Флеш память относится к. Флэш-память


Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

Ни для кого не секрет, что в современном мире, одним из наиболее актуальных товаров является информация. А её, как и любой другой товар, необходимо хранить и передавать. Для этой цели были созданы портативные запоминающие устройства. В недалеком прошлом такую роль выполняли дискеты и компакт-диски, способные запоминать очень малое количество информации при больших габаритах. С развитием вычислительной техники, носители информации постепенно уменьшались в размерах, но объем хранимых в них данных многократно увеличивался. Это привело к появлению нового портативного запоминающего устройства – флеш-карты USB.

Флэш-память - особый вид энергонезависимой, перезаписываемой полупроводниковой памяти.

Рассмотрим подробнее: энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи), перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных и полупроводниковая (твердотельная) то есть не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).

Буквально у нас на глазах флэш-память превратилась из экзотического и дорогостоящего средства хранения данных в один из самых массовых носителей. Твёрдотельная память этого типа широко используется в портативных плеерах и карманных компьютерах, в фотоаппаратах и миниатюрных накопителях "флэш-драйвах". Первые серийные образцы работали с низкой скоростью, однако сегодня скорость считывания и записи данных на флэш-память позволяет смотреть хранящийся в миниатюрной микросхеме полноформатный фильм или запускать "тяжёлую" операционную систему класса Windows XP.

Благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя в таких портативных устройствах, как: цифровые фото- и видео камеры, сотовые телефоны, портативные компьютеры, MP3-плееры, цифровые диктофоны, и т.п.

История

Первоначально твердотельный жесткий диск разрабатывался для высокоскоростных серверов и использовался в военных целях, но как это обычно бывает, со временем их стали применять и для гражданских компьютеров и серверов.

Возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности, а в другом случае делали полнофункциональное устройство с гораздо меньшей емкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Фудзио представил свою разработку на Международном семинаре по электронным устройствам (International Electron Devices Meeting), в Сан-Франциско, в Калифорнии. Компанию Intel заинтересовало данное изобретение и через четыре года в 1988 году она выпустила первый коммерческий флеш-процессор NOR-типа. NAND-архитектура флеш-памяти была анонсирована спустя год компанией Toshiba в 1989 году на Международной конференции построения твердотельных схем (International Solid-State Circuits Conference). У NAND-чипа была больше скорость записи и меньше площадь схемы.

Иногда утверждают, что название Flash применительно к типу памяти переводится как "вспышка". На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте "быстрый, мгновенный" при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR.

Преимущества флеш-карт USB над остальными накопителями очевидны:

    малые габариты,

    очень легкий вес,

    бесшумность работы,

    возможность перезаписи,

    хорошая устойчивость к механическим воздействиям, в отличие от компакт-дисков и дискет(в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков),

    выдерживает серьезные перепады температуры,

    отсутствие подвижных частей, что сводит потребление электроэнергии к минимуму,

    отсутствие проблем с подключением – USB выходы есть практически в любом компьютере,

    большой объем памяти,

    запись информации в ячейки памяти,

    срок хранения информации до 100 лет.

    Flash-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы.

Также следует отметить, что для работы с USB флешкой не требуются какие-либо сторонние программы, адаптеры и прочее. Распознавание устройства происходит автоматически.

Если записывать на флэшку в день 10 раз, то ее хватит примерно на 30 лет.

Принцип действия

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области (кармане) полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.

Схематическое представление транзистора с плавающим затвором.

Между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут. SLC и MLC приборы

Различают приборы в которых элементарная ячейка хранит один бит информации и несколько. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (англ. single-level cell, SLC ). В многобитовых ячейках различают больше уровней заряда, их называют многоуровневыми (англ. multi-level cell, MLC ). MLC-приборы дешевле и более емкие чем SLC-приборы, однако время доступа и количество перезаписей хуже.

Аудиопамять

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.

Nor флеш-память (nor flash memory)

Конструкция NOR использует классическую двумерную матрицу проводников («строки» и «столбцы») в которой на пересечении установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов к второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора подав положительное напряжение на один столбец и одну строку.

В основе данного типа флеш-памяти лежит алгоритм ИЛИ-НЕ (на англ. NOR), так как в транзисторе с плавающим затвором слишком малое напряжение на затворе обозначает единицу. Данный тип транзистора состоит из двух затворов: плавающего и управляющего. Первый затвор полностью изолирован и имеет возможность удерживать электроны до десяти лет. Ячейка также состоит из стока и истока. При подаче напряжения на управляющий затвор образуется электрическое поле и возникает так называемый туннельный эффект. Большая часть электронов переносится (туннелирует) через слой изолятора и проникает на плавающий затвор. Заряд на плавающем затворе транзистора изменяет «ширину» сток-исток и проводимость канала, что используется при чтении. Запись и чтение ячеек очень сильно различаются в энергопотреблении: так, флеш-накопители потребляют больше тока при записи, чем при чтении (потребляется очень мало энергии). Для удаления (стирания) данных на управляющий затвор подаётся достаточно высокое отрицательное напряжение, что приводит к обратному эффекту (электроны с плавающего затвора с помощью туннельного эффекта переходят на исток). В NOR-архитектуре существует необходимость подводить к каждому транзистору контакт, что сильно увеличивает размеры процессора. Эта проблема решается с помощью новой NAND-архитектуры.

Что такое Flash Memory?

Flash Memory/USB-накопитель или флэш-память - это миниатюрное запоминающее устройство, применимое в качестве дополнительного носителя информации и ее хранения. Устройство подключается к компьютеру или другому считывающему устройству через интерфейс USB.

USB-накопитель предназначен для многократного прочитывания записанной на нем информации в течение установленного срока эксплуатации, который обычно составляет от 10 до 100 лет. Производить же запись на флэш-память можно ограниченное количество раз (около миллиона циклов).

Флеш-память считается более надежным и компактным по сравнению с жесткими дисками (HDD), поскольку не имеет подвижных механических частей. Данное устройство довольно широко используется при производстве цифровых портативных устройств: фото и видеокамер, диктофонов и MP3-плееров, КПК и мобильных телефонов. Наряду с этим, Flash Memory используется для хранения встроенного ПО в различном оборудовании, таком как модемы, мини-АТС, сканеры, принтеры или же маршрутизаторы. Пожалуй, единственным недостатком современных USB-накопителей является их относительно малый объем.

История Flash Memory

Первая флеш-память появилась в 1984 году, ее изобрел инженер компании Toshiba Фудзио Масуокой (Fujio Masuoka), коллега которого Сёдзи Ариидзуми (Shoji Ariizumi) сравнил принцип действия данного устройства с фотовспышкой и впервые назвал его «flash». Публичная презентация Flash Memory состоялась в 1984 году на Международном семинаре по электронным устройствам, проходившем в Сан-Франциско, штат Калифорния, где данным изобретением заинтересовалась компанию Intel. Спустя четыре года ее специалисты выпустили первый флеш-процессор коммерческого типа. Крупнейшими производителями флэш-накопителей в конце 2010 года стали компания Samsung, занимающей 32% данного рынка и Toshiba - 17%.

Принцип работы USB-накопителя

Вся информация, записанная на Flash-накопитель и сохраненная в его массиве, который состоит из транзисторов с плавающим затвором, именуемыми ячейками (cell). В обычных устройствах с одноуровневыми ячейками (single-level cell), любая из них "запоминает" только один бит данных. Однако некоторые новые чипы с многоуровневыми ячейками (multi-level cell или triple-level cell) способны запомнить и больший объем информации. При этом на плавающем затворе транзистора должен использоваться различный электрический заряд.

Основные характеристики USB-накопителя

Объем представленных в настоящее время флэш-накопителей измеряется от нескольких килобайт до сотен гигабайт.

В 2005 году специалисты компаний Toshiba и SanDisk провели презентацию NAND-процессора, общий объем которого составил 1 Гб. При создании данного устройства они применили технологию многоуровневых ячеек, когда транзистор способен хранить несколько бит данных, используя различный электрический заряд на плавающем затворе.

В сентябре следующего года компания Samsung представила общественности уже 4-гигабайтный чип, разработанный на основе 40-нм технологического процесса, а в конце 2009 года, технологи Toshiba заявили о создании 64 Гб флэш-накопителя, который был запущен в массвое производство уже в начале следующего года.

Летом 2010-го состоялась презентация первого в истории человечества USB-накопителя объемом 128 Гб, состоящий из шестнадцати модулей по 8 Гб.

В апреле 2011 года компании Intel и Micron объявили о создании MLC NAND флэш-чипа на 8 Гбайт, площадью 118 мм, почти вполовину меньше аналогичных устройств, серийное производство которого стартовало в конце 2011 года.

Типы карт памяти и Flash-накопителей

Применяется он в основном в профессиональном видео- и фото-оборудовании, поскольку имеет довольно большие размеры 43х36х3,3 мм, в результате чего довольно проблематично установить слот для Compact Flash в мобильные телефоны или MP3-плееры. При этом карта считается не очень надежной, а также не обладает высокой скоростью обработки данных. Максимально допустимый объём Compact Flash в настоящее время достигает 128 Гбайт, а скорость копирования данных выросла до 120 Мбайт/с.

RS-MMC/Reduced Size Multimedia Card - карта памяти, которая в два раза по длине меньше стандартной карты MMC - 24х18х1,4 мм и весом около 6 гр. При этом сохранены все остальные характеристики и параметры обычной MMC-карты. Для использования карт RS-MMC необходимо использовать адаптер.

MMCmicro - миниатюрная карта памяти с размерами всего 14х12х1,1 мм и предназначенная для мобильных устройств. Для ее применения необходимо использовать стандартный слот MMC и специальный переходник.

Несмотря на очень схожие с ММС-картой параметры и размеры 32х24х2,1 мм, данную карту нельзя использовать со стандартным слотом ММС.

SDHC/SD High Capacity - это SD-карта памяти высокой ёмкости, известные современным пользователям как SD 1.0, SD 1.1 и SD 2.0 (SDHC). Данный устройства различаются максимально допустимым объемом данных, который можно на них разместить. Так предусмотрены ограничения по емкости в виде 4 Гб для SD и 32 Гб для SDHC. При этом SDHC-карта обратно совместима с SD. Оба варианта могут быть представлены в трех форматах физических размеров: стандартный, mini и micro.

microSD/Micro Secure Digital Card - это самое компактное по данным на 2011 год съёмное устройствами флеш-памяти, его размеры составляют 11х15х1 мм, что позволяет использовать его мобильных телефонах, коммуникаторах и т. д. Переключатель защиты от записи расположен на адаптере microSD-SD, а максимально возможный объём карты составляет 32 Гб.

Memory Stick Micro/M2 - карта памяти, формат которой конкурирует по размеру с microSD, но при этом преимущество остается за устройствами Sony.

Стала незаменимой в мобильных устройствах (КПК, планшетах, смартфонах, плеерах). На основе флэш-памяти разработаны USB-флэш-накопители и карты памяти для электронных устройств (SD, MMC, miniSD и т.д.).

Определение 1

Флеш-память (Flash Memory) – твердотельная полупроводниковая энергонезависимая и перезаписываемая память.

Считывать информацию из флэш-памяти можно большое число раз в пределах срока работы накопителя (от $10$ лет), но количество процессов записи ограничено (около $100 \ 000$ циклов перезаписи).

Флэш-память считается более надежным видом носителя информации, т.к. не содержит подвижных механических частей (как, например, в жестком диске).

Преимущества флэш-памяти:

  • высокая скорость доступа к данным;
  • низкое энергопотребление;
  • устойчивость к вибрациям;
  • удобство подключения к ПК;
  • компактные размеры;
  • дешевизна.

Недостатки флэш-памяти:

  • ограниченное число циклов записи;
  • чувствительность к электростатическому разряду.

История флэш-памяти

Впервые флэш-память была изобретена в $1984$ г.

Название «flash» походит от английского «вспышка», т.к. процесс стирания данных напоминал фотовспышку.

В $1988$ г. был выпущен первый коммерческий флэш-процессор NOR-типа. В следующем году была разработана NAND-архитектура флэш-памяти, которая отличалась большей скорость ю записи и меньшей площадью схемы.

Принцип работы

Элементарная ячейка хранения данных представляет из себя транзистор с плавающим затвором, который может удерживать электроны (заряд) является элементарной ячейкой хранения данных в флэш-памяти. На основе транзистора разработаны основные типы флэш-памяти NAND и NOR. Принцип работы основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры.

Рисунок 1. Архитектура NOR-памяти

Рисунок 2. Архитектура NAND-памяти

Производители флэш-памяти используют $2$ типа ячеек памяти:

  • MLC (Multi-Level Cell – многоуровневые ячейки памяти) – более емкие ячейки и более дешевые, но характеризуются большим временем доступа и небольшим числом циклов записи/стирания (около $10 \ 000$);
  • SLC (Single-Level Cell – одноуровневые ячейки памяти) – ячейки с меньшим временем доступа и максимальным числом циклов записи/стирания ($100 \ 000$).

Рисунок 3. Основные элементы USB-флэш-накопителя: $1$ – USB-коннектор, $2$ – контроллер, $3$ – PCB-плата, $4$ – модуль NAND-памяти, $5$ – кварцевый генератор, $6$ – LED-индикатор, $7$ – переключатель защиты от записи, $8$ – место для дополнительной микросхемы памяти.

Применение

Существует два основных способа применения флэш-памяти:

Часто оба способа совмещают в одном устройстве.

Применение NOR-памяти, которая имеет относительно небольшой объём, заключается в обеспечении быстрого доступа по случайным адресам и гарантии отсутствия сбойных элементов (стандартные микросхемы ПЗУ для работы с микропроцессором, микросхемы начальной загрузки компьютеров (POST и BIOS), микросхемы хранения среднего размера данных, например, DataFlash). Типовые объёмы – от $100$ Кб до $256$ Мб. NAND-память применяется в мобильных устройствах и носителях данных, которые требуют использования больших объёмов хранения. В основном, это USB-брелоки и карты памяти всех типов, а также мобильные устройства (телефоны, фотоаппараты, плееры). NAND-память встраивают в бытовые приборы: сотовые телефоны и телевизоры, сетевые маршрутизаторы, точки доступа, игровые приставки, фоторамки и навигаторы.

Рисунок 4. Флэш-карты разных типов

Виды и типы карт памяти и флэш-накопителей

Замечание 1

CF (Compact Flash) – старейший стандарт типов памяти. Обладает высокой надежность, достаточно большой объем ($128$ Гб и больше) и высокую скорость передачи данных ($120$ Мб/с). Из-за больших размеров применяется в профессиональном видео- и фотооборудовании.

MMC (Multimedia Card) обладает небольшим размером, высокой совместимостью с различными устройствами и содержит контроллер памяти. SD Card (Secure Digital Card) – результат развития стандарта MMC. Карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Максимальная емкость до $4$ Гб. SDHC (SD High Capacity) имеет максимальную емкость $32$ Гб.

Существуют также карты miniSD и microSD.

Замечание 2

Основными производителями NAND-флэш-памяти являются фирмы Micron/Intel, SK Hynix, Toshiba/SanDisk, Samsung. Основные производители контроллеров флэш-памяти NAND – Marvell, LSI-SandForce и производители памяти NAND.

Современные технологии развиваются достаточно быстро, и то, что ещё вчера казалось верхом совершенства, сегодня нас совсем не устраивает. Это особенно относится к современным видам компьютерной памяти. Памяти постоянно не хватает или скорость носителя очень низкая, по современным меркам.

Флеш-память появилась относительно недавно, но имея много преимуществ достаточно серьёзно теснит другие виды памяти.

Флеш- память - это вид твёрдотельной энергонезависимой, перезаписываемой памяти. В отличии от жёсткого диска флешка имеет большую скорость чтения, которая может доходить до 100 Мб/с, очень маленький размер. Её можно легко транспортировать, так как она подключается через USB- порт.

Ею можно пользоваться как ОЗУ, но в отличии от ОЗУ, флеш-память хранит данные при отключенном питании, автономно.

Сегодня на рынке представлены флеш- носители объёмом от 256 мегабайт до 16 гигабайт. Но имеются носители и с большим объёмом.

К дополнительным функциям флеш- памяти можно отнести защиту от копирования, сканер отпечатков пальцев, модуль шифрования и многое другое. Так же если материнская плата поддерживает загрузку через USB- порт, то её можно использовать как загрузочное устройство.

К новым флеш- технологиям можно отнести UЗ. Этот носитель распознаётся компьютером как два диска, где на одном хранятся данные, а со второго происходит загрузка компьютера. Преимущества этой технологии очевидны, вы можете работать на любом компьютере.

Достаточно маленький размер, позволяет использовать этот вид памяти очень широко. Это и мобильные телефоны, фотоаппараты, видеокамеры, диктофоны и другое оборудование.

В описании технических характеристик любого мобильного устройства указывается тип флеш-памяти и не случайно, так как не все типы совместимы. Исходя их этого, надо выбирать достаточно распространенные на рынке флешки, чтобы не иметь проблем с каким-нибудь устройством.
Для некоторых типов флеш-карт существуют адаптеры, которые расширяют её возможности.

Существующие типы флеш-памяти

Современные флеш-карты можно разделить на шесть основных типов.

Первый и самый распространенный тип - это CompactFlash (CF) , имеется двух видов CF type I и CF type II. Имеет хорошую скорость, ёмкость и цену.
К недостаткам относят размер 42*36*4 мм. Является достаточно универсальным и используется во многих устройствах.

IBM Microdrive -дешёвая, но менее надёжная и потребляет больше обычного энергии, что и является причиной её ограниченности.

SmartMedia - тонкая и дешёвая, но не высокая защита от стирания.

Multimedia Card (MMC) - маленький размер (24x32x1,4мм), низкое энергопотребление, используется в миниатюрных устройствах. Недостаток - низкая скорость.

SecureDigital (SD) при сопастовимых размерах с Multimedia Card, имеет больший объём и скорость. Но дороже.

MemoryStick - имеет хорошую защиту информации, скорость, но не очень большую ёмкость.

Сегодня самыми распространёнными считаются CompactFlash и SD/MMC, но
кроме перечисленных карт, существуют и другие виды флеш-карт

Выбирать флеш-карту стоит исходя из своих потребностей, учитывая, что чем больше объём и скорость, тем дороже флеш- карта.







2024 © gtavrl.ru.