеспечит майнеру получение награды в 25 биткоинов за раз. Так как скорость вычисления напрямую зависит от количества исполнительных блоков, получается, что GPU значительно лучше подходят для выполнения данного типа задачи, нежели CPU. Чем больше количество произведенных вычислений, тем выше шанс получить биткоины. Дело даже дошло до сооружения целых ферм из видеокарт.

Многие видели аббревиатуру GPU, но не каждый знает, что это такое. Это компонент , который входит в состав видеокарты . Иногда его называют видеокарта, но это не правильно. Графический процессор занимается обработкой команд, которые формируют трехмерное изображение. Это основной элемент, от мощности которого зависит быстродействие всей видеосистемы.

Есть несколько видов таких чипов – дискретный и встроенный . Конечно, сразу стоит оговорить, что лучше первый. Его ставят на отдельные модули. Он мощный и требует хорошего охлаждения . Второй устанавливается практически на все компьютеры. Он встраивается в CPU, делая потребление энергии в разы ниже. Конечно, с полноценными дискретными чипами ему не сравниться, но на данный момент он показывает довольно хорошие результаты .

Как работает процессор

GPU занимается обработкой 2D и 3D графики. Благодаря GPU ЦП компьютера становится свободнее и может выполнять более важные задачи. Главная особенность графического процессора в том, что он старается максимально увеличить скорость расчета графической информации. Архитектура чипа позволяет с большей эффективностью обрабатывать графическую информацию, нежели центральный CPU ПК.

Графический процессор устанавливает расположение трехмерных моделей в кадре. Занимается фильтрацией входящих в них треугольников, определяет, какие находятся на виду, и отсекает те, которые скрыты другими объектами.

Немецкого исследователя об использовании вычислений GPU в эконофизике и статистической физике, в том числе для осуществления анализа информации на фондовом рынке. Мы представляем вашему вниманию основные тезисы этого материала.

Примечание: Статья в журнале датирована 2011 годом, с тех пор появились новые модели GPU-устройств, однако общие подходы к использованию этого инструмента в инфраструктуре для онлайн-трейдинга остались неизменными

Требования к вычислительным мощностям растут в различных сферах. Одна из них - финансовый анализ, который необходим для успешной торговли на фондовом рынке, особенно средствами HFT. Для того, чтобы принять решение о покупке или продаже акций, алгоритм должен проанализировать серьезный объём входных данных - информация о транзакциях и их параметрах, текущих котировках и трендах изменения цены и т.д.

Время, которое пройдет от создания заявки на покупку или продажу до получения ответа о ее успешныом выполнеии от биржевого сервера называется раундтрипом (round-trip, RTT). Участники рынка всеми силами стремятся снизить это время, в частности для этого используются технологии прямого доступа на биржу, а серверы с торговым софтом располагаются на колокации рядом с торговым движком бирж.

Однако технологические возможности по сокращению раундтрипа ограничены, и после их исчерпания перед трейдерами встает вопрос о том, как еще можно ускорить торговые операции. Для этого применяются новые подходы к построению инфраструктуры для онлайн-трейдинга. В частности используются FPGA и GPU. Об ускорении HFT-трейдинга с помощью «программируемого железа» мы писали ранее, сегодня речь пойдет о том, как для этого можно применять графические процессоры.

Что такое GPU

Архитектура современных графических карт строится на основе масштабируемого массива потоковых мультипроцессоров. Один такой мультипроцессор содержит восемь скалярных процессорных ядер, многопоточный модуль инструкций, разделяемую память, расположенную на чипе (on-chip).

Когда программа на C, использующая расширения CUDA, вызывает ядро GPU, копии этого ядра или потоки, нумеруются и распределяются на доступные мультипроцессоры, где уже начинается их выполнение. Для такой нумерации и распределения сеть ядра подразделяется на блоки, каждый из которых делится на различные потоки. Потоки в таких блоках выполняются одновременно на доступных мультипроцессорах. Для управления большим количеством потоков используется модуль SIMT (single-instruction multiple-thread). Этот модуль группирует их в «пачки» по 32 потока. Такие группы исполняются на том же мультипроцессоре.

Анализ финансовых данных на GPU

В финансовом анализе применяется множество мер и показателей, расчет которых требует серьезных вычислительных мощностей. Ниже мы перечислим некоторые из них и сравним быстродействие при их обработке, показанное «обычным» процессоромо Intel Core 2 Quad CPU (Q6700) c тактовой частотой 2,66 ГГц и размером кэша 4096 килобайт, а также популярных графических карт.
Экспонента Херста
Мера, называемая экспонентной Херста, используется в анализе временных рядов. Эта величина уменьшается в том случае, если задержка между двумя одинаковыми парами значений во временном ряду увеличивается. Изначально это понятие применялось в гидрологии для определения размеров плотины на реке Нил в условиях непредсказуемых дождей и засух.

Впоследствии показатель Херста начали применять в экономике, в частности, в техническом анализе для предсказания трендов движения ценовых рядов. Ниже представлено сравнение быстродействия вычисления показателя Херста на CPU и GPU (показатель «ускорения» β = общее время выисления на CPU / общее время вычисления на GPU GeForce 8800 GT):

Модель Изинга и метод Монте-Карло
Еще одним инструментом, перекочевавшим в сферу финансов на этот раз из физики, является модель Изинга . Эта математическая модель статистической физики предназначена для описания намагничивания материала.

Каждой вершине кристаллической решётки (рассматриваются не только трёхмерные, но и одно- и двумерные вариации) сопоставляется число, называемое спином и равное +1 или −1 («поле вверх»/«поле вниз»). Каждому из 2^N возможных вариантов расположения спинов (где N - число атомов решётки) приписывается энергия, получающаяся из попарного взаимодействия спинов соседних атомов. Далее для заданной температуры рассматривается распределение Гиббса - рассматривается его поведение при большом числе атомов N.

В некоторых моделях (например, при размерности > 1) наблюдается фазовый переход второго рода. Температура, при которой исчезают магнитные свойства материала, называется критической (точка Кюри). В ее окрестности ряд термодинамических характеристик расходится.

Изначально модель Изинга использовалась для понимания природы ферромагнетизма, однако позднее получила и более широкое распространение. В частности, она применяется для обобщений в социально-экономических системах. Например, обобщение модели Изинга определяет взаимодействие участников финансового рынка. Каждый из них обладает стратегией поведения, рациональность которой может быть ограничена. Решения о том, продавать или покупать акции и по какой цене, зависят от предыдущих решений человека и их результата, а также от действий других участников рынка.

Модель Изинга используется для моделирования взаимодействия между участниками рынка. Для реализации модели Изинга и имитационного моделирования используется метод Монте-Карло, который позволяет построить математическую модель для проекта с неопределенными значениями параметров.

Ниже представлено сравнение быстродействия моделирования на CPU и GPU (NVIDIA GeForce GTX 280):

Существуют реализации модели Изинга с использованием в ходе анализа различного количества спинов. Мультиспиновые реализации позволяет загружать несколько спинов параллельно.

Ускорение с помощью нескольких GPU

Для ускорения обработки данных также используются кластеры GPU-устройств - в данном случае исследователи собрали кластер из двух карточек Tesla C1060 GPU, коммуникация между которыми осуществлялась через Double Data Rate InfiniBand.

В случае симуляции модели Изинга методом Монте-Карло результаты говорят о том, что производительность повышается практически линейно при добавлении большего количества GPU.

Заключение

Эксперименты показывают, что использование графических процессоров может приводить к существуенному повышению производительности финансового анализа. При этом выигрыш в скорости по сравнению с использованием архитектуры с CPU может достигать нескольких десятков раз. При этом добиться еще большего повышения производительности можно с помощью создания кластеров GPU - в таком случае она растет практически линейно.

В материнской плате расположено много важных составляющих частей компьютера, которые носят свои уникальные названия: CPU, GPU, HDD, SSD, ОЗУ и так далее. Каждая из этих аббревиатур имеет свою расшифровку, но в данный момент имеет значение, что же это - GPU?

Есть схожее название с этим термином - это CPU. Многие неопытные пользователи путают эти названия, что неверно. Для начала стоит пояснить, что CPU - это центральный процессор, который является мозгом всей системы. Расшифровывается эта аббревиатура так - Central Processor Unit.

Однако стоит знать, что GPU - это тоже процессор, только графического решения. В его задачу входит обработка и вывод на экран изображения. Полное название аббревиатуры выглядит таким образом - Graphic Processing Unit.

Благодаря этим пояснениям можно понять, что GPU - это не центральный процессор, который обрабатывает только данные графического типа. Он подчиняется протоколам центрального процессора и, в отличие от него, имеет свое логическое устройство. Так же, как и у главного процессора, у графического есть ядра, только их не десятки, а тысячи. Такое большое количество ядер необходимо для получения и обработки данных, связанных с прорисовкой и временными многочисленными задачами.

Теперь, когда уже имеется общее представление о том, что GPU - это графический процессор и его задачей является обработка графических данных, можно перейти к перечислению.

На данный момент есть два вида встроенных графических процессоров - это интегрированные в материнскую плату и встроенные в процессор.

В первом варианте чип графического процессора распаян прямо на текстолите материнской платы, и мало кто знает, что это GPU. Выглядит он как обычный чип черного цвета, на котором есть наименование марки, порядковый номер и комбинация цифр, которая указывает на некоторые параметры. Так как такие графические решения не имеют собственного объема памяти, они заимствуют данный параметр у оперативной памяти, используя ее объем.

В случае со встроенным в процессор чипом его сложно увидеть, получится это только при разборе самого центрального процессора. Практически во всех процессорах нового поколения имеется дополнительное ядро, которое именуется графическим. Цена процессора при этом вырастает не намного, зато избавляет от нужды в дискретной видеокарте.

Встроенные графические процессоры позволяют сэкономить на энергопотреблении на несколько десятков процентов, что положительно сказывается на теплоотдаче. Однако есть и значительные минусы, и один из них - это низкая производительность. Такая экономная графика хорошо подходит для работы с офисными программами и приложениями, не требующими больших мощностей.

GPU в компьютере - что это такое и как его определить? Если ранее было представлено два вида графических процессоров в интегрированном виде, то далее можно рассмотреть вариант дискретной видеокарты. Исходя из этого можно понять, что GPU - это такое обозначение лишь процессора, одной из деталей которого является видеокарта. Однако эта деталь является самой важной. Еще на плате видеокарты расположены чипы памяти, конденсаторы, разъем или разъемы для питания, защитный кожух, радиатор и кулер.

Различие интегрированной и дискретной видеокарты в том, что вторая гораздо мощнее и производительнее, чем встроенный вариант. Во-первых, имеется свой объем памяти, что напрямую влияет на скорость отрисовки объектов. Во-вторых, в ее параметры входит шина расширения, битность которой позволяет увеличить пропускную способность для передачи данных.

Такие графические адаптеры требуют дополнительного питания, чтобы просто запуститься и выдавать качественное изображение. Несмотря на всю мощь, есть и офисные варианты дискретных видеокарт, которые мало чем отличаются от интегрированных собратьев. Игровые варианты более мощные по строению и потенциалу, но потребляют гораздо больше энергии.

Температурный режим

Для лучшего функционирования нужно знать, что такое GPU в компьютере и его температура. Как охладить встроенный и дискретный GPU? Для охлаждения интегрированного графического процессора достаточно разместить вентиляторы в корпусе, а у дискретных вариантов есть собственная система охлаждения. В зависимости от того, сколько вентиляторов находится над чипом, будет ясно, как хорошо охлаждается чип.

Система охлаждения видеокарты достаточно проста - чип с помощью нанесенной на него термопасты соприкасается с трубками теплоотвода, они переходят к радиатору, который охлаждается с помощью кулера.

Рабочая температура чипа составляет не более 70 градусов, дальнейшее повышение температуры можно считать перегревом. Чтобы не допустить перегрева видеокарты, достаточно своевременно прочищать от пыли видеокарту, менять при этом термопасту. Для того чтобы узнать нынешнее состояние температуры в видеокарте, достаточно запустить соответствующие программы, например, AIDA 64. Там можно увидеть температуру не только графического адаптера, но и всей системы.







2024 © gtavrl.ru.