Как проверить диоды мультиметром. Как проверить светодиод мультиметром-тестером


Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод , наиболее часто выполняемый из кремния, может носить название:

  • Супрессора;
  • Ограничительного стабилитрона;
  • Диодный предохранитель;
  • TVS-диода;
  • Трансила;
  • Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

  • Защита наземных приборов от воздействия природных явлений (удары молний);
  • Защита авиатехники;
  • Страховка от воздействия импульсов электрической природы при неисправности питающего блока.

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода —

Существует два типа ограничительных стабилитронов:

  • Симметричные.

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

  • Несимметричные.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С » или «СА «. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода .

Значимые характеристики защитных диодов

  • Uпроб . (пробоя)

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

  • Iобр .

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

  • Uобр .

Значение является показателем постоянного обратного напряжения. VRWM.

  • U огр.имп.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

  • Iогр.max.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

  • Pимп.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2 ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением .

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

  • Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
  • Телекоммуникации;
  • Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
  • Цифровой интерфейс.

Как правильно подобрать защитный диод?

Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

  1. Определиться с типом напряжения (будет оно переменным или постоянным?);
  2. TVS потребуется одно- или двунаправленный;
  3. Узнать каков уровень номинального напряжения на линии, которую надо будет защищать;
  4. Осведомиться о максимальном значении Iогр. и Uогр.max. в условиях нагрузки;
  5. Выявить верхнюю и нижнюю температурную границу, при которой будет работать прибор;
  6. Решить, каким образом будет монтироваться элемент (поверхностно/с помощью отверстий);
  7. С опорой на все выявленные данные необходимо определиться с подходящей серией и оптимальным вариантом диода.

Кроме того, нужно учесть:

  • Насколько велико обратное напряжение диода (оно должно превышать номинальное напряжение схемы, если данный момент не учитывается, то диод будет «включаться» даже не имея на то причин);
  • Уровень Uогр. обязан быть меньше Umax. на линии, которую требуется защищать;
  • Что даже если диод выбран в соответствии со всеми нуждами, его действие всё равно нужно проверить во всём необходимом температурном диапазоне;
  • Удостовериться в том, что размеры диода и прочие нюансы позволяют его адекватный монтаж.

Несмотря на то, что светодиодные источники света отличаются гораздо большим сроком службы, чем большинство аналогов, они тоже выходят из строя. Причиной этого может быть и повреждение, и выработка ресурса. Простой и действенный способ убедиться в неисправности – проверить светодиод тестером в режиме «прозвона». Кроме того, исправность светодиода необходимо проверять перед его монтажом на плату.

Как проводится проверка?

Светодиоды работают от электрического тока малого напряжения, который преобразуется в блоках питания и электронных схемах. Однако прежде чем установить LED-элемент в схему нужно убедиться, что он работоспособен, чтобы не терять время на демонтаж в случае поломки. С этой целью используется мультиметр, позволяющий прозвонить устройство в режиме LED-теста. Проверка основывается на том, что внутри светодиода есть полупроводниковый переход, за счёт которого подача тока под рабочим напряжением заставить его загореться.

Таким образом, чтобы прозвонить LED-элемент, нужно:

  1. С помощью рукоятки режимов перевести мультиметр в режим проверки светодиодов.
  2. Подключить щупы прибора к электродам светодиода с соблюдением (красный – к аноду, чёрный – к катоду). Если полярность неизвестна и будет перепутана, ничего страшного не произойдёт. Поэтому надо попробовать переставить щупы местами, если светодиод не загорелся.
  3. На дисплей измерительного прибора выведется цифра, отображающая падение напряжения на p-n-переходе.

Однако в редких случаях возникает ситуация, когда рабочий светодиод загорается при проверке, мультиметр отображает рабочие параметры, но после монтажа в схему LED-элемент не светится с достаточной яркостью. Данная проблема связана с неисправностью кристалла, которую исправить самостоятельно невозможно. Его необходимо заменить и утилизировать.

Многие модели мультиметров оснащаются специальным PNP блоком, с помощью которого можно прозвонить свободный светодиод, не используя щупы. PNP представляет собой гнездо с несколькими отверстиями, в которые вставляются электроды LED-элемента. Электрические характеристики блока обеспечивают свечение исправного светодиода.

Чтобы проверить светодиод на PNP, нужно подключить его с соблюдением полярности. Положительный электрод (анод) вставляется в разъём E (эмиттер), а отрицательный (катод) – в C (коллектор).

Чтобы проверить светодиод мультиметром, не выпаивая из рабочей схемы, нужно сконструировать переходник из токопроводящего материала. Сама проверка не отличается от той, что описана выше. Главным неудобством выступает то, что отсутствует возможность вставить электроды LED-прибора в соответствующие гнёзда. Для этого их удлиняют с помощью тонкого проводника, которым может выступить швейная игла, раскрученная канцелярская скрепка или отрезок кабеля. Для проверки они припаиваются к электродам светодиода и прозваниваются либо щупами, либо через PNP блок. Убедившись, что светодиод находится в рабочем состоянии, проводники нужно будет аккуратно отпаять.

Сейчас в электротехнических магазинах можно купить специальные LED-тестеры. Они выполняются в виде устройства с собственным блоком питания и несколькими разъёмами, подходящими для подключения светодиодов разной конструкции.

Проверка светодиодной ленты

Светодиодная лента состоит из множества LED-устройств, объединённых в небольшие участки. Светодиоды расположены последовательно внутри участков, а участки – между собой. За счёт этого обеспечивается возможность отрезания ленты нужной длины. Чтобы проверить светодиодную ленту, нужно подать ток на провода питания. Здесь всё просто – лента горит, значит, она исправна . Если при подаче питания не загорается вся лента, необходимо проверить с помощью мультиметра сопротивление подводящих проводов на предмет наличия обрыва.

Если при подключении питания к светодиодной ленте не загораются отдельные группы светодиодов, необходимо прозвонить их отдельно. В такой ситуации нужно проверять их отдельно по резистору, который монтируется в схеме перед каждой группой. Ориентиром для проверки должно служить номинальное значение сопротивления.

Проверка светодиодных ламп

Светодиодные энергосберегающие лампы производятся во внешнем исполнении, похожем на традиционные лампы накаливания, однако внутреннее устройство сильно отличается. В начале рабочей схемы установлен драйвер – электронный компонент, преобразующий поступающий ток с напряжением 220 В до нужных параметров. Драйверы для каждой модели могут сильно отличаться друг от друга, в них применяются разные по электрическим характеристикам и количеству элементы. Из-за этого проверить светодиодную лампочку с помощью мультиметра невозможно. Необходимо использовать специальный тестер со схемой, разработанной для диагностики различных лампочек. Его корпус имеет разъёмы для вкручивания светильников, при подключении которых устройство сообщает результат проверки звуковым сигналом.

В электротехнике светодиоды применяются довольно давно. Но если раньше они использовались исключительно в качестве разнообразных индикаторов, то сегодня сфера применения этих элементов значительно расширилась.

С помощью инфракрасных диодов передаются сигналы от пультов дистанционного управления и всевозможных датчиков, они же используются в камерах наблюдения, контрольно-измерительной аппаратуре и других устройствах.

Еще одна разновидность – сверхъяркие элементы, научившись наконец-то светиться по-настоящему, довольно уверенно теснят традиционные источники освещения – лампы накаливания и даже более совершенные и экономичные люминесцентные светильники.

Вряд ли хоть кто-то в наши дни не слышал о например), а уж фонарик с данным типом лампочек имеется практически у каждого. Так или иначе, светодиоды применяются все шире, а потому нам все чаще приходится сталкиваться с необходимостью (при попытке выяснить причину поломки того или иного прибора) проверять их работоспособность.

Сверхъяркие

Проверка желтых, синих и белых светодиодов, применяемых в качестве источников освещения и называемых сверхъяркими, особой сложности не представляет. Для этого выводы элемента достаточно подсоединить к источнику питания напряжением от 3 до 4,2 В (не более!).

В качестве подобного источника удобнее всего использовать пару полуторавольтных батареек, соединенных последовательно. Но в том-то и дело, что они далеко не всегда имеются под рукой.

Нельзя ли осуществить проверку посредством обычного мультиметра, которым располагает каждый радиолюбитель, тем более что в современных версиях этого прибора предусмотрен специальный режим для проверки диодов?

Оказывается, такая возможность есть. Хотя упомянутый режим,по причине недостаточной мощности питания, в данном случае не поможет. Вместо него мы воспользуемся режимом измерения параметров транзистора , который также предусмотрен в каждой современной модели цифрового мультиметра.

Цифровой мультиметр

Для исследования транзисторов тестер снабжен специальным разъемом, к которому подключаются выводы элемента. Он маркируется буквами PHP. Катод сверхъяркого светодиода (это самый короткий вывод) необходимо подключить вместо коллектора (позиция «С» на разъеме), а анод – вместо эмиттера (позиция «Е»). Если элемент годен, он начнет светиться, причем положение переключателя режимов измерения в данном случае значения не имеет.

В большинстве случаев осветительный элемент является частью и воткнуть его непосредственно в PHP-разъем без распайки не получится. Проверить же его с помощью щупов не представляется возможным, поскольку те не могут быть подключены к разъему.

Решить проблему можно путем изготовления несложной конструкции, состоящей из переходника и подключенных к нему щупов от старого или поломанного мультиметра.

Стандартные щупы для мультиметра

Как сделать щупы с переходником на PHP-разъем

Нам понадобится совсем немногое:

  • два ненужных щупа (штекеры необходимо отрезать);
  • небольшой фрагмент двустороннего текстолита;
  • пара металлических скрепок;
  • (необходим для удобства эксплуатации, но устройство будет работать и без него).

К текстолитовой пластинке с каждой стороны следует припаять по скрепке, предварительно отогнув их концы на 180 градусов. Получится что-то вроде электрической вилки.

Текстолитовые пластинки

Толщина фрагмента текстолита должна быть такой, чтобы расстояние между штырьками «вилки» соответствовало расстоянию между входами «С» и «Е» на PHP-разъеме. Вот и все, переходник готов. Остается припаять к нему (опять же с двух сторон) провода от щупов.

Лучше размещать текстолит между скрепками несимметрично. Благодаря этому будет проще понять, какой стороной следует включать переходник в транзисторный разъем мультиметра, чтобы не перепутать полярность.

Конструкцию можно дополнить светодиодом типа SMD, на который будет возложена функция индикатора.

Как изготовить щуп своими руками

Если стандартных щупов, которыми можно было бы пожертвовать, у вас нет, вместо них можно использовать самодельные. Для их изготовления понадобится:

  • пара иголок;
  • залуженная проволока диаметром 0,2 мм (извлекается из многожильного провода).

Проволоку следует намотать на иглу, так чтобы ее витки плотно прилегали друг к другу, а затем припаять. Очень удобно использовать для этой цели никелированные иглы , тогда пайка производится максимально легко и быстро. Часто такой щуп обеспечивает более качественный контакт, чем стандартный.

Инфракрасные

По мере приобретения бытовых электронных устройств каждый из нас постепенно становится обладателем целой батареи пультов дистанционного управления. Пока техника послушно реагирует на ваши команды, беспокоиться не о чем.

Но вполне вероятна такая ситуация,
когда отчаянные попытки переключить канал или убавить яркость люстры не приводят ни к какому результату. В таких случаях сначала проверяют состояние инфракрасного светодиода, посредством которого пульт ДУ передает основному устройству ваши требования.

Проверить ИК-светодиод в ДУ-пульте или другом устройстве можно несколькими способами. Начнем с самого простого:

Направьте излучение диода в объектив цифровой камеры. Подойдет не только фотоаппарат, но и телефон, ноутбук, видеорегистратор, web-камера и т.д. ИК-излучение абсолютно невидимо для человеческого глаза, но «глаза» электронные регистрируют его очень хорошо. Если светодиод исправно выполняет свои функции, на матрице будут наблюдаться вспышки фиолетового цвета.

При отсутствии умеющего снимать гаджета подпавший под подозрение светодиод можно демонтировать , заменив его на сверхъяркий или светодиод SMD-типа. Убедитесь только, что рабочее напряжение обоих элементов совпадает.

Если проверочный светодиод при нажатии кнопок на пульте испускает видимое световое излучение (скорее всего, оно будет неярким), значит, ИК-светодиод свое уже отслужил.

Более сложный способ, но зато не потребуется ни камера, ни перепайка. Можно воспользоваться инфракрасным фотодиодом. При попадании инфракрасного излучения на сенсор этого элемента на его выводах образуется разность потенциалов.

Чтобы проверить любой ИК-светодиод, его излучение необходимо направить на чувствительную зону фотодиода, предварительно подключенного к открытому входу осциллографа.

Если при этом на экране прибора появляются кривые импульсов, – тестируемый светодиод пребывает в рабочем состоянии. Если же вы наблюдаете полный штиль, значит пора покупать новый ИК-светодиод.

Диагностика светодиода в фонарике

Или других типов довольно надежное устройство, но и он от поломок не застрахован. Если даже после установки новых батареек свечение остается слабым или вовсе отсутствует, необходимо проверить работоспособность светодиодов и их драйверов.

Перед диагностикой фонарика будет нелишним проверить батарейки (даже если они только что были распакованы) на каком-нибудь заведомо исправном устройстве. Кому-то этот совет покажется банальным, но довольно часто, как показала практика, причиной «разборок» с бытовой электроникой становятся бракованные батарейки, о чем домашний умелец догадывается в последнюю очередь.

Проверка фонарика выполняется в следующей последовательности :

  1. Отвинчиваем крышку или коническую часть в передней части корпуса.
  2. Извлекаем светодиодный модуль.
  3. На плате светодиода – две контактные площадки, к которым подводятся красный и черный провод. Красный провод соответствует положительной полярности (маркировка «+» на плате), а черный – отрицательной (маркировка «-»). В соответствии с полярностью на контакты следует кратковременно подать напряжение в 3 – 4 В (не более 4,2 В!). Если яркость свечения светодиода не изменилась, значит его необходимо заменить. В противном случае (светодиод горит надлежащим образом) замене подлежит драйвер.
  4. Замена светодиода возможна только в том случае, если его плата прикреплена к капсуле светодиодного модуля посредством винтов. Если плата посажена на термоклей, замена будет нецелесообразной, в этом случае меняют весь модуль.

Вот как выглядит светодиодный модуль в фонарике Magicshine

Отвинтив плату, следует отпаять светодиод, а затем установить новый.

В фонариках светодиоды устанавливаются на алюминиевые радиаторы. Для эффективного теплоотвода перед установкой нового светодиода на радиатор следует нанести свежий слой специальной теплопроводящей пасты, также называемой термопастой. Старый высохший слой, пусть даже довольно толстый, повторно использоваться не может и должен быть удален.

Наглядно проверка обособленного светодиода и простота устройства тестера демонстрируется в следующем видео от крупнейшего поставщика электрооборудования в России.

Часто при поломке того или иного электронного устройства мы без раздумий несем потерпевшего в ремонт, где нам предъявляют солидный счет. Между тем, причина аварии может заключаться всего лишь в отказе светодиода, который легко можно заменить своими силами.

Таким образом, умение проверить работоспособность этих элементов, которые применяются сегодня довольно широко, позволит сэкономить средства и сократить время ремонта до минимума.

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.

Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.

Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Светодиод – полупроводниковый прибор, по своей структуре напоминающий обычный диод. Поэтому проверить его можно как обычный диод - включением в прямом направлении, т.е. между анодом и катодом приложить положительное напряжение. Проверка не составит труда, если есть на руках обычный тестер. В отличие от обычных кремниевых диодов, прямое напряжение на которых составляет 0,6…0,7 В, светодиод имеет гораздо большее значение этого параметра. В зависимости от цвета и материала, красные имеют напряжение – 1,5…2 В, зеленые – 1,9…4 В, белые – около 3…3,5 В. Эта информация указана в документации производителя.

Еще одной особенностью светоизлучающего диода от обычного – низкое обратное напряжение, которое превышает прямое всего на несколько вольт. Это повышает риск выхода прибора из строя при неправильном включении или вследствие электростатического разряда. Как убедиться в исправности светодиода, прежде чем смонтировать его на плату?

Практически любой цифровой тестер (или мультиметр, кому как больше нравится) позволяет быстро проверить светодиод на работоспособность.

В простейшем случае, чтобы прозвонить светодиод, нужно включить мультиметр в режим проверки диодов, как показано на рисунке ниже.

Далее определим полярность включения. У выводных светодиодов катод обычно короче анода. Если выводы одинаковой длины (кто-то «заботливо» обкусил), то смотрим на просвет. На рисунке видно, что внутри самого корпуса располагаются два электрода, обычно тот который большего размера – катод, но это не всегда так, поэтому не стоит брать это за правило.

Остается только подключить тестер к выводам светодиода. Красный щуп к аноду, черный – к катоду (если, конечно, у вас стандартные цвета щупов). Исправность определяется по свечению.

Этим же способом можно проверить и мощный светодиод. Такие обычно смонтированы на плату с металлической подложкой (MCPCB). Полярность обычно подписана рядом с контактными площадками. Если нет, тогда наугад. Вероятность повредить светодиод тестером очень мала – не та мощность.

Еще проще и удобнее прозвонить выводные светодиоды, если в мультиметре есть функция проверки транзисторов. В этом случае нужно всего лишь вставить в соответствующий разъем выводы. Для секции NPN: анод в отверстие С (коллектор), катод в E (эмиттер). Для секции PNP – с точностью до наоборот. Наглядно проверка показана на рисунке ниже.

Когда дело касается мощных осветительных светодиодов, работающих на токах порядка сотен и тысяч мА, то встречается такой дефект: при «прозвонке» светодиод подсвечивается и признается годным, а когда включается на рабочий ток, то светит словно «в полнакала». Это связано с дефектом кристалла и если замена бракованных светодиодов в готовом изделии (например, прожекторе) затруднена, то необходимо проверить их заранее.

Более тщательная проверка, помимо мультиметра, потребует еще и источника тока. Идеальный вариант – наличие лабораторного источника, но подойдет и адаптер для зарядки мобильных телефонов или других устройств. Главное, чтобы он имел стабилизацию по току.

Последовательность такова:

  1. мультиметр переключаем на предел «10 А» (не забываем переставить щуп в соответствующее гнездо) и включаем в цепь последовательно между светодиодом и источником питания;
  2. включаем питание, измеряем силу тока, выключаем питание;
  3. мультиметр включаем параллельно светодиоду, установив предел измерения «20 В» (опять же не забывая переставить щуп, а то устроим КЗ), источник соединяем напрямую со светодиодом, соблюдая полярность;
  4. включаем питание, измеряем падение напряжения на светодиоде, выключаем питание;
  5. проверяем исправность по соответствию тока и напряжения по кривой вольтамперной характеристики, приведенной производителем в data sheet.







2024 © gtavrl.ru.