Импульсная техника. Ицхоки Я


ИМПУЛЬСНЫЕ УСТРОЙСТВА - устройства, предназначенные для генерирования и преобразования импульсных сигналов, а также сигналов, форма к-рых характеризуется быстрыми изменениями, чередующимися со сравнительно медленными процессами (паузами). И. у. применяют в разл. радиоэлектронных устройствах и электронных системах, включая ЭВМ. Они входят в состав многих физ. приборов и установок, в частности связанных с физикой элементарных частиц: ускорителей, анализаторов и др. В эксперим. процессы в детекторах частиц преобразуются в электрич. импульсы, к-рые затем подвергают временному и амплитудному анализу. При временном анализе устанавливают временные характеристики одиночных импульсов и потоков импульсов. Амплитудный анализ состоит в установлении распределения амплитуд импульсов (см. Амплитудный анализатор, Амплитудный дискр иминатор) .
Импульсы . В большинстве случаев в И. у. используют видеоимпульсы - кратковрем. униполярные изменения тока или , разделённые паузами (см. также Импульсный сигнал ).Различают след, элементы видеоимпульса: резкий подъём (фронт), медленно меняющуюся часть (вершину), быстрый спад (срез), часто завершающийся длинным "хвостом". Иногда после фронта и среза наблюдаются быстро затухающие колебания (двусторонние выбросы). Параметры импульса: размах (амплитуда) А , длительность t и, отсчитываемая на заранее обусловленном уровне (напр., 0,1A , 0,5А) , длительности фронта и среза. Последние обычно отсчитывают между уровнями (0,1-0,9)А . Для нек-рых задач важным параметром является спад или подъём на вершине DA . Если детальная конфигурация импульса не имеет существ, значения, форму видеоимпульсов идеализируют и говорят о прямоугольных, треугольных, трапецеидальных, колокольных (гауссовых) экспоненциальных и др. импульсах. Помимо одиночных н нерегулярно следующих во времени потоков импульсов на практике используют периодпч. последовательности, к-рые дополнительно характеризуют периодом (ср. периодом) Т пли частотой повторения F=T -1 . Важным параметром периодич. последовательности является скважность потока Q=T/t и При генерировании мощных видеоимпульсов в промежутках между импульсами (в паузах) производится запасание энергии в накопителях, а её высвобождение - за время t и. При Qд1 в нагрузке реализуются огромные мощности, в Q раз большие средней. При передаче сообщений периодич. импульсная последовательность подвергается модуляции по периоду (частоте повторения), временному положению (фазе), амплитуде или длительности импульсов. Соответственно различают частотную, фазовую, амплитудную и временную импульсную модуляцию . Существует также кодовая , когда исходное сообщение подвергается дискретизации во времени и квантованию по уровню; каждому полученному дискрету ставится в соответствие импульсный код: напр., группа импульсов, различающихся временными положениями отд. импульсов в группе или к--л. другим признаком. Модулиров. последовательности используют также при многоканальной радиосвязи, когда импульсы, принадлежащие отд. каналу, наделяют к--л. временным признаком (при кодовой модуляции такими признаками могут служить сами коды импульсов). В радиоэлектронных устройствах (радиолокаторах, системах радионавигации, радиосвязи и др.) используют также радио им пульсы - пакеты кратковрем. эл--магн. высокочастотных колебаний, излучаемых антеннами радиопередающих устройств и улавливаемых радиоприёмником. Радиоимпульсы можно рассматривать как результат 100%-ной модуляции высокочастотного генератора радиопередатчика мощными видеоимпульсами.
Виды устройств . В И. у. используют разл. схемы: дифференцирующие цепи , импульсные трансформаторы, линии задержки и формирующие линии, ключевые схемы, блокинг-генераторы ,регенеративные (релаксационные) схемы (мультивибраторы ,ждущие , генераторы пилообразного напряжения), триггеры , схемы на туннельных диодах п др. При помощи этих основных схем осуществляется генерирование импульсов и последовательностей и разнообразные их преобразования, для чего применяют формирователи импульсов, кодировщики, временные селекторы, компараторы и др. схемы. Иногда к И. у. относят также усилители импульсов (видеоусилители), для к-рых характерны высокое быстродействие (широкополосность), достаточный динамич. диапазон и (в случае усиления слабых импульсных сигналов) малый уровень собств. шумов. При конструировании и применении И. у. возникают две осн. задачи: обеспечение необходимого быстродействия и требуемой разрешающей способности. Скорость перехода И. у. из одного состояния в другое ограничивается инерционностью электронных элементов (диодов и транзисторов), а также наличием паразитных ёмкостей п индуктивностсй. Разрешающая способность оценивается мин. временным интервалом между двумя импульсами или процессами, к-рые И. у. может воспринимать как раздельные. Для ИI. у. характерно "мёртвое" время, необходимое для восстановления рабочего состояния после очередного срабатывания устройства. Осн. элементами И. у. являются микросхемы на полевых и биполярных транзисторах в интегральном исполнении, хотя встречаются схемы, выполненные на дискретных элементах (особенно в тех случаях, когда требуется очень высокое быстродействие). С совершенствованием технологии микросхем, уменьшением размеров отд. элементов и использованием новых материалов и технологии неуклонно возрастает быстродействие и разрешающая способность И. у. Время перехода из одного состояния в другое (время срабатывания) может достигать ~10 -10 с. И. у. работают с аналоговыми сигналами, т. е. напряжениями и токами, непрерывно изменяющимися во времени. Однако полезные ф-ции нек-рых И. у. связаны с фиксацией лишь конечного числа внутр. состояний и определ. набором уровней на выходе без учёта времени перехода из одного состояния в другое, т. е. с их работой в качестве цифровых устройств (цифровых автоматов). К последним относятся разл. преобразователи, запоминающие устройства, регистры, счётчики импульсов, шифраторы, дешифраторы и др. Идеализация процессов в реальных устройствах, состоящая в пренебрежении временем переходных процессов, плодотворна, поскольку позволяет использовать для анализа цифровых устройств удобный для практики аппарат булевой алгебры. Однако при рассмотрении вопросов быстродействия, разрешающей способности и временного согласования работы отд. элементов в устройствах их приходится анализировать как И. у. с учётом переходных процессов. Лит.: Фролкин В. Т., Попов Л. Н., Импульсные устройства, 3 изд., М., 1980; Ицхони Я. С., Овчинников Н. И., Импульсные и цифровые устройства. М., 1973; Гольденберг Л. М., Импульсные устройства , , М., 1981; Дмитриева Н. Н., Ковтюх А. С., Кривицкий Б. X., Ядерная электроника, М., 1982; Ерофеев Ю. Н., Импульсная техника, М., 1984. Б. X. Кривицкий .

План лекции

1. Общие сведения.

2. Мультивибраторы.

3. Блокинг-генератор.

3.1. Принцип работы блокинг-генератора.

3.2. Порядок расчета блокинг-генератора.

4. Генераторы пилообразного напряжения.

4.1. Основные параметры генераторов пилообразного напряжения.

4.2. Разновидности схем транзисторных генераторов пилообразного напряжения.

5. Триггер на транзисторах.

Общие сведения.

Импульсная техника – раздел электроники, предметом которого является разработка теоретических основ, практических методов и технических средств генерирования, преобразования и измерения параметров электрических импульсов, а также исследование импульсных процессов в электрических цепях.

Наиболее часто в импульсных электронных устройствах используются импульсы прямоугольной (рис. 1,а), трапецеидальной (рис. 1,б), треугольной (рис. 1,в) и экспоненциальной (рис. 1,г) формы.

Рисунок 1

Импульсы, формы которых приведены на рис. 1,а…г, являются идеализированными. Форма реальных импульсов не является геометрически правильной из-за нелинейности характеристик полупроводниковых приборов и влияния реактивных сопротивлений в схемах. Поэтому реальные прямоугольные импульсы, наиболее часто используемые в практических импульсных схемах, имеют форму, приведенную на рис. 1,д. Участки быстрого нарастания и спада напряжения или тока называются фронтом и срезом импульса , а интервал, на котором напряжение или ток изменяются сравнительно медленно, - вершиной импульса .



Упрощенная форма реального прямоугольного импульса показана на рисунке 1,е. Спрямленные отрезки ab, bc, cd отображают соответственно фронт, вершину и срез импульса, а отрезки de и ef – нарастание и спад обратного импульса. Скорость нарастания напряжения или тока на рисунке 1,е характеризуется крутизной фронта импульса

а убывание напряжения или тока на вершине относительным снижением

Одним из важнейших показателей импульсных сигналов является длительность импульсов . Помимо указанного параметра τ а, определяющего активную длительность вершины на уровне 0,5U m , длительность импульса характеризует время t и, определяемое либо на уровне 0,1U m , либо по основанию импульса (рис. 1,е).

К основным параметрам импульсов относится период повторения импульсов Т – интервал времени между началом двух соседних однополярных импульсов. Величину, обратную периоду повторения, называют частотой следования импульсов f. Часть периода Т занимает пауза t п – отрезок времени между окончанием и началом двух соседних импульсов t п = T – t и.

Отношение длительности импульса к периоду повторения называется коэффициентом заполнения

Величина, обратная коэффициенту заполнения, называется скважностью импульсов

Качество работы импульсных устройств во многом определяется временем восстановления импульса t вос (рис. 1,е). Чем меньше t вос, тем надежнее работает схема, тем выше ее быстродействие.

Мультивибраторы

Одним из наиболее распространенных генераторов импульсов прямоугольной формы является мультивибратор, представляющий собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью. Одна из наиболее простых и типичных схем мультивибратора приведена на рис. 2. Элементы схемы подобраны так, чтобы обеспечить идентичность каждого из усилительных каскадов, собранных на однотипных транзисторах VТ1, VT2. При R1 = R4, R2 = R3, C1 = C2 и одинаковых параметрах транзистора мультивибратор называется симметричным.

Рисунок 2

Т.к. идеальной симметрии схемы практически невозможно, то любая, даже самая незначительная асимметрия мгновенно приведет к тому, что один из транзисторов закроется, а другой будет открыт и доведен до режима насыщения. Допустим, что по тем или иным причинам ток коллектора транзистора VT2 оказался несколько больше коллекторного тока транзистора VT1. Это приведет к увеличению падения напряжения на резисторе R4 и снижению отрицательного потенциала на коллекторе VT2. Через конденсатор С2 изменение потенциала коллектора транзистора VT2 передается на базу транзистора VT1. Это приведет к уменьшению тока коллектора транзистора VT1 и к увеличению отрицательного потенциала на его коллекторе. Через С1 изменение потенциала коллектора транзистора VT1 передается на базу транзистора VT2, что вызывает дополнительное увеличение тока коллектора этого транзистора. Далее процесс повторяется, и в конечном итоге транзистор VT2 полностью откроется и войдет в режим насыщения, а транзистор VT1 закроется. Этот процесс протекает лавинообразно.

В режиме запирания транзистора VT1 конденсатор С1 заряжается по цепи: 0, участок эмиттер – база открытого транзистора VT2, С1, R1, -Eк. В то же время конденсатор С2 разряжается через открытый транзистор VT2 и резистор R3.

Переключение схемы из одного состояния в другое зависит от скорости заряда и разряда конденсаторов. По мере заряда конденсатора С1 положительный потенциал точки А все более нарастает, а по мере разряда конденсатора С2 положительный потенциал точки В все более снижается. В связи с этим потенциал базы транзистора VT2 постепенно повышается, а потенциал базы транзистора VT1 снижается. В определенный момент времени транзистор VT1 отопрется, начнется лавинообразный процесс нарастания тока этого транзистора, а транзистор VT2 запрется. Этот процесс переключения повторяется. Таким образом, транзисторы в мультивибраторе по очереди находятся или в режиме отсечки тока или в режиме насыщения и с каждого коллектора можно снять прямоугольные импульсы с амплитудой, почти равной величине напряжения питания источника. Схема будет генерировать импульсы (режим самовозбуждения ). Такой режим называется автоколебательным .

На рис. 3 приведены временные диаграммы токов, протекающих в транзисторах, и напряжений на коллекторах и базах транзисторов. Исходный момент t 0 соответствует тому случаю, когда транзистор VT1 заперт, а транзистор VT2 открыт. Моменты t 1 , t 2 , t 3 соответствуют переключению схемы.

Приведенная на рис. 2 схема получила название схемы с коллекторно-базовыми емкостными связями.

Рисунок 3

При расчете мультивибратора в автоколебательном режиме должны быть заданы: период следования импульсов Т; длительность импульсов t и; амплитуда импульсов U m ; длительность фронта τ ф; длительность среза τ с; время восстановления t вос; температура окружающей среды t окр (или допустимая температурная нестабильность мультивибратора σ Т в заданном диапазоне изменения температуры).

В результате расчета необходимо выбрать тип транзисторов и определить параметры элементов схемы.

1) Определяем напряжение источника питания

. (5)

Если напряжение источника питания задано и значительно превышает амплитуду импульсов U m , то можно расчет мультивибратора вести на бо́льшую амплитуду, чем задано, а импульсы снимать с помощью делителя напряжения в коллекторной цепи одного из транзисторов, как показано на рис. 4.

Рисунок 4

2) Выбираем тип транзисторов, параметры которых удовлетворяют условиям:

где U КБ max – максимально допустимое постоянное напряжение коллектор – база для выбранного типа транзистора;

f h 21э – предельная частота коэффициента передачи тока биполярного транзистора.

Если мультивибратор работает при повышенных температурах или от него требуется высокая температурная стабильность (σ Т < 5%), то выбирают кремниевые транзисторы; если допустимое значение σ Т > 5% - германиевые транзисторы.

При выборе транзисторов по их частотным свойствам, можно, кроме соотношения (7), руководствоваться следующими рекомендациями: если заданная длительность фронта τ ф не меньше (0,2 …),5)мкс, то могут быть использованы низкочастотные транзисторы; если же τ ф < (0,2 … 0,5)мкс – следует выбрать высокочастотные транзисторы.

3) Находим сопротивления резисторов R1 = R4 = Rк. При этом необходимо выполнить условие

, (8)

где I Ки max – максимально допустимый импульсный ток коллектора;

I КБ 0 – обратный ток транзистора.

Как правило, для маломощных транзисторов R к выбирают не менее (0,5 … 1) кОм, а для мощных – не менее (200 … 300) Ом.

4) Находим сопротивление резисторов R2 = R3 = R Б

где h 21э – коэффициент передачи тока;

К нас – коэффициент насыщения транзистора.

Коэффициент насыщения определяется из соотношения

. (10)

При К нас < 1 транзистор работает в ненасыщенном режиме, при К нас = 1 находится на грани насыщения, при К нас > 1 – в режиме насыщения.

Для обеспечения режима открытого транзистора при неглубоком насыщении выбирают К нас = 1…4.

В некоторых схемах симметричных мультивибраторов для регулировки периода автоколебаний в цепь баз транзисторов включают источник регулируемого напряжения (Е Б на рис. 5). Формула для определения периода генерируемых импульсов

, (11)

где R Б = R2 = R3; С = С1 = С2;

U Б m – часть напряжения, которая передается с коллекторов в цепи баз.

Рисунок 5

5) Определяем емкости конденсаторов С1 и С2. Для симметричного мультивибратора

. (12)

Для несимметричного мультивибратора

6) Находим время восстановления схемы

Как видно, для уменьшения t вос, т.е. для улучшения формы генерируемых импульсов, следует уменьшать величины R K и С. Однако с уменьшением емкости С уменьшаются длительность импульса и период колебаний. Для предотвращения этого необходимо увеличивать сопротивление резисторов R Б, но при этом ухудшается термостабильность схемы. Уменьшение R K также нецелесообразно, так как это приводит к увеличению тока насыщения транзистора и уменьшению перепада напряжения на коллекторе, что может нарушить самовозбуждение схемы. Поэтому, если полученное значение I вос оказалось больше заданного, в схему мультивибратора следует внести изменения. На рис. 6,а показана схема симметричного мультивибратора с корректирующими диодами.

Рисунок 6

В схеме ток заряда конденсаторов связи С1 и С2 замыкается не через коллекторные резисторы R1 и R4, а через вспомогательные резисторы R5, R6, что обеспечивается включением диодов VD1, VD2. Диоды не препятствуют развитию лавинообразных процессов нарастания и спадания токов транзисторов, но позволяют уменьшить постоянную времени заряда конденсаторов С1 и С2. Благодаря этому напряжение на коллекторе запертого транзистора после опрокидывания схемы устанавливается близким к –Ек намного быстрее (рис. 6,б), чем в основной схеме мультивибратора.

Блокинг-генератор

Устройства импульсной и цифровой электроники существенно отличается от устройств аналоговой электроники видом используемых сигналов (цифровые сигналы) и приёмами проектирования.
Цифровой сигнал может принимать два значения (высокого уровня и низкого уровня). Устройства, работающие с цифровыми сигналами, называются цифровыми.
Цифровыми сигналами сигналом представляются двоичные числа. Элементами сигнала являются нуль(0) и единица(1).
Цифровой сигнал может быть потенциальным или импульсивным:

Устройства для формирования цифровых сигналов

Для получения цифровых уровней, соответствующих логической 1 и логическому 0 применяют специальные схемы.

Аналоговый компаратор

Компаратор предназначен для сравнения аналоговых сигналов: входного (измеряемого) Uх и опорного (Uоп ). В момент равенства сигналов Uх = Uоп напряжение Uвых резко изменяются.
До момента t1 Uоп > Uх и Uвых =U+ нас .
В момент t1 Uх ≥ Uоп и Uвых =U- нас .
В момент t2 вновь наступает Uоп ≥ Uх и Uвых =U+ нас .
Пунктиром показано характеристика идеального компаратора, у которого переключение происходит мгновенно при Uх = Uоп . Сплошная линия соответствует реальному компаратору, у которого переключение происходит с запаздыванием относительно t1 и t2. Для получения на выходе компаратора цифровых уровней, соответствующих логическому нулю (0) и логической единицы (1), вводят ограничитель, состоящий из диодов VД1 и VД2.

Напряжение на открытом диоде около 0,7 В. По этому напряжение на выходе не может быть выше 5,7 В (при Uвых > 0 и открыт VД1). И ниже — 0,7 В (при Uвых < 0 и открыт VД2). Однако рассмотренные схемы компараторов отличаются низкой помехозащищённостью. Указанный недостаток устраняется при введении в схему положительной обратной связи.

Триггер Шмитта

Компаратор, уровни включения и выключения которого не совпадают, называют триггером Шмитта.
Резисторами R2 и R4 введена положительная обратная связь. Напряжение в точке А равна сумме напряжений Uоп и Uос . Напряжение Uос =(U’вых *R2)/(R2+R4)
Когда U’вых = U+ нас напряжение в т. А равно напряжению срабатывания Uсраб = Uоп + Uос . Когда U’вых = U- нас напряжение в т. А равно напряжению отпускания Uотп = Uоп — Uос .
За счёт положительной обратной связи компаратор обладает гистерезисом (рис в): переходы Uвых от одного уровня к другому происходят при разных входных напряжениях (Uсраб , Uотп .) Если амплитуда помехи меньше разности Uсраб — Uотп , то сложного срабатывания не будет (устраняется «дребезг»). Напряжение на выходе Uвых изменяются от уровня логической 1 до уровня логической 0.

Параметры компараторов

Компараторы описывается многими из тех параметров, которые характерны для ОУ (коэффициентом усиления, входным сопротивлением, коэффициентом ослабления синфазного сигнала, напряжение смещения нуля, значением входных токов и т.д.).На ряду с этим ему свойственны и специфические параметры, к которым относятся чувствительность и время переключение.
Чувствительность (разрешающая способность) характеризует точность сравнения сигналов и соответствует их минимальной разности ΔUвх min , при которой напряжение на выходе достигает уровня срабатывания логического элемента. Значение ΔUвх min у ИМС компараторов имеет порядок сотен микровольт, что хуже, чем у компараторов на ИМС операционных усилителей.
Время переключения tпер характеризует быстродействие компараторов и соответствует времени с момента сравнения до момента достижения выходных напряжением уровня срабатывания цифрового элемента. Время переключения существенно зависит от разности сигналов на входах. Типичные значения tпр составляют десятки, сотни НС.

Генераторы импульсных сигналов

Наиболее распространенные генераторы прямоугольных и линейно изменяющихся (пилообразных) импульсов напряжения. Генераторы могут работать в режимах: автоколебательном, ждущем, синхронизации. В автоколебательном режиме импульсные сигналы формируются непрерывно без внешнего воздействия. В ждущем режиме импульсный сигнал формируется лишь по приходу запускающего сигнала. В режиме синхронизации формируется импульсные напряжения, частота которых равна или кратное частоте синхронизирующего сигнала.

Генераторы прямоугольных импульсов

Подобно генераторам гармонических колебаний генераторы прямоугольных импульсов преобразуют энергию источника постоянного тока в энергию электрических колебаний. Генераторы импульсных сигналов восполняют на дискретных, логических элементах или на ОУ.

Симметричный мультивибратор в режиме автоколебаний

Мультивибратор выполнен на основе триггера Шмитта. R2 и R4 образуют положительную обратную связь, R1 и c образует отрицательную обратную связь. В зависимости от напряжения на выходе, которое может быть равно либо + Еп, либо — Еп (Еп — напряжение питания ОУ) на неинвертирующем входе ОУ устанавливается или, или
Ёмкость С перезаряжается с постоянной времени τ = RC.
Мультивибратор формирует прямоугольные импульсы (рис в) с периодом T=2RCgn(1+R3/R2)
Время tu1 заряда конденсатора С равно времени tu2 разряда, поэтому мультивибратор называется симметричным. Период колебаний T = tu1 + tu2.

Несимметричный мультивибратор времени автоколебаний

Для получения колебаний, у которых tu1 ≠ tu2 вместо резистора R1 включаем два разных резистора R1 и R2 и два диода VД1 и VД2. Резистором R1 можно менять постоянную времени зарядки конденсатора С, а с резистором R2- постоянную времени его разрядки.

Ждущий мультивибратор (одновибратор)

За счёт диода VD отрицательное напряжение на конденсаторе С (Uc) может иметь только отрицательное значение порядка — 0,7 В. Схема имеет одно устойчивое состояние, когда Uвых =U- нас = -Еп (диод VD открыт). Из этого состояния схема не может самостоятельно переключить к уровню Uвых =U+ нас =Еп.
С приходом положительного запускающего импульса Uзап = Uм > Uср схема переключается к уровню Uвых =U+ нас = Еп. После этого начинается заряд конденсатора С через резистор R1. Когда напряжение на конденсаторе Uc достигнет значение Uотп происходит возвращение схемы к уровню Uвых =U- нас =-Еп. В этом состоянии схема пребывает до поступления следующего запускающего импульсе.

Генераторы линейного изменяющегося напряжения (ГЛИН)

Линейно изменяющимся напряжением (пилообразным импульсом) называют напряжение, показанное на рисунке:

Импульс составляется двумя фронтами. Передний фронт (рабочий или прямой ход) является линейно изменяющимся длительностью tпр. Задний фронт (обратный ход) изменяется по экспоненциальному закону в течении времени tобр . Импульс характеризуется начальным уровнем Uо и амплитудой Um.
Пилообразные импульсы используются для разведки электронного луча в осциллографах, телевизорах и т.д.
Принцип построение ГЛИН основан на зарядке ёмкости постоянным током.
Линейно изменяющееся напряжение можно получить с помощью интегратора:

На вход подано постоянное напряжение Uвх = const. Ток через конденсатор С равен I=Uвх /R=const.
На конденсаторе С формируется линейно изменяющее напряжение Uвых =-Uвх g/RC.
Обратный ход формируется в процессе быстрой разрядки конденсатора после замыкания ключа Кл.

Аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи

Преобразование аналогового сигнала в цифровой и обратное преобразование применяется в измерительной технике (осциллографы, вольт метры, генераторы и т.д), В бытовой аппаратуре (телевизор, музыкальные центры, автомобильная электроника и т.д), в компьютерной технике (ввод и вывод звука, видеомониторы, принтеры и т.д), в медицинской технике, в телефонии и т.д.
При этом применение АЦП и ЦАП постоянно расширяется по мере перехода от аналоговых устройств к цифровым.

Аналого-цифровые преобразователи (АЦП или ADC)

АЦП преобразует аналоговые сигналы в цифровые, поступающие на цифровые устройства для дальнейшей обработки обработки или хранения.
В общем случае микросхему АЦП можно в виде блока, имеющего один аналоговый вход, один или два входа для подачи опорного (образцового) напряжения, а также цифровые выходы для выдачи кода, соответствующего текущему значению аналогового сигнала.

Часто микросхема АЦП имеет так же входы для подачи тактового сигнала CLK, сигнала разрешения работы CS и выход для выдачи сигнала RDY, указывающего на готовность выходного цифрового кода. На микросхему подаётся одно или два питающих напряжения.
Опорное напряжение АЦП задаёт диапазон входного напряжения, в котором производится преобразование. Оно может быть постоянным или же допускать изменение в некоторых пределах. Иногда предусматривается подача на АЦП двух опорных напряжений с разными знаками, тогда АЦП способен работать как с положительными, так и с отрицательными входными напряжениями.
Выходной цифровой код N (n — разрядный) однозначно соответствует уровню входного напряжения. Код может принимать 2n значений, то есть АЦП может различать уровней входного напряжения. Количество разрядов выходного кода n представляет собой важнейшую характеристику АЦП. В момент готовности выходного кода выдаётся сигнал окончания преобразования RDY, по которому внешнее устройство может читать код N.
Управляется работа АЦП тактовым сигналом CLK, который задаёт частоту преобразования, то есть частоту выдачи выходных кодов. Предельная тактовая частота — второй важнейший параметр АЦП. В некоторых микросхемах имеется встроенный генератор тактовых сигналов, поэтому к их выводам подключается кварцевый генератор или конденсатор, задающий частоту преобразования. Сигнал CS разрешает работу микросхемы.
Выпускается множество самых разнообразных микросхем АЦП, различающихся скоростью работы (частота преобразования от сотен килогерц до сотен мегагерц), разрядностью (от 6 до 24), допустим диапазонами входного сигнала, величинами погрешностей, уровнями питающих напряжений, методами выдачи выходного кода (параллельный или последовательный), другими параметрами. Обычно микросхемы с большой количеством разрядов имеют невысокое быстродействие, а наиболее быстродействующие микросхемы имеют небольшое число разрядов. В качестве базового элемента любого АЦП используется компаратор напряжения, который сравнивает два входных аналоговых напряжения и в зависимости от результата сравнения выдаёт выходной цифровой сигнал (0 или 1).
Существует два основных принципа построения АЦП: параллельный и последовательный.
Принцип преобразования параллельного типа заключается в одновремённом сравнении входного напряжения с n опорными напряжениями и определением, между какими двумя опорными напряжениями оно лежит.
Схема 3-х разрядного параллельного так же представлено на рисунке:

Схема такого АЦП содержит резистивный делитель из резисторов, который делит опорное напряжение Uоп на (2n -1) уровней.
Входное напряжение Uвх сравнивается с помощью (2n -1) компараторов с уровнями (). Выходные сигналы компараторов (X1,X2....X7) с помощью кодирующего преобразователя преобразуется в n — разрядный (n = 3) двоичный код Z0 Z1 Z2.
Процесс преобразования происходит очень быстро, поэтому частота преобразования может достигать сотен МГц. Правда, они требуют применения большого количества компараторов, что вызывает технологические трудности при большом количестве разрядов (при n = 12 требуется 4095 компараторов).
Поэтому АЦП параллельного типа выпускают с числом разрядов n = 4...8
При необходимости иметь больше 8 разрядов применяют АЦП последовательного преобразования, недостатком которых являются малое быстродействие, что приводит к апертурной погрешности АЦП. Апертурная погрешность связана со скоростью изменения измеряемого сигнала (Uвх /dt). За время преобразования (tпр) в цифровой сигнал Uвх изменяется и возникает неопределённость, какое мгновенное значение Uвх (t) преобразовано в код. Для уменьшения апертурной погрешности перед АЦП последовательного преобразования устанавливается схема выборки и хранения.

Устройство выборки и хранения (УВХ)

Где ƒт — тактовые импульсы выборок. Буферы DА1 и DА2 имеют Rвх → ∞ и Rвых → 0. Ключ S1 переключается с такой частотой ƒт . Буфер DA1 благодаря малому Rвых позволяет конденсатору С1 зарядиться до мгновенного значения входного напряжения в каждом импульсе выборки (режим выборки). В интервале между импульсами выборок ключ S1 разомкнут и заряд удерживается на конденсаторе вследствие большого Rвх буфера DА2. (режим хранения) В течении времени хранения АЦП осуществляет преобразование выбранного мгновенного значения в код. Частота ƒт взятия выборок (отчётов) мгновенных значений должна удовлетворять неравенству: ƒт ≥ 2ƒmax, где ƒmax — наибольшая частота спектра аналогового сигнала Uвх.

Цифро-аналоговые преобразователи (ЦАП или DAC)

ЦАП преобразует цифровые сигналы цифровых устройств в аналоговые сигналы. В общем случае микросхему ЦАП можно представить в виде блока, имеющего несколько цифровых входов и один аналоговый вход, а также аналоговый выход.

На цифровые входы ЦАП подаётся n — разрядный код N, на аналоговый выход — опорное напряжение Uоп (другое распространенное обозначение — Uref ). Выходным сигналом является напряжение Uвых (другое обозначение — Uo ) или ток Iвых (другое обозначение lo ). При этом выходной ток или выходное напряжение пропорционально входному коду и опорному напряжению. Для некоторых микросхем опорное напряжение должно иметь строго заданный уровень, для других допускается менять его значение в широких пределах, в том числе и изменять его полярность (положительную на отрицательную и наоборот). ЦАП с большим диапазоном изменения опорного напряжения называется умножающим ЦАП, так как его можно легко использовать для умножения входного кода и любое опорное напряжение.
Кроме информационных сигналов микросхемы ЦАП требуют также подключения одного или двух источников питания и общего провода.
В качестве примера рассмотрим схему реализации 4 — разрядного (n — 4) ЦАП.

Транзисторные ключи S1...S4 управляются цифровым кодом X3X2X1X0. Резисторы R0 /8, R0 /4, R0 /2, R0 высокоточные двоично взвешенные.
Преобразования цифрового кода в выходной аналоговый сигнал основано на представлении двоичного числа Х в виде суммы степеней числа 2: X=X3g23 +X2g22 +X1g21 +X0g20 , где Х3, X2, X1, X0 могут принимать значения 0 или 1.(0 — при разомкнутом ключе, 1 — при замкнутом ключе). Выходное напряжение ЦАП будет связано со входным кодом Х и опорным напряжением Uоп формулой:
Знак минус получается из — за инверсии сигнала ОУ.
Таким образом, при входном коде 0000 выходное напряжение Uвых = 0, а при входном коде 1111 оно будет ровно Uвых = - К (X=1g23 +1g22 +1g21 +1g20 ) = - К. 15. Значение К выбирают таким, чтобы Uвых ≤ Uоп .

Сменяющиеся входные коды обусловливают сменяющееся напряжение на входе ЦАП:

От единицы в первом разряде (Хо = 1) на выходе появляются напряжения Uвых = ΔU (0001). При коде 1111 напряжение на выходе ЦАП равно:
Uвых = 1 (8 . ΔU) + 1(4 . ΔU) + 1(2 . ΔU) + 1 . ΔU = 15 . ΔU. Таким образом, выходной сигнал ЦАП состоит из ступенек, высота которых кратна Uвых /2n , а модуль Uвых пропорционален числу, двоичных код которого определяется состоянием ключей S1.... S4. Токи ключей суммируются в точке А, причём токи различных ключей различны (имеют разный вес: 23 , 22 , 21 , 20 ,).

Параметры АЦП и ЦАП

К основным параметрам АЦП и ЦАП следует отнести максимальное напряжение Umax (входное для АЦП и выходное для ЦАП), число разрядов кода n, разрешающую способность и погрешность преобразования.
Разрешающая способность ЦАП — выходное напряжение, соответствующее единице в младшем разряде входного кода: Δ=Umax /(2n -1), где 2n -1 — максимальный вес входного кода.
Так например, при Umax = 10 B n = 12, Δ =10/(212 -1) = 2,45 мВ. Чем больше n, тем меньше Δ и тем точнее выходным напряжением может быть представлен входной код. Относительное значение разрешающей способности δ= Δ/Umax = 1/2n-1
Ток же параметр АЦП определяется приведёнными выше выражениями и представляет собой входное напряжение, соответствующее приращению выходного кода на единицу в младшем разряде. В данном случае Δ - наименьшая различимая ступенька входного сигнала. Сигнал меньшего уровня АЦП не зарегистрирует. В соответствии с этим разрешающую способность отождествляют с чувствительностью АЦП.
Погрешность преобразования имеет статическую и динамическую составляющие. Статическая составляющая включает в себя методическую погрешность квантования (дискретности) и инструментальную погрешность от неидеальности элементов преобразователей. Погрешность квантования Δк обусловлена самим принципом представления непрерывного сигнала квантованными уровнями, отстоящими друг от друга на выбранный интервал. Ширина этого интервала и есть разрешающая способность преобразователя. Наибольшая погрешность квантования составляет половину разрешающей способности, а в общем случае: Δк = ± 0,5 Δ = ± 0,5 Umax /(2n -1); δк = ± 0,5 (1/(2n -1))
Инструментальная погрешность не должна превышать погрешность квантования. При этом полная абсолютная и относительная статические погрешности: Δст = ±Umax /(2n -1), δст = ± (1/(2n -1)),что соответствует разрешающей способности преобразователя.
Динамическая составляющая погрешности связана с быстродействием преобразователя (с временем преобразования tпр) и скоростью изменения входного сигнала (V). Чем меньше tпр и V тем меньше эта составляющая. Выбор ЦАП может, в частности, производится по значению tпр: за время tпр код на входе не должен, например, изменятся более чем на единицу в младшем разряде. Для АЦП период Топ, с которым осуществляется опрос входного напряжения (подключение к нему АЦП), следует выбирать больше tпр: Топ > tпр, т. е. между скоростью преобразования 1/ tпр и частотой опроса (ƒоп = 1/T) должно соблюдаться соотношение (1/ tпр) >ƒоп. С другой стороны, по теореме Котельникова, ƒоп связана с наивысшей частотой ƒmax в спектре непрерывного входного сигнала неравенством ƒоп ≥ 2 ƒmax. Поэтому АЦП должен обладать скоростью преобразования (1/ ƒпр) ≥ 2 ƒmax. При большом tпр нужно будет увеличивать период опроса, чтобы избежать больших динамических искажений. Для их уменьшения обычно выбирают АЦП с таким временем преобразования tпр, за которое входной сигнал изменяется не более чем на разрешающую способность Δ = Umax/(2n - 1).

ИМПУЛЬСНАЯ ТЕХНИКА, область радиотехники и электроники, охватывающая разработку и использование методов и средств генерирования, преобразования и усиления электрических импульсов, их измерения и индикации, а также исследование импульсных процессов в электрических цепях. Наиболее широко электрические импульсы - как одиночные, так и последовательности (серии) импульсов, образующих импульсные сигналы, - используются в системах автоматики, телемеханики и вычислительной техники, радиосвязи и радиолокации, телевидения и измерительной техники.

Импульсные сигналы, несущие информацию или управляющие работой электронных устройств, различаются по амплитуде, длительности и частоте следования импульсов, а также их взаимному расположению в серии. Большое значение в импульсной технике имеет скважность - отношение периода повторения импульсов одной серии к их длительности. Скважность, например, определяет отношение пиковой мощности импульсных сигналов к их средней мощности, что для многих импульсных устройств является важнейшим показателем работы.

Длительность импульсов в зависимости от области применения может изменяться в значительных пределах. В автоматике, например, оперируют с импульсами длительностью порядка 0,01-1 с, в импульсной радиосвязи - 10 -4 -10 -6 с, в вычислительной технике - до 10 -9 с. Часто даже в одной области техники применяют импульсы с различной длительностью и частотой следования. При воздействии импульсов тока или напряжения на электрическую цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в импульсной технике весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению аппаратуры. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.

Для импульсных сигналов характерна высокая концентрация энергии в небольших временных интервалах; например, мощность в радиоимпульсе, излучаемом радиолокационным передатчиком, достигает десятков МВт и более, что в несколько тысяч раз выше мощности, усреднённой за время передачи всей последовательности импульсов. Такая концентрация энергии позволяет решать многие задачи при передаче электрических сигналов, когда отклик на выходе системы пропорционален мощности сигнала на её входе. Мощные кратковременные электромагнитные импульсы широко применяются в физических исследованиях свойств материи, сопровождают природные явления. Воздействия электромагнитных импульсов приводят к нарушениям работы в первую очередь систем энергоснабжения, к помехам, перебоям в работе радиотехнических служб (связи, вещания, радиолокации, радионавигации, радиоастрономии и др.), радиоэлектронной аппаратуры.

Первые импульсные системы - искровые радиопередатчики для телеграфных и речевых сигналов - созданы А. С. Поповым в 1895 и 1903 годах соответственно. Бурное развитие импульсной техники с начала 1930-х годов связано, прежде всего, с зарождением и совершенствованием радиолокации и телевидения. В 1930-40-х годах были заложены основы формирования импульсов практически любой формы с помощью усилительных элементов - радиоламп, а также пассивных элементов - резисторов, конденсаторов, катушек индуктивности; в 1950-х годах на смену радиолампам пришли транзисторы, позднее интегральные аналоговые микросхемы, всё шире стали применяться цифровые методы. В конце 20 века формирование импульсов аппаратным методом заменяется формированием вычислительными (программными) методами, позволяющими синтезировать импульсы заданной формы с необходимыми параметрами.

С. Л. Мишенков.

Импульсные устройства предназначены для генерирования, формирования, усиления, передачи, преобразования и измерения электрической импульсов. К ним относятся импульсные генераторы, импульсные трансформаторы, триггеры, мультивибраторы, счётчики импульсов и др. Импульсные устройства подвергаются прерывистому воздействию электрических сигналов, различающихся по форме, амплитуде и длительности, частоте следования, а также по расположению их в серии согласно избранному виду импульсной модуляции и некоторому условному коду. В импульсных устройствах используются одиночные импульсы и последовательности (серии) импульсов. В радиолокаторах, системах радионавигации, радиосвязи и т. п. импульсные сигналы имеют частотное заполнение от десятков Гц до десятков ГГц. С помощью импульсных устройств можно весьма точно фиксировать время воздействия импульсных сигналов, изготовлять бесконтактные электронные ключи. В логических схемах на импульсных устройствах используется чёткое разделение двух возможных состояний электронной схемы: «есть напряжение» - «нет напряжения» («да» - «нет»). Для выполнения логических операций разной сложности служат, например, дифференцирующие цепи и интегрирующие цепи, формирующие линии, импульсные трансформаторы и усилители, линии задержки, ограничители, фиксаторы уровня, пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы, импульсные делители частоты, селекторы импульсов, кодирующие устройства (и декодирующие), дешифраторы, матрицы, элементы памяти ЭВМ и др. С помощью соответствующих преобразований и логических операций над импульсными сигналами выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Импульсные устройства широко применяются в радиоизмерительных приборах (частотомерах, осциллографах, анализаторах спектра, измерителях временных интервалов и др.).

Лит.: Ицхоки Я. С., Овчинников Н. И. Импульсные цифровые устройства. М., 1972; Ерофеев Ю. Н. Импульсные устройства. 3-е изд. М., 1989, Зельдин Е. А. Импульсные устройства на микросхемах. М., 1991; Фролкин В. Т., Попов Л. Н. Импульсные и цифровые устройства. М., 1992; Браммер Ю. А., Пащук И. Н. Импульсные и цифровые устройства. 8-е изд. М., 2006.

В книге описаны импульсные и цифровые сигналы, элементная база импульсных и цифровых устройств, формирователи, усилители и генераторы импульсов, триггеры, цифровые функциональные узлы и устройства.
Для студентов электрорадиоприборостроительных средних профессиональных учебных заведений.

Структура импульсных сигналов.
Для сокращения написания сигналы импульсных устройств будем называть импульсными. Случаи, когда это может привести к смещению понятий, будут отмечены особо.

Ранее подчеркивалось, что информация запечатлевается в изменениях электрического колебания. Импульсная последовательность становится сигналом, когда в соответствии с передаваемой информацией изменяются ее параметры: амплитуда импульсов, их длительность или фаза. В частном случае информация может выражаться появлением импульса, изменением его длительности или временного положения относительно опорного импульса.

Различают амплитудно-импульсную (АИМ), широтно-импульсную (ШИМ) и фазоимпульсную (ФИМ) модуляции. При каждом виде модуляции один из параметров импульсной последовательности принимает значение, пропорциональное величине непрерывного модулирующего сигнала в момент присутствия импульса.

ОГЛАВЛЕНИЕ
Предисловие
Введение
Глава 1. Сигналы импульсных и цифровых устройств
§ 1.1. Общие сведения
§ 1.2. Сигналы импульсных устройств
§ 1.3. Сигналы цифровых устройств
Глава 2. Импульсные усилители и ключи
§ 2.1. Общие сведения
§ 2.2. Статический режим транзисторного усилителя
§ 2.3. Некоррелированный транзисторный усилитель
§ 2.4. Корректированный транзисторный усилитель
§ 2.5. Эмиттерный повторитель
§ 2.6. Интегральные усилители
§ 2.7. Транзисторные ключи
Контрольные вопросы и упражнения
Глава 3. Элементная база импульсных и цифровых устройств
§ 3.1. Общие сведения
§ 3.2. Операционные усилители
§ 3.3. Аналоговые компараторы
§ 3.4. Простейшие логические элементы ИЛИ, И, НЕ
§ 3.5. Логические элементы И-НЕ, ИЛИ-НЕ
§ 3.6. Параметры логических элементов
§ 3.7. Реализация логических функций в разных базисах
Контрольные вопросы и упражнения
Глава 4. Формирователи импульсов
§ 4.1. Общие сведения
§ 4.2. Дифференцирующие цепи
§ 4.3. Интегрирующие цепи
§ 4.4. Интеграторы и дифференциаторы на микросхемах операционных усилителей
§ 4.5. Диодные ограничители амплитуды
§ 4.6. Транзисторный усилитель-ограничитель
§ 4.7. Ограничители на микросхемах операционных усилителей
§ 4.8. Формирователь импульсов с контуром ударного возбуждения
§ 4.9. Формирующие линии
§ 4.10. Формирователи импульсов на логических элементах
Контрольные вопросы и упражнения
Глава 5. Генераторы прямоугольных импульсов
§ 5.1. Общие сведения
§ 5.1. Транзисторные мультивибраторы
§ 5.3. Интегральные мультивибраторы
§ 5.4. Мультивибраторы на логических элементах
§ 5.5. Мультивибраторы на микросхемах операционных усилителей
§ 5.6. Транзисторные блокинг-генераторы
§ 5.7. Блокинг-генераторы на интегральных микросхемах
Контрольные вопросы и упражнения
Глава 6. Генераторы пилообразных импульсов
§ 6.1. Общие сведения
§ 6.2. Генераторы линейно изменяющегося напряжения
§ 6.3. Генераторы линейно изменяющегося тока
Контрольные вопросы и упражнения
Глава 7. Триггеры
§ 7.1. Общие сведения
§ 7.2. Транзисторные триггеры
§ 7.3. Интегральные триггеры
Контрольные вопросы и упражнения
Глава 8. Функциональные узлы цифровых и импульсных устройств
§ 8.1. Общие сведения
§ 8.2. Счетчики
§ 8.3. Регистры
§ 8.4. Дешифраторы и шифраторы
§ 8.5. Коммутаторы
§ 8.6. Цифровой компаратор
§ 8.7. Сумматоры
§ 8.8. Цифроаналоговые и аналого-цифровые преобразователи
§ 8.9. Полупроводниковые запоминающие устройства
§ 8.10. Программируемая логическая матрица
§ 8.11. Таймеры
Контрольные вопросы и упражнения
Глава 9. Цифровые и импульсные устройства
§ 9.1. Общие сведения
§ 9.2. Преобразователи кодов
§ 9.3. Цифровая индикация
§ 9.4. Электронные часы
§ 9.5. Цифровой вольтметр
§ 9.6. Устройство сбора и отображения информации
§ 9.7. Электронный кодовый замок
§ 9.8. Устройство для умножения кодов
§ 9.9. Формирователь пачек импульсов
§ 9.10. Запоминающее устройство микропроцессорной системы
§ 9.11. Преобразователи напряжение - частота
§ 9.12. Символьный дисплей
§ 9.13. Селекторы импульсов
Заключение
Приложения
Литература.

Дата публикации: 24.02.2014 10:04 UTC

  • Цифровая обработка в оптико-электронных системах, Часть 1, 2017
  • Учебник младшего специалиста радиотехнических войск, Часть 1, Инце А.К., 1980
  • Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий, Федоров А.А., Старкова Л.Е., 1987






2024 © gtavrl.ru.