Ipb системы архитектуры клиент сервер. Pagination - сведения, необходимые для организации постраничной навигации


Являются неравноправными составляющими информационной сети. Одни владеют каким-то ресурсом, поэтому называются серверами, другие обращаются к этим ресурсам и называются клиентами. Рассмотрим, как же они взаимодействуют между собой и что собой представляет клиент-серверная архитектура.

Клиент-серверная архитектура

Архитектура «Клиент-Сервер» представляет собой взаимодействие структурных компонентов в сети на основе определенных данной сети, где структурными компонентами являются сервер и узлы-поставщики определенных специализированных функций (сервисов), а также клиенты, которые пользуются данным сервисом. Специфические функции принято делить на три группы на основе решения определенных задач:

  • функции ввода и представления данных предназначены для взаимодействия пользователя с системой;
  • прикладные функции - для каждой имеется собственный набор;
  • функции управления ресурсами предназначены для управления файловой системой, различными базами данных и прочими компонентами.

Например, компьютер без сетевого подключения, представляет компоненты представления, прикладного назначения и управления на различных уровнях. Такого рода уровнями считаются операционная система, прикладное и служебное программное обеспечение, различные утилиты. Точно так же и в сети представлены все вышеуказанные компоненты. Главное - правильно обеспечить сетевое взаимодействие между этими составляющими.

Принцип работы клиент-серверной архитектуры

Клиент-серверная архитектура наиболее часто используется для создания корпоративных баз данных, в которых информация не только хранится, но и периодически поддается обработке различными методами. Именно база данных является главным элементом любой корпоративной информационной системы, а на сервере располагается ядро этой базы. Так, на сервере происходят наиболее сложные операции, касающиеся ввода, хранения, обработки и модификации данных. Когда пользователь (клиент) обращается к базе данных (серверу), происходит обработка запроса: непосредственно обращение к базе данных и возврат ответа (результата обработки). Результат обработки - это сообщение сети об успешном проведении операции или ошибке. Серверные компьютеры могут обрабатывать одновременно обращение нескольких клиентов к одному и тому же файлу. Такая работа и по сети позволяет ускорить работу используемых приложений.

Клиент-серверная архитектура: применение технологии

Данная архитектура используется для доступа к различным ресурсам с использованием сетевых технологий: баз данных, почтовые серверы, файрволы, прокси-серверы. Разработка клиент-серверных приложений позволяет повысить безопасность, надежность и производительность используемых приложений и сети в целом. Наиболее часто клиент-серверные приложения используются для автоматизации бизнеса.

5 Особенности и преимущества архитектуры "клиент/сервер"

Что же представляет собой архитектура клиент/сервер? В определенной степени ее можно назвать возвратом к модели "хост-компьютер + терминалы", так как ядром такой системы является сервер баз данных , представляющий собой приложение, осуществляющее комплекс действий по управлению данными - выполнение запросов, хранение и резервное копирование данных, отслеживание ссылочной целостности, проверка прав и привилегий пользователей, ведение журнала транзакций. При этом в качестве рабочего места может быть использован обычный персональный компьютер, что позволяет не отказываться от привычной рабочей среды (рис.5).

Рис.5. Этап 4: обработка данных в архитектуре "клиент/сервер"

В чем преимущества клиент-серверных информационных систем по сравнению с их аналогами, созданными на основе сетевых версий настольных СУБД?

Одним из важнейших преимуществ является снижение сетевого трафика при выполнении запросов. Например, при необходимости выбора пяти записей из таблицы, содержащей миллион, клиентское приложение посылает лает серверу запрос, который сервером компилируется, оптимизируется и выполняется, после чего результат запроса (те самые пять записей, а вовсе не вся таблица) передается обратно на рабочую станцию (если, конечно клиентское приложение корректно формулирует запросы к серверу). При этом нередко в первом приближении можно не задумываться, а есть ли во обще индекс, способный облегчить поиск нужных записей, - если он есть он будет использован сервером, если нет - запрос все равно будет выполнен, хотя, скорее всего, за большее количество времени.

Вторым преимуществом архитектуры "клиент/сервер" является возможность хранения бизнес-правил на сервере, что позволяет избежать дублирования кода в различных приложениях, использующих общую базу данных Кроме того, в этом случае любое редактирование данных, в том числе и редактирование нештатными средствами, может быть произведено только в рамках этих правил.

Кроме того, для описания серверных бизнес-правил, в наиболее типичных ситуациях (как в примере с заказчиками и заказами) существуют весьма удобные инструменты - так называемые CASE-средства (CASE означает Computer-Aided System Engineering), позволяющие описать подобные правила и создавать реализующие их объекты базы данных (индексы, триггеры), буквально рисуя мышью связи между таблицами, без какого бы то ни было программирования. В этом случае клиентское приложение будет избавлено от значительной части кода, связанного с реализацией бизнес-правил непосредственно в приложении. Отметим также, что часть кода, связанного с обработкой данных, также может быть реализована в виде хранимых проце дур сервера, что позволяет еще более "облегчить" клиентское приложение, г это означает, что требования к рабочим станциям могут быть не столь высоки. Это в конечном итоге удешевляет стоимость информационной системы даже при использовании дорогостоящей серверной СУБД и мощного сервера баз данных.

Помимо перечисленных возможностей современные серверные СУБД обладают многочисленными средствами управления пользовательскими привилегиями и правами доступа к различным объектам базы данных. Как правило, в базе данных хранятся сведения о ее пользователях, их паролях и привилегиях, а каждый объект базы данных, такой, как, например, таблица, принадлежит какому-либо пользователю. Владелец объекта может предоставить другим пользователям право тем или иным способом использовать объект (например, позволить читать из него данные какому-либо другому пользователю).

Некоторые серверные СУБД поддерживают так называемые роли, представляющие собой совокупность прав на доступ к тем или иным объектам базы данных. Это бывает удобно в случае большого количества пользователей с однотипными должностными обязанностями. Возьмем, к примеру, коммерческий банк . Очевидно, что операционистов такого банка может добавлять записи в таблицу, в которой хранятся сведения об операциях по счетам, но не должна редактировать план счетов банка, тогда как другие сотрудники банка в общем случае не должны вносить изменения в таблицу операций по счетам. В случае наличия в банке нескольких десятков операционисток имеет смысл, если данный сервер позволяет, определить соответствующую роль, описать для нее совокупность прав на объекты базы данных и раздать ее нужному контингенту пользователей.

Современные серверные СУБД обладают также широкими возможностями резервного копирования и архивации данных, а нередко и" оптимизации выполнения запросов. Они также, как правило, предоставляют возможность параллельной обработки данных, особенно в случае использования многопроцессорных компьютеров в качестве сервера баз данных.

Итак, клиент-серверная информационная система состоит в простейшем случае из трех основных компонентов:

Сервера баз данных, управляющего хранением данных, доступом и защитой, резервным копированием, отслеживающего целостность данных в соответствии с бизнес-правилами и, самое главное, выполняющего запросы клиента;

Клиента, предоставляющего другим клиентам интерфейс пользователя, выполняющий логику приложения, проверяющий допустимость данных, посылающий запросы к серверу и получающий ответы от него;

Сети и коммуникационного программного обеспечения , осуществляющего взаимодействие между клиентом и сервером посредством сетевых протоколов.

Есть и более сложные реализации архитектуры "клиент/сервер", например трехуровневые информационные системы с использованием сервере приложений, а также информационные системы, использующие Web-сервер, под управлением которого выполняются приложения, доставляющие данные в Web-браузер пользователя.

1.6. Компоненты системы

Клиент

Компьютер-Клиент является входной точкой конечного пользователя в среду клиент-сервер. Для этого рабочая станция должна быть довольно хорошими вычислительными возможностями и быть способной делать запросы общих ресурсов системы. Клиент использует ресурсы, предоставляемые ему одним или более серверов-обработчиков. Клиент является активным членом этой связки - отправляет запросы и получает ответы. Компьютер- клиент в данном случае относится к конкретному пользователю. В некоторых случаях сама рабочая станция может функционировать как клиент, а в некоторых - как сервер. Клиент может быть как на базе Intel 386, так и на мощном RISC процессоре. Эти рабочие станции работают под графическим пользовательским интерфейсом GUI и перед пользователем предстают в не отличающемся друг от друга виде. Взаимодействуя с пользователем, клиент эффективно скрывает сервер и сеть от пользователя, что создает иллюзию целостности приложения и независимости от всех остальных процессов, машин или сетей.

Сервер

Сервер выполняет ряд заданий для многочисленных клиентов. Суть его функционирования в обработке множественных и зачастую спонтанных запросов клиентов. Тем не менее, сервер должен обеспечивать многозадачность и совместный доступ к памяти. Программное обеспечение операционной системы на сервере выполняет те же функции, что и на компьютере-клиенте (например, обработка прерываний и связь), а так же физические процессы записи-чтения данных. Серверы обеспечивают работу программ, обработку баз данных и файлов, печать, факс-передачу, связь, системы ограничения доступа и систему управления сетью. Сервер довольно специфичен, т. е. выполняет определенные заранее функционально связанные процессы.

Сеть

Суть сети системы к/с - в ее неразрывности с внешней средой. Сеть соединяет рабочие станции общими ресурсами и является системой, в которой передаются данные. Сети могут быть классифицированы по их географической протяженности. Локальные сети обслуживают отдельные 1| строения или несколько отдельно стоящих зданий (к примеру, студ. городок). Городские сети обслуживают целые города или метрополии. Далее идут областные и республиканские сети.

Приложения

Программное обеспечение связывает воедино остальные три компонента архитектуры. Основной отличительной чертой является наличие возможностей обработки данных, физически распределяющих их между клиентом и сервером, но для пользователя представляющего единое целое (так называемая совмещенная обработка).

Есть два различного рода программного обеспечения для технологии клиент-сервер. Программное обеспечение, установленное на сервере (back-end tool), обеспечивает сбор, хранение и обработку данных. Примером подобных программ может служить Oracle, Sybase и Ingres.

Программное обеспечение на компьютере-клиенте (front-end application, фронтальное, предварительной обработки данных) более интерактивное, простое в использовании и более дружественное к пользователю. В качестве примера можно привести такие программы, как Developer 2000, Power Builder и Designer 2000.

С ростом популярности технологии к/с на рынке появилось много фирм-производителей соответствующего ПО. Это не могло не привести к хаосу и беспорядку. По мере роста хаоса были выработаны правила, обязующие разработчиков следовать определенным стандартам. В этих стандартах отражено требование совместимости программного обеспечения, используемого на фронтальных машинах и машинах баз данных.

Каждая машина обработки данных имеет свое фронтальное программное обеспечение. Для Oracle это Developer 2000, а для Sybase – Power Builder. Особенностью системы является то, что каждый фронтальный компьютер может общаться с компьютером базы данных. Так, в случае базы данных Oracle, может использоваться приложение Power Builder с небольшими изменениями.

1.6.1 Соберем все части вместе

Система клиент-сервер - это гармоничная композиция трех отдельных технологий, работающих в неразрывной связке, чтобы обеспечить эффективное хранение и быстрый доступ к данным.

Программное обеспечение на компьютере клиенте, так называемое фронтальное ПО, отвечает за экран и ввод-вывод информации пользователем. Программное обеспечение на сервере несет ответственность за обработку введенной информации и доступ к дискам данных. К примеру, пользователь на машине-клиенте создает запрос данных в базе, фронтальная программа посылает данный запрос через сеть к серверу. Сервер базы данных проводит поиск, и отправляет обратно соответствующие запросу данные (см. устройство системы на рис.6).

Рис.6. Устройство системы «клиент-сервер»

1.7 Многозвенные информационные системы Internet

Распределенные информационные системы представляют собой следующий этап развития архитектуры информационных систем. Потребность в ни появляется при дальнейшем укрупнении информационных систем, связанное с увеличением количества пользователей, появлением удаленных филиалов необходимостью в централизованном хранении и обработке данных. В случае большого числа пользователей возникают проблемы своевременной и синхронной замены версий клиентских приложений на рабочих станция (особенно в случае территориальной разбросанности предприятия), проблемы поддержания настроек, а также перегрузки сети и сервера баз данных.

Эти проблемы решаются путем создания многозвенных информационных систем с "тонким" клиентом (рис.7).

В этом случае проблема поддержки настроек решается за счет переноса и на промежуточное звено (такое программное обеспечение носит название middleware), называемое сервером приложений. На него же можно возложит и другие функции, например проведение расчетов, обработку данных, генерацию отчетов. Соответственно эти же функции изымаются из клиентского приложения, поэтому снижаются требования, как к ресурсам рабочей станции так и к частоте обновления самого клиентского приложения. При разумном распределении функций между сервером приложений и клиентом последний, обычно содержит лишь функциональность, связанную с предоставлением пользователю интерфейса для просмотра и редактирования. По этой причине обычно называется "тонким" клиентом (в отличие от классического "толстого клиента, характерного для традиционной архитектуры "клиент/сервер").

Что касается своевременного обновления версий "тонкого" клиента, эта проблема нередко решается путем поставки приложений с помощью технологий, применяемых в Internet (использование Web-серверов, Web-браузеров, Internet-протоколов). Если речь идет о сети масштаба предприятия, в которой используются для корпоративных целей подобные технологии, то обычно употребляется термин intranet.

Рис.7. Этап 5: обработка данных в многозвенной архитектуре

Наиболее распространенными на сегодняшний день способами поставки "тонких" клиентов с помощью таких технологий являются копирование или установка приложений с Web-сервера, и как один из вариантов - копирование компонента ActiveX, полностью реализующего функциональность "тонкого" клиента, с целью отображения его в браузере.

Говоря об использовании Internet/Intranet, нельзя не остановиться на возможностях создания приложений для Web-серверов. Такие приложения, с одной стороны, могут являться клиентами серверных СУБД, а с другой стороны, обычно генерируют динамические HTML-страницы (в том числе с данными из этих СУБД) по запросу клиентского приложения, роль которого в данном случае выполняет Web-браузер (называемый в этом случае "ультратонким" клиентом, рис.8). Отметим, что в последнее время такие приложения получают все большее распространение.

Рис.8. Принципы работы Web-приложения

1.8 Зачем нужны многозвенные информационные системы

Информационные системы, созданные на основе классической архитектуры "клиент/сервер", называемые двухзвенными системами или системами с "толстым" клиентом, состоят из сервера баз данных, содержащего сгенерированные тем или иным способом таблицы, индексы, триггеры и другие объекты, реализующие бизнес-правила данной информационной системы, и одного или нескольких клиентских приложений, предоставляющих интерфейс пользователя и производящих проверку допустимости и обработку данных, согласно содержащимся в них алгоритмам. Если говорить о клиентских приложениях, созданных для доступа к источникам данных они применяют вызовы функций прикладных программных интерфейсов клиентских частей соответствующих серверных СУБД. Эти вызовы осуществляются например посредством использования библиотеки Borland Database Engine (BDE), хотя в целом это не является обязательным (например, некоторые пользователи Oracle непосредственно вызывают функции Oracle Call Interfase в своих приложениях). Соответственно подобное клиентское приложение требует наличия на компьютере Конечного пользователя клиентской части применяемой серверной СУБД (и наличия лицензии на ее использование) и присутствия в оперативной памяти набора динамически загружаемых библиотек как из клиентской части, так и из ВDE (либо иной заменяющей ее библиотеки), таких, как драйверы баз данных, библиотеки, содержащие функции API клиентских частей и др. При использовании доступа посредством ООВС требуется также наличие на рабочей станции соответствующего ODBC-драйвера и ODBC администратора. Это усложняет технические требования, предъявляемые аппаратной части клиентской рабочей станции, и в конечном итоге приводит к удорожанию всей системы в целом (рис.9).

Другим фактором, приводящим к удорожанию эксплуатации информационной системы, является необходимость инсталляции и конфигурации BDE, ODBC и клиентской части серверной СУБД, что нередко является весьма трудоемким процессом, особенно при большом количестве и неоднородном парке рабочих станций. Отметим, что при создании дистрибутива клиентского приложения, как правило, можно включить в него BDI, но в подавляющем большинстве случаев в него нельзя включить клиентскую часть серверной СУБД, так как она должна быть установлена в соответствии с правилами, указанными в лицензионном соглашении производителя серверной СУБД.

Есть и еще один немаловажный фактор: чем сложнее конфигурация, обеспечивающая доступ к данным рабочей станции, тем чаще происходят нарушения в ее работе. По данным некоторых западных источников, переконфигурация и сопровождение программного обеспечения, позволяющего рабочим станциям получить доступ к данным, приводит в среднем к четырем дням простоя рабочей станции в год.

Имеется еще один фактор, напрямую связанный с немалой популярностью средств разработки, использующих BDE. На сегодняшний день как на российском, так и на мировом рынке имеется немалое количество различных программных продуктов (в особенности энциклопедий и справочников), при инсталляции которых устанавливается и BDE. В этом случае нет никакой гарантии, что версия BDE, входящая в комплект поставки такого продукта, окажется новее, чем используемая в корпоративной информационной системе, и что программа установки не перепишет файл конфигурации BDE, заменив его своим (это, конечно, противоречит правилам создания дистрибутивов, но такие случаи время от времени случаются даже с неплохими коммерческими продуктами). И то и другое обычно приводит к нарушению работоспособности программного обеспечения, предоставляющего доступ к данным.

Рис.-9. Классическое клиентское приложение («толстый» клиент).

Выходом из этой ситуации является создание систем с так называемым "тонким" клиентом, в частности с клиентом, не содержащим в своем составе BDE и клиентскую часть серверной СУБД. В этом случае функциональность, связанная с доступом к данным (а нередко и какая-либо иная функциональность), возлагается на другое приложение, называемое обычно сервером приложений и являющееся клиентом серверной СУБД. В свою очередь, клиентские приложения обращаются не непосредственно к серверной СУБД с помощью вызова функций клиентских API, а к серверу приложений, являющемуся для них источником данных, при этом собственно клиентская часть серверной СУБД и библиотеки типа BDE на рабочей станции, где используется такое клиентское приложение, присутствовать не обязаны. Вместо них (например) применяется одна-единственная динамически загружаемая библиотека. Таким образом, созданная информационная система становится трехзвенной, а сервер приложений является средним звеном в цепи "тонкий клиент - сервер приложений - сервер баз данных" и, соответственно, относится к классу продуктов middleware (рис.10).

Рис.10. Решение проблем: "тонкий" клиент и сервер приложении

Как может быть практически реализована данная технология? С одно стороны, с помощью набора компонентов и классов, обеспечивающих создание серверов приложений и клиентских частей, а с другой стороны, с помощью MIDAS, позволяющего осуществлять запуск удаленных серверов приложений, осуществлять межреестровый обмен сведениями об OLE-серверах и оптимизировать нагрузку в случае использования нескольких серверов приложений. В данной главе будут рассмотрены простейшие практические примеры реализации подобной трехзвенной системы.

1.9 ТЕРМИНОЛОГИЯ РАСПРЕДЕЛЕННЫХ СУБД

В этом разделе в общих чертах описываются специфичные термины, которые используются в книге и касаются взаимодействия компонентов и программ. Такое взаимодействие неизбежно для распределенных СУБД, поэтому, если вы собираетесь разрабатывать только локальные СУБД, можете пропустить этот раздел.

На сегодняшний день существуют три параллельно развивающиеся и конкурирующие технологии взаимодействия объектов и программ: MIDAS (Multitier Distributed Application Srevices Suite), СОМ (Common Object Model - компонентная модель объектов) корпорации Microsoft, CORBA (Common Object Require Broken Architecture - архитектура с поставщиком требуемых общих объектов) независимой группы OMG. Основные принципы этих технологий и использующиеся в них термины описываются ниже.

1.10 Технология MIDAS

Midas (Multitier Distributed Application Srevices Suite) - новый продукт компании Inprise (Borland), предназначенный для эксплуатации сервера приложений, созданных с помощью C++ Builder 3 и Delphi 3. Этот продукт расширяет возможности, предоставляемые разработчикам технологией Microsoft DCOM (Distributed Component Object Model). Этот продукт позволяет обеспечить высокую производительность, надежность и защиту от сбоев при эксплуатации подобных систем.

Архитектура трехзвенной информационной системы, построенной с использованием MIDAS, представлена на рис. 11.

Рис.11. Архитектура трехзвенной информационной системы с использованием MIDAS

Рассмотрим, что представляют собой технологии, используемые в MIDAS.

Remote Data Broker позволяет создавать распределенные трехзвенные информационные системы, состоящие из серверной СУБД, среднего звена и "тонкого" клиента, при этом среднее звено может в общем случае состоять из нескольких серверов приложений и функционировать на нескольких компьютерах. Заметим, что "тонкий" клиент (пример создания которого был рассмотрен выше) представляет собой приложение, не содержащее бизнес-правил, а лишь предоставляющее интерфейс пользователя.

Источником данных для "тонкого" клиента является сервер приложений, получающий от клиента запросы на выборку или изменение данных. При получении такого запроса сервер приложений обращается к серверу баз данных, клиентом которого он является, со своим собственным запросом. Получив от сервера результат выполнения собственного запроса, сервер приложений передает данные клиенту.

Компонент для хранения данных, полученных от сервера приложений, в кэше клиента и обладает как навигационными методами, так и методами, осуществляющими редактирование данных. Кроме того, этот компонент обладает методами позволяющими сохранять данные из кэша в файле и восстанавливать их оттуда, реализуя так называемую "briefcase model"- модель обработки данных, основанную на том, что "тонкий" клиент осуществляет редактирование данных по большей части при отсутствии соединения с сервером, используя лишь кэш или локальные внешние устройства, и лишь иногда соединяется с сервером приложений для передачи ему измененных данных с целью дальнейшей обработки.

Как только клиент получает набор данных от сервера приложений, этот набор может быть использован компонентом, который наряду с другими компонентами, а также поддерживающими их функционирование библиотеками составляет клиентскую часть Remote Data Broker.

Отметим, что Remote Data Broker предоставляет разработчикам широкие возможности для решения характерных для многопользовательского доступа к данным проблем, связанных с попытками одновременного редактирования несколькими пользователями одних и тех же данных. В данном случае механизм блокировок, применяемый в традиционной двухзвенной модели "клиент/сервер", может оказаться неэффективным или даже неприемлемым, так как промежуток времени между редактированием записи и сохранением ее в базе данных может быть весьма длительным. Поэтому при попытке сохранения сервером приложений измененной записи в базе данных производится поиск изменяемой записи либо по ключевому полю, либо по всем полям в зависимости от значения свойства ответственного за этот процесс компонента на сервере приложений и сравнение всех полей изменяемой записи с исходными значениями (т. е. теми, которые были в кэше клиента на момент получения этой записи с сервера до того, как пользователь изменил в кэше эту запись). Если какие-либо поля за время между получением оригинала записи клиентом и попыткой сохранить изменения были модифицированы другим пользователем, запись может быть передана обратно в клиентское приложение для дальнейшей обработки пользователем.

Отметим также, что удаленные модули данных (объекты Remote Data Module), входящие в состав серверной части Remote Data Broker, позволяют предоставить DCOM-интерфейс для| соответствующих объектов, делая их управляемыми извне и превращая, таким образом, сервер приложений в DCOM-сервер. Осуществляется такая публикация объектов путем выбора опции экспорта из удаленного модуля данных та контекстного меню соответствующего компонента при разработке сервера приложений.

Business Object Broker осуществляет для "тонкого" клиента поиск нужного сервера приложений среди доступных извне серверов, опубликованных в глобальном реестре - global registry, представляющем собой открытые части реестров компьютеров, содержащих серверы приложений. Применяется он в случае, когда требуется дублирование серверов приложений и возможность при сбое работы используемого сервера приложений подключить Клиентское приложение к другому серверу, либо при необходимости равномерного распределения клиентов по серверам приложений. Еще одной важной составляющей частью MIDAS является ConstraintBroker, дающий возможность использовать бизнес-правила сервера баз данных "тонким" клиентом. Обычно при проектировании баз данных бизнес-правила и правила ссылочной целостности реализуются в виде объектов базы данных, таких, как индексы, триггеры, хранимые процедуры. Такой подход к проектированию данных позволяет использовать эти объекты различными клиентскими приложениями без написания дополнительного кода.

В случае классической двухзвенной клиент-серверной информационной системы при изменении данных клиентское приложение пытается отправить измененную запись на сервер, а сервер, в свою очередь, пытается сохранить ее в базе данных, начав соответствующую транзакцию. Если запись не удовлетворяет условиям ссылочной целостности, определенным на сервере, производится откат транзакции и сервер возвращает клиентскому приложению сообщение об ошибке, после чего пользователь должен будет корректировать предназначенные для сохранения данные. Если подобные случаи происходят часто, это приводит к перегрузке сети и увеличению времени отклика сервера.

Чтобы уменьшить количество отправляемых на сервер некорректных записей, иногда часть бизнес-правил воспроизводят в клиентском приложении. В этом случае частичный контроль соответствия записи бизнес-правилам производится без обращения к серверу, но возможность отправки некорректной записи все же сохраняется, так как обычно код, содержащийся в хранимых процедурах и триггерах, в клиентских приложениях не воспроизводится. Кроме того, при изменении бизнес-правил такое приложение требует внесения в него изменений, что влечет за собой трудозатраты, связанные с установкой и конфигурацией новой версии на рабочих станциях.

При использовании ConstraintBroker эта проблема решается по-другому. В этом случае Remote Data Broker не только доставляет данные клиентскому приложению, но и обращается к словарю данных сервера приложений с целью получения ограничений сервера и передачи их клиенту. Соответственно при попытке передачи записи на сервер приложений анализ соответствия записи правилам сервера производится непосредственно в клиентском приложении без обращения к серверу баз данных, что снижает загрузку серверов и сети. Отметим, что при изменении бизнес-правил следует внести соответствующие изменения в словарь данных сервера приложений, что можно сделать с помощью входящей в состав MIDAS утилиты, позволяющей помимо этого вносить серверные ограничения, создавать и изменять таблицы, индексы, триггеры, хранимые процедуры, правила ссылочной целостности на сервере баз данных.

Таким образом, использование технологии MIDAS позволяет создавать многозвенные информационные системы с "тонким" клиентом, не нуждающимся в инсталляции и настройке, обеспечивая защиту от сбоев в работе серверов приложений, а также снижение загрузки серверов и сети за счет переноса бизнес-правил и серверных ограничений в клиентское приложение вместе с данными.

Помимо перечисленных очевидных преимуществ трехзвенной архитектуры MIDAS также предоставляет разработчикам дополнительные возможности повышения надежности созданной информационной системы. Например, при наличии в сети нескольких однотипных серверов приложений Сбой одного из них приведет к распределению подключенных к нему "тонких" клиентов по другим серверам - это сделает Business Object Broker. Он же обеспечивает и равномерную загрузку серверов приложений клиентскими соединениями.

Но это еще не все. Именно трехзвенная архитектура позволяет реально осуществить централизацию хранения и обработки данных с одновременным доступом к актуальной информации I случае, когда рабочая станция находится на значительном расстоянии от сервера приложений исключающем прокладку локальной сети, так как доступ к серверу приложений может осуществляться » иными способами, такими, как модемное соединение или доступ через Internet. Требования к надежности такого соединения невысоки, так как при использовании подобной архитектуры активно применяется кеширование данных на рабочей станции, и при этом применение ConstraintBroker позволяет проверять соответствие изменяемых данных правилам сервера непосредственно на рабочей станции, поэтому применение "тонких" клиентов и серверов приложений, управляемых MIDAS, является одним из решений для территориально разбросанных предприятий, организаций с удаленными филиалами, в том числе в других городах и странах.

1.11 Технология СОМ

Технология СОМ разрабатывается корпорацией Microsoft и предназначена для того, чтобы одна программа (клиент) смогла заставить работать объект, являющийся частью другой программы (частью сервера), так, как если бы этот объект был частью клиента, причем обе программы в общем случае могут быть расположены на разных компьютерах (в том числе - находящихся в разных частях света), написаны на разных языках и исполняться под управлением разных операционных систем. Более того, сами компьютеры могут быть разного типа - например, IBM-совместимый ПК и рабочая станция SUN.

Ключевым аспектом СОМ является так называемый интерфейс. Интерфейс имеет уникальный идентификатор и набор параметров, описывающих методы, события и свойства общего объекта. Идентификатор интерфейса ID (Interface Identifier) является частным случаем GUID (Global Unique Identifier - глобально уникальный идентификатор). В состав Windows32 включены функции, генерирующие GUID, причем вероятность совпадения двух GUID ничтожно мала. Параметры интерфейса в общем случае описывают некоторый класс с идентификатором CLSID (Class ID реализуется как GUID), т. е. типы и имена используемых в нем полей, количество и типы параметров обращения к доступным методам и свойствам, имена методов и свойств и т. д. Получив интерфейс внешнего СОМ-объекта, клиент может его использовать так же, как свои собственные объекты. Любой СОМ-объект имеет интерфейс IUnknow, с помощью которого он может получить доступ к основному интерфейсу объекта.

Сервер СОМ представляет собой исполняемую программу или DLL, содержащую один или несколько объектов СОМ.

В зависимости от местоположения клиента и сервера возможны три варианта:

Клиент и сервер располагаются на одной машине и запускаются в одном процессе (именно так взаимодействует программа Delphi с компонентами ActiveX)", в этом случае сервер представляет собой DLL; клиент и сервер располагаются на одной машине, но запускаются в разных процессах (например, таблицы Exel вставлены в документ Word); в этом случае сервер представляет собой программу;

Клиент и сервер располагаются на разных машинах; сервером может быть как программа, так и DLL, используется распределенный вариант СОМ, который называется DСОМ (DСОМ).

В первом случае клиент с помощью интерфейса объекта непосредственно обращается к методам объекта в своем собственном адресном пространстве (рис.12).

Рис.12 Взаимодействие клиента и сервера в одном процессе.

Если сервер запускается в другом процессе или на другой машине, между объектом и клиентом располагаются два посредника - Proxy (уполномоченный) и Stub (заглушка) (рис.13). Клиент помещает параметры вызова в стек и обращается к методу интерфейса объекта. Однако это обращение перехватывает Proxy, упаковывает параметры вызова в пакет СОМ и направляет его в Stub другого процесса, возможно, на другой машине. Stub распаковывает параметры, помещает их в стек и делает вызов нужного метода объекта. Таким образом, метод объекта выполняется в собственном адресном пространстве процесса сервера.

1.12 Технология CORBA

Подобно СОМ, в CORBA активно используется интерфейс объекта. Главным отличием CORBA от СОМ является интегрированный в нее слой, реализующий доступ к удаленным объектам.

В соответствии с этой технологией схема взаимодействия клиента и сервера выглядит следующим образом (рис.14).

На машине клиента создаются два объекта-посредника: Stub (заглушка) и ORB (Object Require Broker - брокер требуемого объекта). Stub выступает как полномочный представитель объекта: с помощью интерфейса объекта клиент обращается к Stub так, как если бы это был сам объект.

Рис.13. Взаимодействие клиента и сервера в разных процессах.

Рис. 14. Взаимодействие клиента и сервера в CORBA.

Получив вызов метода, Stub транслирует этот вызов объекту ORB, который посылает в сеть широковещательное сообщение. На это сообщение откликается один из объектов Smart Agent((«умный» агент), установленный в сетевом окружении клиента (как в локальной сети, так и в Internet). Smart Agent моделирует сетевой каталог, в котором зарегистрированы известные ему серверы объектов. Он отыскивает нужный сетевой адрес сервера и передает запрос объекту ORB на машине сервера. Заметим, что обмен данными между ORB (клиента и сервера) и Smart Agent осуществляется с использованием специального протокола UDP, который более бережно использует сетевые ресурсы, чем протокол ТСР. Через ВОА (Basic Object Adapter - базовый объектный адаптер) данные получает особый объект сервера, который называется Skeleton (скелет). Skeleton помещает параметры вызова в стек адресного пространства объекта и реализует собственно вызов. Роль объекта ВОА заключается в фильтрации обращений к объекту сервера: с помощью его методов сервер через Skeleton может объявить некоторые свои поля и свойства доступными только для чтения иди вовсе срытыми от данного клиента. (Поскольку в рамках технологии данные, которыми обмениваются клиент и сервер, рассматриваются просто как цепочки байт, клиент должен поместить в буфер вызова свой авторизованный ключ в системах, защищенных от «посторонних» клиентов.)

«Изюминкой» CORBA является способ описания интерфейса объекта. Для этих целей разработан специальный язык IDL (Interface Definition Language - язык описания интерфейса), очень напоминающий язык С++. После описания интерфейса в терминах этого языка компилятор IDL автоматически создает объекты Stub и Skeleton. Обмен информацией об интерфейсе между разработчиками осуществляется в терминах языка высокого уровня, в то время как компилятор описания интерфейса переводит его текст в машинные инструкции конкретного компьютера (клиента или сервера). В результате достигается высокая степень независимости обмена данными от аппаратных средств клиента и пользователя.

Для реализации технологии в сетевом окружении клиента должен существовать хотя бы один Smart Agent. Если обмен данными осуществляется в локальной сети офиса, Smart Agent устанавливается на головную машину (на файл-сервер или машину с SQL-сервером), а при обмене данными по Internet - на одном из ее узлов. При создании сервера осуществляется автоматическая регистрация объектов в одном или нескольких Smart Agent. Таким образом, Smart Agent «знает», по каким сетевым адресам расположены его серверы. Это позволяет системе повысить свою надежность: если в одном из серверов произошел сбой, Smart Agent повторит вызов и при повторном сбое переключится на другой сервер.

1.13 Некоторые выводы

Таким образом, архитектура "клиент/сервер" обладает рядом существенных преимуществ по сравнению с традиционной архитектурой информационных систем, основанных на сетевых версиях настольных СУБД: более высокой производительностью, более низким сетевым графиком, улучшенными средствами обеспечения безопасности и целостности данных, возможностью задания бизнес-правил.

Отметим также, что существуют возможности совершенствования клиент-серверных систем путем перехода к многозвенной архитектуре с "тонким" клиентом либо, в случае необходимости, к приложениям для Web-серверов.

1.14. Применение систем Клиент/Сервер

Применение систем клиент-сервер в основном сконцентрировано в:

Банковском деле;

Системе продаж авиа билетов;

Сети Интернет.

Банковское дело

Все мы хорошо знакомы с основными банковскими операциями . Вот они:

2. Размещение и снятие с депозита наличных и безналичных денег ;

3. Предоставление займов;

4. Инвестиции;

5. Следование инструкциям банковского клиента.

Это лишь некоторые из многих функций, исполняемых банком в наши дни. Глобализация экономики привела к широкому распределению филиалов банков по стране. Так, например, у клиента банка открыт счет в Нью-Йорке, а оплатить чек он желает в Лос-Анджелесе, или получить наличными из банкомата во Флориде.

Возможности, о которых мы ранее могли только мечтать, стали реальностью с появлением архитектуры клиент-сервер. Как это выглядит сейчас. Вкладчик, открывший счет в Лос-Анджелесе, хочет снять деньги во Флориде. Он находит ближайший филиал во Флориде и снимает деньги при помощи банковской машины.

Как происходит перевод?

После того, как пользователь вводит номер счета, локальный терминал передает запрос по номеру и сумму счета к узловому компьютеру. Сервер сличает номер счета и проверяет достаточность баланса. Если на счету достаточно денег, с него снимается нужная сумма, и новый баланс «прописывается» на сервере. Это способ проплаты платежей между локальным терминалом и сервером.

Система продаж авиабилетов

Сегодня, например, можно заказать в Коннектикуте билеты на рейс компании TWA из Нью-Йорка через Санкт Луис в Сан-Франциско. Это стало возможным благодаря комбинированным технологическим усилиям сконфигурированных по типу клиент-сервер сетей и баз данных.

По мере того, как необходимо купить билет на самолет из Нью-Йорка в Санкт Луис, из Санкт Луиса в Сан-Франциско, резервируется место для путешественника. Преимущество данной системы в том, что на запрос, сделанный пассажиром из Нью-Йорка о состоянии его заказа, будет выдан ответ на терминал покупки именно о его билетах.

Интеренет

Интернет - это наиболее яркий пример организации системы по типу клиент-сервер. Интернет можно назвать широчайшей подборкой различного материала, доступ к которому можно получить в любой точке мира. Некоторое время назад доступ к ней могли получить те, кто точно знал, где она расположена. Архитектура к/с сделала ее общедоступной.

Известно, что Интернет представляет собой совокупность малых сетей, расположенных по всему миру. Для того, чтобы все сети могли понимать друг друга, необходимо, чтобы они изъяснялись на одном и том же языке, названном ТСР/IР. Вне зависимости от географического расстояния и платформы становится возможным клиентским и серверным машинам разговаривать друг с другом.

Давайте посмотрим, почему Мировая Паутина (WWW) может быть названа наиболее популярным программным приложением к/с в сети Интернет.

Предположим, WWW является подборкой множества страниц информации различного рода - спорт, религия, технология, театр, искусство, музыка, и все это хранится на компьютере. Такой содержащий информацию компьютер называется Веб Сервером. Компьютер-клиент по запросу пользователя обращается к серверу, и запрос этот производится при помощи программы-броузера. Броузер показывает содержимое сервера в форме списка, очень похожего на оглавление книги. Пользователь может выбрать то, что он желает, и запрашивает это на сервере. Сервер выдает именно ту информацию, по которой был запрос.

1.15. Примеры развития серверов индивидуальных баз данных

Так как их главные функции остаются теми же, индивидуальные серверы баз данных различаются в зависимости от области применения. Некоторые из этих различий приведены ниже:

Совместимость между собой;

Оптимизация и производительность;

Контроль за целостностью данных;

Обработка переводов;

Конкурентоспособность, защита от зависаний и контроль многопользовательского доступа;

Защита от несанкционированного доступа и проверка подлинности клиента;

Резервирование, восстановление данных и другие функции базы.

Независимо от того, как определяется понятие архитектуры «клиент-сервер» (а таких определений в литературе много), в основе этого понятия лежит распределенная модель вычислений. В самом общем случае под клиентом и сервером понимаются два взаимодействующих процесса, из которых один является поставщиком некоторого сервиса для другого.

Термин «клиент-сервер» означает такую архитектуру программного комплекса, в которой его функциональные части взаимодействуют по схеме «запрос-ответ». Если рассмотреть две взаимодействующие части этого комплекса, то одна из них (клиент) выполняет активную функцию, т. е. инициирует запросы, а другая (сервер) пассивно на них отвечает. По мере развития системы роли могут меняться, например некоторый программный блок будет одновременно выполнять функции сервера по отношению к одному блоку и клиента по отношению к другому.

Сервер — один или несколько многопользовательских процессоров с единым полем памяти, который в соответствии с потребностями пользователя обеспечивает им функции вычисления, коммуникации и доступа к базам данных. Сервер можно назвать программу, представляющая какие-то услуги другим программам. Примеры серверов - вебсервер Apache, серверы баз данных - MySQL, ORACLE, сетевые файловые системы и принтера Windows.

Клиент — рабочая станция для одного пользователя, обеспечивающая режим регистрации и др. необходимые на его рабочем месте функции вычисления, коммуникацию, доступ к базам данных и др. Клиентом можно назвать это программа, использующая услугу, представляемую программой сервера. Примеры клиентов - MSIE (MS Internet Explorer), клиент ICQ.

Часто люди клиентом или сервером просто называют компьютер, на котором работает какая-то из этих программ.

В сущности клиент и сервер - это роли, исполняемые программами. Клиенты и сервера физически могут находиться на одном компьютере. Одна и та же программа может быть и клиентом, и сервером одновременно, и т.д… это только роли.

Если проводить аналогию с обществом - банк или магазин - «сервера». Они представляют какие-то услуги своим клиентам. Но банк может в то же время быть клиентом какой-то другой фирмы и т. д…

Обработка Клиент — Сервер — среда, в которой обработка приложений распределена между клиентом и сервером. Нередко в обработке участвуют машины разных типов, причем клиент и сервер общаются между собой с помощью фиксированного множества стандартных протоколов обмена и процедур обращения к удаленным платформам.

СУБД с персональных ЭВМ (такие, как Clipper, DBase, FoxPro, Paradox, Clarion имеют сетевые версии, которые просто совместно используют файлы баз данных тех же форматов для ПК, осуществляя при этом сетевые блокировки для разграничения доступа к таблицам и записям. При этом вся работа осуществляется на ПК. Сервер используется просто как общий удаленный диск большой емкости. Такой способ работы приводит к риску потери данных при аппаратных сбоях.

По сравнению с такими системами системы, построенные в архитектуре Клиент — Сервер, имеют следующие преимущества:

    позволяют увеличить размер и сложность программ, выполняемых на рабочей станции;

    обеспечивает перенесение наиболее трудоемких опе-раций на сервер, являющийся машиной большей вычислительной мощности;

    уменьшает до минимума возможность потери содержащейся в БД информации за счет применения имеющихся на сервере внутренних механизмов защиты данных, таких, как, например системы трассировки транзакций, откат после сбоя, средства обеспечения целостности данных;

    в несколько раз уменьшает объем информации, передаваемый по сети.

    В архитектуре «клиент-сервер» сервер базы данных не только обеспечивает доступ к общим данным, но и берет на себя всю обработку этих данных. Клиент посылает на сервер запросы на чтение или изменение данных, которые формулируются на языке SQL. Сервер сам выполняет все необходимые изменения или выборки, контролируя при этом целостность и согласованность данных, и результаты в виде набора записей или кода возврата посылает на компьютер клиента.

    Она позволяет оптимальным образом распределить вычислительную нагрузку между клиентом и сервером, что также влияет на многие характеристики системы: стоимость, производительность, поддержку.

    1.2. История…

    Архитектура и термин «клиент-сервер» впервые использовались в начале 80-тых годов. Первые приложения с архитектурой «клиент-сервер» были базы данных.

    До этого не было ясного разделения - программа обычно всё делала сама - в том числе работала с данными в файловой системе, представлением данных пользователю и др. Со временем рос объем и критичность данных для бизнеса, и это со временем начало породить проблемы (быстродействия, безопасности и другие).

    Тогда придумали, что удобно поставить базу данных на мощном отдельном компьютере (сервере) и разрешить эту базу данных использовать многим пользователям малого компьютера (клиентам) через сеть, что и было сделано.

    По существу «взрыв» популярности технологии «клиент-сервер» был вызван изобретением фирмой IBM простого языка запросов к реляционным базам данных SQL. Сегодня SQL всеобщий стандарт работы с базами данных. В последнее время этот «взрыв» продолжает изобретение Интернета, в котором буквально каждое взаимодействие происходит по архитектуре «клиент-сервер».

    1.3. Протоколы

    Сервер и клиент в сети между собой «разговаривает» на «языке» (в широком смысле слов), понятном обеим сторонам. Этот «язык» называют протоколом.

    В случае банка, протоколом можно назвать бланки, которые заполняет клиент.

    В нашем же случае, примеры протоколов:

    FTP (File Transfer Protocol)

    HTTP (Hyper Text Transfer Protocol)

    SMTP (Simple Mail Transfer Protocol)

    IP (Internet Protocol)

    MySQL Client/Server Protocol

    Заметим, что протоколы может быть разных уровней. Классификационные системы уровней может быть разные, но одна из самых известных линеек - OSI (Open Systems Interconnection), в котором 7 уровней.

    Например, HTTP - протокол прикладного (седьмого - самого высокого) уровня, а IP - протокол сетевого (третьего) уровня.

    1.4. Распределение функций в архитектуре «клиент-сервер»

    В классической архитектуре клиент-сервер приходится распределять три основные части приложения по двум физическим модулям. Обычно ПО хранения данных располагается на сервере (например, сервере базы данных), интерфейс с пользователем — на стороне клиента, а вот обработку данных приходится распределять между клиентской и серверной частями. В этом-то и заключается основной недостаток двухуровневой архитектуры, из которого следуют несколько неприятных особенностей, сильно усложняющих разработку клиент-серверных систем.

    Процесс разработки таких систем достаточно сложен и одной из наиболее важных задач является как раз решение о том, как функциональность приложения должна быть распределена между клиентской и серверной частью. Пытаясь решить эту задачу, разработчики получают двух-звенные, трехзвенные и многозвенные архитектуры. Все зависит от того, сколько промежуточных звеньев включается между клиентом и сервером.

    Основная задача, которую решает клиентское приложение, - это обеспечение интерфейса с пользователем, т. е. ввод данных и представление результатов в удобном для пользователя виде, и управление сценариями работы приложения.

    Основные функции серверной СУБД - обеспечение надежности, согласованности и защищенности данных, управление запросами клиентов, быстрая обработка SQL-запросов.

    Вся логика работы приложения - прикладные задачи, бизнес-правила - в двух-звенной архитектуре распределяются разработчиком между двумя процессами: клиентом и сервером (рис. 1).

    Сначала большая часть функций приложения решалась клиентом, сервер занимался только обработкой SQL-запросов. Такая архитектура получила название «толстый клиент - тонкий сервер».

    Появление возможности создавать на сервере хранимые процедуры, т. е. откомпилированные программы с внутренней логикой работы, привело к тенденции переносить все большую часть функций на сервер. Сервер становился все более «толстым», а клиент - «утоньшался».

    Такое решение имеет очевидные преимущества, например его легче поддерживать, т. к. все изменения нужно вносить только в одном месте - на сервере.

    рассмотренные выше модели имеют следующие недостатки.

    1. «Толстый» клиент:

    – сложность администрирования;

    – усложняется обновление ПО, поскольку его замену нужно производить одновременно по всей системе;

    – усложняется распределение полномочий, так как разграничение доступа происходит не по действиям, а по таблицам;

    – перегружается сеть вследствие передачи по ней необработанных данных;

    – слабая защита данных, поскольку сложно правильно распределить полномочия.

    2. «Толстый» сервер:

    – усложняется реализация, так как языки типа PL/SQL не приспособлены для разработки подобного ПО и нет хороших средств отладки;

    – производительность программ, написанных на языках типа PL/SQL, значительно ниже, чем созданных на других языках, что имеет важное значение для сложных систем;

    – программы, написанные на СУБД-языках, обычно работают недостаточно надежно; ошибка в них может привести к выходу из строя всего сервера баз данных;

    – получившиеся таким образом программы полностью непереносимы на другие системы и платформы.

    Для решения перечисленных проблем используются многоуровневые (три и более уровней) архитектуры клиент-сервер. многоуровневая архитектура клиент-сервер позволяет существенно упростить распределенные вычисления, делая их не только более надежными, но и более доступными.

    Однако язык, на котором пишутся хранимые процедуры, не является достаточно мощным и гибким, чтобы на нем было удобно реализовывать сложную логику приложения.

    Тогда возникла тенденция поручить выполнение прикладных задач и бизнес-правил отдельному компоненту приложения (или нескольким компонентам), которые могут работать как на специально выделенном компьютере - сервере приложений, так и на том же компьютере, где работает сервер базы данных. Так возникли трехзвенные и многозвенные архитектуры «клиент-сервер».


    Рис. 1. Распределение функций между клиентом и сервером

    Появилось специальное программное обеспечение (ПО) промежуточного слоя, которое должно обеспечить совместное функционирование множества компонентов такого многокомпонентного приложения. Такие приложения являются гибкими, масштабируемыми, но сложными в разработке.


    СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Информатика / Под ред. Н.В. Макаровой.–М.: Финансы и статистика, 1998.

    Евдокимов В.В. и др. Экономическая информатика. СПб.: Питер, 2004.

    Казаков С.И. Основы сетевых технологий – М.: Радио и связь, 2004.

    Когаловский М.Р., Технология баз данных на персональных ЭВМ, – М.: Финансы и статистика, 2003.

    Попов В.В. Основы компьютерных технологий. –М.: Финансы и статистика, 2001.

    Фигурнов В.Э. IBM PC для пользователя. М., 2000.

ОПЕРАЦИОННАЯ СИСТЕМА MS-DOS . ОСНОВНЫЕ ПОНЯТИЯ И КОМАНДЫ ОСНОВНЫЕ ПОНЯТИЯ: БАЗА ДАННЫХ, СУБД, СУЩНОСТЬ, АТРИБУТ, СВЯЗЬ (ОДИН-К-ОДНОМУ, ОДИН-КО-МНОГИМ, МНОГИМ-КО-МНОГИМ), ОТНОШЕНИЕ, ПЕРВИЧНЫЙ КЛЮЧ

Клиент-сервер (англ. Client-server) - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.

Преимущества

Делает возможным, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера, не затрагивают клиентов.

Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т.п.

[править]

Недостатки

Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

Поддержка работы данной системы, требует отдельного специалиста - системного администратора.

Высокая стоимость оборудования.

[править]

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Трёхуровневая архитектура

[править]

Сеть с выделенным сервером

Сеть с выделенным сервером (англ. Client/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Введение

О технологии клиент-сервер написано уже очень много. Можно заметить, что некий ажиотаж вокруг этой темы, имевший место еще два года назад, теперь определенно спал. Статьи в прессе и разговоры в кулуарах приобрели спокойный, деловой тон и обсуждают теперь, как правило, конкретные аспекты применения этой технологии. Вопроса "Быть или не быть архитектуре клиент-сервер?" теперь уже никто не поднимает - все знают, что "Быть!".

Однако многие читатели, возможно, только недавно стали интересоваться этой темой, поэтому, на наш взгляд, стоит еще раз к ней вернуться и спокойно, по-деловому, обсудить - что такое архитектура клиент-сервер, зачем она нужна и как к ней подступиться.

Что такое архитектура клиент-сервер?

Вообще говоря, клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети. По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить, конечно, о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов, подчеркну - файлов, а не базы данных. База данных существует только в "мозгу" рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Когда вам нужна архитектура клиент-сервер?

Даже очень детальный анализ особенностей архитектуры клиент-сервер может не ответить на вопрос "А что мне это даст?" Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему:

Надежность

Тот, кто хоть раз побывал в роли администратора базы данных в тот момент, когда эта база данных "погибла" по причине "зависания" сервера или рабочей станции, сбоя питания или еще какой-либо напасти, никогда уже не станет пренебрегать вопросами надежности (если, конечно, сумеет сохранить за собой эту роль). Если Вы еще не побывали в этой роли, надеюсь, у Вас достанет воображения, чтобы прокрутить этот триллер у себя в голове, и благоразумия, чтобы максимально обезопасить свою базу данных (и себя заодно). Чем же тут поможет архитектура клиент-сервер?

Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;

независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;

устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Безопасность

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

Гибкость

В приложении, работающем с данными, можно выделить три логических слоя:

пользовательского интерфейса;

правил логической обработки (бизнес-правил);

управления данными (не следует только путать логические слои с физическими уровнями, о которых речь пойдет ниже).

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент-серверном приложении, показанном на рис. 1, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте. В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения)

Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент-серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.

Этапы построения клиент-серверной системы.

Предположим, Вы сегодня используете приложение, реализованное в файл-серверной архитектуре, средствами, Microsoft Access, и думаете о его развитии. Можно рассмотреть следующие шаги.

1.Перенести базу данных на Microsoft SQL Server, сохранив интерфейс и логику работы неизменной. Вы при этом не будете использовать все преимущества архитектуры клиент-сервер, но можете быть спокойны за надежность хранения ваших данных.

2.Разработать полноценное двухуровневое клиент-серверное приложение, используя все ту же связку Access - SQL Server, которая работает очень хорошо. Делать это можно, например, постепенно меняя отдельные компоненты приложения, полученного на шаге 1. Альтернативой может быть разработка полностью нового приложения с использованием в качестве клиента Visual Basic, Delphi или любого другого из десятков имеющихся инструментов.

3.Если Вы планируете серьезный рост Вашей организации, то использование трехуровневой архитектуры позволит Вам более гибко распределять растущую нагрузку между серверами и минимизировать затраты на сопровождение и развитие системы.

Надеемся, что эта статья дала Вам общее представление об архитектуре клиент-сервер и ее преимуществах. В следующих номерах мы планируем подробнее рассказать о Microsoft SQL Server и построении систем на его основе.

Как правило, компьютеры и программы, входящие в состав информационной системы, не являются равноправными. Некоторые из них владеют ресурсами (файловая система, процессор, принтер, база данных и т.д.), другие имеют возможность обращаться к этим ресурсам. Компьютер (или программу), управляющий ресурсом, называют сервером этого ресурса (файл-сервер, сервер базы данных, вычислительный сервер...). Клиент и сервер какого-либо ресурса могут находиться как в рамках одной вычислительной системы, так и на различных компьютерах, связанных сетью.

Основной принцип технологии "клиент-сервер" заключается в разделении функций приложения на три группы:

· ввод и отображение данных (взаимодействие с пользователем);

· прикладные функции, характерные для данной предметной области;

· функции управления ресурсами (файловой системой, базой данных и т.д.)

Поэтому, в любом приложении выделяются следующие компоненты:

· компонент представления данных

· прикладной компонент

· компонент управления ресурсом

Связь между компонентами осуществляется по определенным правилам, которые называют "протокол взаимодействия".

5.1.2. Модели взаимодействия клиент-сервер

Компанией Gartner Group, специализирующейся в области исследования информационных технологий, предложена следующая классификация двухзвенных моделей взаимодействия клиент-сервер (двухзвенными эти модели называются потому, что три компонента приложения различным образом распределяются между двумя узлами):

Исторически первой появилась модель распределенного представления данных, которая реализовывалась на универсальной ЭВМ с подключенными к ней неинтеллектуальными терминалами. Управление данными и взаимодействие с пользователем при этом объединялись в одной программе, на терминал передавалась только "картинка", сформированная на центральном компьютере.

Затем, с появлением персональных компьютеров (ПК) и локальных сетей, были реализованы модели доступа к удаленной базе данных. Некоторое время базовой для сетей ПК была архитектура файлового сервера. При этом один из компьютеров является файловым сервером, на клиентах выполняются приложения, в которых совмещены компонент представления и прикладной компонент (СУБД и прикладная программа). Протокол обмена при этом представляет набор низкоуровневых вызовов операций файловой системы. Такая архитектура, реализуемая, как правило, с помощью персональных СУБД, имеет очевидные недостатки - высокий сетевой трафик и отсутствие унифицированного доступа к ресурсам.

С появлением первых специализированных серверов баз данных появилась возможность другой реализации модели доступа к удаленной базе данных. В этом случае ядро СУБД функционирует на сервере, протокол обмена обеспечивается с помощью языка SQL. Такой подход по сравнению с файловым сервером ведет к уменьшению загрузки сети и унификации интерфейса "клиент-сервер". Однако, сетевой трафик остается достаточно высоким, кроме того, по-прежнему невозможно удовлетворительное администрирование приложений, поскольку в одной программе совмещаются различные функции.

Позже была разработана концепция активного сервера, который использовал механизм хранимых процедур. Это позволило часть прикладного компонента перенести на сервер (модель распределенного приложения). Процедуры хранятся в словаре базы данных, разделяются между несколькими клиентами и выполняются на том же компьютере, что и SQL-сервер. Преимущества такого подхода: возможно централизованное администрирование прикладных функций, значительно снижается сетевой трафик (т.к. передаются не SQL-запросы, а вызовы хранимых процедур). Недостаток - ограниченность средств разработки хранимых процедур по сравнению с языками общего назначения (C и Pascal).

На практике сейчас обычно используются смешанный подход:

· простейшие прикладные функции выполняются хранимыми процедурами на сервере

· более сложные функции реализуются на клиенте непосредственно в прикладной программе

Сейчас ряд поставщиков коммерческих СУБД объявило о планах реализации механизмов выполнения хранимых процедур с использованием языка Java. Это соответствует концепции "тонкого клиента", функцией которого остается только отображение данных (модель удаленного представления данных).

В последнее время также наблюдается тенденция использования модели распределенного приложения. Характерной чертой таких приложений является логическое разделение приложения на две и более частей, каждая из которых может выполняться на отдельном компьютере. Выделенные части приложения взаимодействуют друг с другом, обмениваясь сообщениями в заранее согласованном формате. В этом случае двухзвенная архитектура клиент-сервер становится трехзвенной, а к некоторых случаях, она может включать и больше звеньев.

5.1.3. Мониторы транзакций

В том случае, когда информационная система объединяет достаточно большое количество различных информационных ресурсов и серверов приложений, встает вопрос об оптимальном управлении всеми ее компонентами. В этом случае используют специализированные средства - мониторы обработки транзакций (часто их называют просто "мониторы транзакций"). При этом понятие транзакции расширяется по сравнению с известным в теории баз данных. В данном случае это не атомарное действие над базой данных, а любое действие в системе - выдача сообщения, запись в индексный файл, печать отчета и т.д.

Для общения прикладной программы с монитором транзакций используется специализированный API (Application Program Interface - интерфейс прикладного программирования), который реализуется в виде библиотеки, содержащей вызовы основных функций (установить соединение, вызвать определенный сервис и т.д.). Серверы приложений (сервисы) также создаются с помощью этого API, каждому сервису присваивается уникальное имя. Монитор транзакций, получив запрос от прикладной программы, передает ее вызов соответствующему сервису (если тот не запущен, порождается необходимый процесс), после обработки запроса сервером приложений возвращает результаты клиенту. Для взаимодействия мониторов транзакций с серверами баз данных разработан протокол XA. Наличие такого унифицированного интерфейса позволяет использовать в рамках одного приложения несколько различных СУБД.

Использование мониторов транзакций в больших системах дает следующие преимущества:

· Концентрация всех прикладных функций на сервере приложений обеспечивает значительную независимость как от реализации интерфейса с пользователем, так и от конкретного способа управления ресурсами. При этом также обеспечивается централизованное администрирование приложений, поскольку все приложение находится в одном месте, а не "размазано" по сети по клиентским рабочим местам.

· Монитор транзакций в состоянии сам запускать и останавливать серверы приложений. В зависимости от загрузки сети и вычислительных ресурсов он может перенести или скопировать часть серверных процессов на другие узлы. Это обеспечивает достижение баланса загрузки.

· Обеспечивается динамическая конфигурация системы, т.е. без ее остановки может быть добавлен новый сервер ресурсов или сервер приложений.

· Повышается надежность системы, т.к. в случае сбоев сервер приложений может быть перемещен на резервный компьютер.

· Появляется возможность управления распределенными базами данных (подробнее см. следующий параграф).

5.2. Обработка распределенных данных

В современном бизнесе очень часто возникает необходимость предоставить доступ к одним и тем же данным группам пользователей, территориально удаленным друг от друга. В качестве примера можно привести банк, имеющий несколько отделений. Эти отделения могут находиться в разных городах, странах или даже на разных континентах, тем не менее необходимо организовать обработку финансовых транзакций (перемещение денег по счетам) между отделениями. Результаты финансовых операций должны быть видны одновременно во всех отделениях.

Существуют два подхода к организации обработки распределенных данных.

1. Технология распределенной базы данных. Такая база включает фрагменты данных, расположенные на различных узлах сети. С точки зрения пользователей она выглядит так, как будто все данные хранятся в одном месте. Естественно, такая схема предъявляет жесткие требования к производительности и надежности каналов связи.

2. Технология тиражирования. В этом случае в каждом узле сети дублируются данные всех компьютеров. При этом:

· передаются только операции изменения данных, а не сами данные

· передача может быть асинхронной (неодновременной для разных узлов)

· данные располагаются там, где обрабатываются

Это позволяет снизить требования к пропускной способности каналов связи, более того при выходе из строя линии связи какого-либо компьютера, пользователи других узлов могут продолжать работу. Однако при этом допускается неодинаковое состояние базы данных для различных пользователей в один и тот же момент времени. Следовательно, невозможно исключить конфликты между двумя копиями одной и той же записи.







2024 © gtavrl.ru.