Прибор измерения дальности как называется. Механические приборы для измерения расстояний


Когда люди проходят мимо геодезистов, работающих на улицах, стройках, на садовых участках, многие задаются вопросом- а что это за «тренога» такая, куда посмотреть в прибор, а что я там увижу? Как называется этот прибор, и зачем он здесь стоит? Часто-это праздное любопытство. Иногда просто пытаются вникнуть и понять, как это действует и что меряет. Некоторые просто работают в смежных отраслях и хотят расширить свой кругозор.

Существуют очень сложные системы и сверхточные приборы, которые редко используются, и в обычной жизни инженера Вы с ними не встретитесь. Попробуем вкратце рассказать про приборы, которые, в основном, используют геодезисты в прикладной геодезии. Про те штативы и «палочки», с которыми ходят геодезисты.

»

»

»

»

»

»

»

Небольшой исторический очерк

Известный российский профессор-геодезист, который жил и работал на рубеже XIX и XX столетий, генерал-лейтенант Василий Васильевич Витковский свою специальность называл одной из самых полезных областей знания. По его мнению, изучать форму и поверхность Земли человечеству необходимо настолько же, насколько каждому из нас - в подробностях узнать собственный дом.

Неудивительно, что геодезия всё время развивается и уже давно нацелилась не только на нашу отдельную планету, а и на всю Солнечную систему и даже галактику в перспективе. Вместе с развитием цивилизации эта наука очень усложнилась, разделилась на несколько дисциплин - и, естественно, начала ставить перед собой и решать всё более сложные задачи. Причём как теоретические по причине роста количества и масштабов исследований, так и практические - из-за увеличения числа уникальных инженерных конструкций и сооружений. Это не могло не привести, с одной стороны к повышению требований к точности измерений, а с другой - к усложнению оборудования. Особенно сильно это стало заметно в последние 10-20 лет в связи со стремительным развитием электроники и началом широкого применения лазеров.

Подробнее про геодезию, как науку можно узнать в , посвященной этой познавательной теме.

Что измеряют геодезические приборы:

Измерение расстояний

Самая простая геодезическая задача - это измерение длины линии. Ленты и рулетки, длинномеры и геометрического типа дальномеры - это приборы, с помощью которых измеряют короткие линии со сравнительно невысокой точностью. А вот если речь идёт об измерениях высокоточных или базисных, а также о значительных расстояниях, понадобится уже дальномер - световой, электромагнитный, радиоволновый или лазерный. Особенно распространены такие приборы в космической и морской геодезии.

Измерение превышений

Для измерения высот и их разницы используются нивелиры и профилографы. Нивелиры используют вместе со специальными нивелирными рейками. Существуют оптические, цифровые и лазерные нивелиры. Причём последние нельзя путать с просто лазерными уровнями, которые отличаются не только конструктивно, но и по обеспечению точности.

Измерение углов

Измерение углов очень долго обеспечивалось с помощью довольно простых инструментов

- транспортиров, экеров и эклиметров. Более сложным прибором является буссоль - подвид компаса, которым можно измерить магнитный азимут, то есть угол, на который линия отклоняется от направления на север магнитного меридиана. Основной современный прибор для измерения углов - это теодолит, довольно сложный оптический прибор, позволяющий добиваться очень высокой точности измерений.

Определение местоположения

В стародавние времена определение местоположения больше всего волновало моряков — спросить не у кого, да и сухопутных ориентиров практически нет. Было создано много специфических приборов для навигации и определения широты своего местоположения -астролябия, секстант, квадрант и другие раритеты. В настоящее время никого не удивишь «навигаторами» на различных электронных устройствах. Это стало возможно с появлением специальных навигационных спутников, которые дают возможность определения непосредственно местоположения объекта на местности.

Давно не секрет — прогресс не стоит на месте. Время, когда измеряли все эти величины по отдельности, да еще и «дедовскими» приборами, ушло безвозвратно в прошлое. В рамках этой статьи не будем рассматривать буссоли, кипрегели и стальные рулетки- только актуальное и наиболее распространенное геодезическое оборудование.

Каждая уважающая себя геодезическая бригада в составе 2-4 человек, чтобы справиться практически с любыми инженерно-геодезическими изысканиями, должна иметь следующие приборы:

.

Понятное дело, измерять углы, длины и высоты разными приборами - не слишком удобно и довольно долго к тому же. Поэтому для тех случаев, когда нужно проводить несколько типов измерений, существуют приборы комбинированные, такие как тахеометр. Это наиболее современный электронно-оптический прибор, который позволяет измерять любые длины, разницы высот и горизонтальные углы.

В большинстве случаев этого прибора достаточно для фиксации всех необходимых измерений на объекте, при условии, что точность прибора соответствует виду работ. Именно подобные приборы, в большинстве своем, Вы можете видеть на стройплощадках, на участках соседей и вдоль дорог нашей страны. на данном этапе развития технологий являются наиболее востребованными и универсальными приборами для проведения геодезических измерений.

Во многих случаях нет необходимости в более громоздких и намного более дорогих и сложных в использовании тахеометрах. В строительстве зданий, дорог и других сооружений после планового определения местоположения объекта нужно лишь контролировать высоту, уровень и вертикальность поверхностей. С этими функциями легко справляется нивелир. Его основная задача — измерять превышения между объектами. Бывают нивелиры электронные, оптические, лазерные, с автоустановкой и прочие. Во многих случаях нивелиры использовать удобнее и целесообразнее —например, при наблюдении за осадками зданий и сооружений используются высокоточные нивелиры с автоустановкой, нежели тахеометры- опять же из-за дороговизны последних . Подводя некую черту по использованию , можно сказать, что чаще всего они используются непосредственно в процессе строительства из- за простоты использования и относительной дешевизны.

-GPS оборудование

GPS модули или приемники сопутствуют нам в повседневной жизни в наших телефонах, навигаторах, планшетах и т.д. Они призваны помочь нам сориентироваться на местности и не потеряться в городских джунглях. Однако они имеют мало общего с геодезическим GPS оборудованием.

Геодезистам эти приборы нужны не для ориентирования на местности, а для точного определения местоположения «тарелки» (обычно такой формы придерживаются производители GPS приемников). Погрешность обычно составляет 0,5-2 сантиметра относительно ближайшего пункта Государственной Геодезической Сети (ГГС). В то время, как обычные навигаторы дают ошибку местоположения около 10-20 метров, что в работе геодезиста недопустимо. Но есть множество факторов, которые весьма часто негативно влияют на величину погрешности геодезических . Поэтому недостаточно просто приобрести дорогостоящую «тарелку», и начать определять местоположение соседних заборов, например, как обычным навигатором. Без должной калибровки и последующей обработки измерений ничего не выйдет.

В общем, если увидите геодезиста с «тарелкой» на вешке, знайте- он определяет точное местоположение точки, над которой стоит приемник.

Очень простой инструмент геодезиста. Многие сталкивались со штативами при съемках фотографий или фильмов с использованием профессионального оборудования. Геодезисты также пользуются специальным оборудованием, которое без штативов обойтись не может. От остальных геодезические отличаются в основном простотой конструкции, неприхотливостью в использовании и «неубиваемостью». Ведь работать приходится совсем не в идеальных условиях. Основная задача геодезического штатива- неподвижно зафиксировать прибор, который на него устанавливается. На штатив сначала ставится трегер- специальное устройство для центрирования над определенной точкой при необходимости и горизонтирования прибора. Потом уже ставится прибор-тахеометр, нивелир и т.д. Различают деревянные, металлические и штативы из композитных материалов. В последнее время самыми «продвинутыми» являются штативы из фибергласса. Они очень легкие, прочные..но пока что неоправданно дорогие.

-Вешка

Тоже достаточно простой геодезический инструмент. Выглядит как круглая палка высотой около 1.8м. Однако многие вешки раздвигаются и могут иметь высоту до 6 метров. Наверху может находиться как отражатель, так и GPS приемник. Отражатель может быть разной формы и конструкции. Главная его задача- отражать сигнал, посланный дальномером. Его особенностью является то, что луч/сигнал, приходящий с прибора-измерителя отражается точно обратно.

В конечном итоге-там где находится отражатель или приемник на геодезической вешке происходит определение местоположения измеряемой точки.

Появилась относительно недавно в геодезических бригадах, так как раньше была довольно дорога и сложна в использовании. И по сей день не является единственным прибором для измерения непосредственно расстояний на объекте. Удобно использовать на коротких расстояниях и в помещениях. В уличных условиях применяется не часто, так как необходимо иметь поверхность, на которую можно навести лазерный луч. Также минус многих моделей без оптического визира- плохая видимость лазерной точки на ярко освещенных поверхностях.

Ввиду этого, сейчас все еще достаточно часто приходится использовать стальные рулетки длиной до 50м. Большей длины не выпускают, поэтому расстояния более 50 метров являются источниками ошибок из-за нескольких этапов измерений. Измерения нужно проводить вдвоем, да и провис ленты доставляет некоторую ошибку в измерения.

В итоге лазерные рулетки используются повсеместно кадастровыми инженерами и геодезистами в тех случаях, когда это целесообразно и возможно. В остальных случаях выручает старая-добрая стальная рулетка.

Прибор, сопутствующий инженерно-геодезическим изысканиям для нанесения подземных коммуникаций на план. Часто в комплект входит генератор, который устанавливается на коммуникацию в ее видимой части. Он генерирует вибрации, которые фиксирует приемник. После обнаружения поворотных точек коммуникации- их наносят на геоподоснову или . Кабелеискатель также может измерить глубину залегания коммуникации с точностью до 0.05м.

Мы рассказали Вам вкратце о геодезических приборах и инструментах, необходимых в прикладной геодезии. Надеемся, что помогли разобраться в тонкостях штативов и «палочек» с которыми работают люди, именующие себя геодезистами.

Полезные статьи:

Изобретение относится к геодезическому приборостроению и предназначено для измерения расстояний различной длины при построении геодезических сетей для возведения уникальных сооружений, например ускорителей заряженных частиц, реакторных отделений, а также монтажа оборудования атомной энергетики, ракетостроения и др. Устройство содержит мерную ленту 1 с отверстиями 2, корпус 3 с основанием 4, рамку 5 с опорной призмой 6, базовую опору 7 с целиком 8, пазом 9 для крепления основания корпуса, штифтом 10, фиксатором 11 с закрепительным винтом 12; базирующий элемент 13 с кареткой 14, балансиром 15 с грузом 16 и целиком 17, уровнем 18, натяжным микрометрическим винтом 19 и индикатором 20. Применение в качестве гибкой рабочей меры ленты 1 с отверстиями 2 позволяет одной лентой измерять линии любой длины, так как лента с отверстиями представляет собой набор большого количества концевых мер. Предложенное устройство повышает точность и производительность измерения расстояний, обеспечивает применение лент из разных материалов, требующих различного натяжения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к геодезическому приборостроению и предназначено для высокоточного измерения расстояний различной длины при построении геодезических сетей для возведения уникальных сооружений, например ускорителей заряженных частиц, реакторных отделений, а так же монтажа оборудования атомной энергетики, ракетостроения, дальней радиосвязи и др. Известна рулетка содержащая корпус и установленную в нем с возможностью перемещения ленту с закрепленными на ней экраном с непрозрачными штрихами, второй экран, жестко закрепленный на корпусе, источник света, фотоприемный и вычислительный блоки, установленные по одну или разные стороны от экранов. Конструктивно рулетка изготовлена таким образом, что измерения выполняются между двумя крюками, один из которых расположен на конце рулетки, другой на корпусе. Это облегчает измерение линейных размеров, например, конструкций, но затрудняет высокоточные измерения между геодезическими стандартными знаками и снижает точность эталонирования полотна рулетки на компараторе, что исключает ее применение для высокоточных измерений в геодезических сетях. Известно устройство для измерения расстояний содержащее гибкую рабочую меру и связанные с ней через соединительное устройство отсчетное и натяжное приспособления. В известном устройстве для измерения расстояний автоматизированы контроль натяжения и отсчитывания по гибкой рабочей мере, что обеспечивает высокую точность и производительность измерения длины линии, соответствующей размеру данной гибкой рабочей меры. Поскольку при длине гибкой рабочей меры а возможны измерения линий в диапазоне d d, где d величина перемещения каретки, то в комплекте устройства должен быть набор рабочих гибких мер, обеспечивающий измерение различных расстояний. Это затрудняет использование устройства для измерения линий произвольной длины, кроме того, замена одной гибкой меры другой увеличивает трудоемкость работ и снижает производительность труда. Наиболее близким по технической сущности к изобретению является устройство для измерения расстояний содержащее базовую опору, базирующий элемент, каретку, установленную на базирующем элементе с возможностью перемещения в направлении, перпендикулярном его оси, балансир с грузом, установленный на каретке с возможностью поворота в плоскости, проходящей через оси базовой опоры и базирующего элемента, мерную проволоку, закрепленную одним концом на базовой опоре, а другим на балансире, уровень для определения взаимного положения балансира и мерной проволоки и отсчетное приспособление, служащее одновременно натяжным. Известное устройство предназначено для высокоточных измерений, но имеет низкую производительность труда, так как одной проволокой можно измерить расстояние в диапазоне d d, где d длина проволоки, а d величина перемещения каретки. Для измерения линий разной длины необходимо иметь требуемое количество мерных проволок, что повышает трудоемкость измерений и их аттестацию. Кроме того, в известном устройстве перемещение каретки и отсчитывание величины перемещения осуществляется одним и тем же микрометрическим винтом, что влияет на метрологические характеристики устройства и снижает точность вследствие износа винта. Задачей изобретения является разработка устройства для измерения расстояний, обеспечивающего высокоточное измерение линий любой длины. Это достигается тем, что в устройстве для измерения расстояний, содержащем гибкую рабочую меру, закрепленную одним концом на базовой опоре, а другим на базирующем элементе с кареткой, одноплечим балансиром с грузом и уровнем для определения взаимного положения балансира и гибкой рабочей меры, отсчетное и натяжное приспособления, согласно изобретению гибкая рабочая мера выполнена в виде ленты с отверстиями по ее оси с интервалами между ними, не превышающими длины хода каретки, базовая опора в верхнем ее торце снабжена штифтом и фиксатором положения гибкой рабочей меры и отверстия, а плечо балансира выполнено с возможностью изменения его длины, при этом натяжное приспособление выполнено в виде микрометренного винта, закрепленного на торце каретки и функционально не связано с отсчетным приспособлением. Гибкая рабочая мера в виде ленты с отверстиями по ее оси с интервалами между ними, не превышающими хода каретки, представляет собой набор большого количества концевых мер. Возможность измерения лентой с отверстиями обеспечивается конструкцией базового элемента, снабженного в верхнем торце штифтом для закрепления ленты отверстием на ней, соответствующим измеряемой длине линии, и фиксатором, осуществляющим контакт края отверстия со штифтом, что повышает точность измерений. Выполнение балансира с возможностью изменения длины плеча позволяет использовать базирующий элемент для измерения лентами разной длины (10 или 24, или 48 м) путем подбора требуемого натяжения рабочей меры, что расширяет возможности применения устройства для различных видов геодезических работ. В предлагаемом устройстве для улучшения метрологических характеристик натяжения ленты осуществляется микрометренным винтом, а в качеств отсчетного приспособления применен индикатор часового типа. Функции отсчетного и натяжного приспособлений разъединены. На фиг. 1 изображено устройство для измерения расстояний, общий вид; на фиг. 2 гибкая рабочая мера, план. Устройство для измерения расстояний содержит мерную ленту 1 с отверстиями 2, корпус 3, основание 4 корпуса и рамку 5 с опорной призмой 6; базовую опору 7 с целиком 8, пазом 9 для крепления основания корпуса, штифтом 10, фиксатором 11 с закрепительным винтом 12; базирующий элемент 13 с кареткой 14, балансиром 15 с грузом 16 и целиком 17, уровнем 18, натяжным микрометренным винтом 19 и индикатором 20. Гибкая рабочая мера в виде мерной ленты 1 с отверстиями 2 расположена в корпусе 3 с основанием 4. Мерную ленту изготовляют, например, из инварной ленты шириной 8 мм, толщиной 0,2 мм. Отверстия 2 на ленте пробивают с помощью специального шаблона и пробойвика. Для крепления корпуса 3 ленты 1 в пазу 9 на целике 8 базовой опоры 7 основание 4 выполнено в форме вилки. Один конец ленты закреплен на базовой опоре 7 ближайшим отверстием 2 в штифте 10 и фиксатором 11 положения ленты и отверстия. Другой конец ленты закреплен на базирующем элементе 13 с помощью измерительной рамки 5 с опорной призмой 6 для облегчения контакта с целиком 17, установленным на балансире 15 с грузом 16. Подпружиненная каретка 14 помещена в направляющие, расположенные на базирующем элементе 13 с возможностью перемещения. Интервалы между отверстиями 2 на ленте 1 не должны превышать шага перемещения каретки 14 для обеспечения быстрого фиксирования отверстия 2, соответствующего "грубому" значению длины измеряемой линии. Если отверстия пробиты через 50 мм, то "грубое" значение длины линии равно nl o , где l o =50 мм, n число отверстий. Каретка 14 имеет, например, шарнирную связь с балансиром 15, служащим для размещения на нем груза 16 с целиком 17 для закрепления конца ленты 1. Выполнение балансира с возможностью изменения длины плеча позволяет использовать один и тот же базирующий элемент для измерений лентами разной длины (например, 10 или 24, или 48 м) и сечения, а так же изготовленных из разных материалов (сталь, инвар, композиционные материалы) путем подбора требуемого натяжения рабочей меры перемещением груза на нем. Уровень 18 обеспечивает одинаковое положение балансира 15 и ленты 1, соответствующее требуемому натяжению для данного мерного тела как в момент аттестации устройства, так и в момент измерений. Натяжное приспособление 19, осуществляющее перемещение каретки 14, а следовательно, и балансира 15 в положение, соответствующее требуемому натяжению ленты 1, выполнено в виде микрометренного винта, отсчетное для измерения величины перемещения каретки 14, например, в виде индикатора 20 часового типа. Натяжное и отсчетное приспособления расположены у противоположных концов каретки 14 для разгрузки индикатора от воздействия напряжения подпружиненной каретки 14 с целью повышения метрологических характеристик отсчетного устройства. Перед началом измерений рабочая лента 1 проходит метрологическую аттестацию. Сначала на высокоточном измерителе типа УИМ-23 измеряют расстояния между отверстиями, а затем с эталоном сравнивают длины между отверстиями через, например, 1-5 м. Далее из обработки результатов компарирования составляют аттестацию на каждое отверстие. Кроме того, при компарировании определяют отсчет a 0 по индикатору 20, соответствующий заданному натяжению, достигаемому при определенном положении балансира 15, мерной ленты 1 при положении пузырька уровня 18 в нольпункте. Например, для 24-метровой ленты натяжение должно быть 10 кг. Путем решения и анализа уравнений равновесия одноплечего балансира 15 находят массу груза 16, имеющего возможность перемещения вдоль оси балансира и определяют место его закрепления (плечо приложения силы). Далее регулируют уровень 18 так, чтобы при натяжении 10 кг, его пузырек был в нольпункте. При этой юстировке допускается использование прокладок, если не хватает диапазона исправительных винтов уровня 18. С помощью уровня 18 контролируют взаимное положение балансира 15 и ленты 1 при заданном натяжении во время компарирования и полевых измерений. После юстировки базирующего элемента 13 и компарирования устройство готово к работе. Во втулки геодезических знаков, расстояния между которыми необходимо измерить, вставляют базовую опору 7, и базирующий элемент 13 с установленной на нем подпружиненной кареткой 14 с балансиром 15, грузом 16, целиком 17 и уровнем 18. Корпус 3 ленты 1 основанием 4 помещают в паз 9, на целике 8. Протягивают ленту 1 из корпуса 3 и закрепляют ее конец с рамкой 5 и опорной призмой 6 на целике 17. Отворачивают закрепительный винт 12 фиксатора 11 и отводят последний в сторону, натягивая ленту, в ближайшее отверстие 2 вводят штифт 10. После этого ленту 1 помещают в паз на верхнем торце целика 8, возвращают фиксатор 11 в рабочее положение и прижимают им ленту 1 с помощью закрепительного винта 12. Далее балансир 15 ориентируют по направлению измеряемой линии так, чтобы ось балансира совпала с плоскостью, проходящей через оси базовой опоры 7 и базирующего элемента 13. Для измерения длины линии на индикаторе 20 проверяют правильность установки отсчета a 0 , определяемого при компарировании. В случае, если отсчет сбит, действуя натяжным микрометренным винтом 19 и меняя положения индикатора 20 в обойме, добиваются его установки в соответствии с метрологическими данными. Вращением винта 19 перемещают каретку 14 с балансиром 15 до тех пор, пока пузырек уровня 18 установится в нольпункте. Отсчет положения каретки 14, соответствующий длине ленты от зафиксированного отверстия 2 до грани опорной призмы 6, определяют по индикатору 20. Длина линии L равна L=nl 0 +(a-a 0), где n номер отверстия; l o расстояние между отверстиями на ленте; а отсчет по индикатору при измерении; а 0 отсчет по индикатору при компарировании.

Формула изобретения

1. УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАССТОЯНИЯ, содержащее базовую опору, базирующий элемент с кареткой, гибкую рабочую меру, закрепленную одним концом на базовой опоре, а другим на базирующем элементе, механизм отсчета, взаимодействующий с кареткой, механизм натяжения рабочей меры и балансир с грузом, отличающееся тем, что гибкая рабочая мера выполнена в виде ленты с отверстиями по ее оси, интервалы между отверстиями которой не превышают шага перемещения каретки, которая шарнирно соединена с балансиром, груз размещен на балансире с возможностью перемещения вдоль него и фиксации, устройство снабжено размещенным на базовой опоре штифтом, предназначенным для поочередного размещения в отверстиях ленты, и фиксатором положения ленты. 2. Устройство по п.1, отличающееся тем, что механизм натяжения выполнен в виде микрометрического винта, взаимодействующего с торцом каретки и расположенного диаметрально относительно механизма отсчета.

На начальном этапе развития геодезии главными задачами были измерение прямых линий, построение прямого угла, измерение площадей и ориентирование сооружений при строительстве. Для их решения были созданы соответствующие устройства и инструменты. При возведении монументальных сооружений необходимо было знание линий отвеса и горизонта . Описание некоторых устройств и методы измерений есть в трудах Витрувия и «Диоптре» Герона. В «Библии» в «Книге пророка Иезикииля» повествуется о «мерной трости длиною шесть локтей» (названной жезлом Иезикииля).

В Египте в качестве измерительных приспособлений и устройств для непосредственного измерения расстояний и геометрических построений на местности применялись мерные шнуры и шесты . В древней Греции и Риме кроме них применялись мерные цепи, наугольник, линейка, циркуль, ватерпас с отвесом, грома, диоптра, одометр, водяные нивелиры и др . По сообщениям античного историка Плиния Старшего отвес изобрел известный мифологический механик, архитектор и скульптор Дедал, циркуль создал Пердикс, сын сестры Дедала, а ватерпас с отвесом , линейку и наугольник – Федор Самосский. Они применялись вплоть до крушения римской империи, а простейшие - до 17в. в Европе и в Арабском Халифате. Некоторые инструменты применяются и в настоящее время (отвес, угольник, уровень). Древнегреческий астроном Гиппарх изобрел угломерное устройство названное позднее «армиллярная сфера» (рис.). Она широко использовалась на протяжении многих столетий в астрономических наблюдениях.

Изготовление измерительных веревок из описания Герона Александрийского происходило так: веревка намачивалась, выдерживалась натянутой между двумя колами и высушивалась несколько раз, затем натиралась воском и смолой. По словам Герона, такая веревка не отличалась по длине от цепи более чем на 1:2000 (1см на 20м). Веревка размечалась через равные отрезки. На ней также отмечались узлами части в 3,4,5 единиц для построения прямого угла на местности.

В Индии были известны также следующие тройки чисел: 5,12,13; 7,24,25; 8,15,17; 12,35,37. («Правила шнура», Фишер,1981, Париж).

В Китае в 11–10вв. до н.э. производились измерения «всей Земли» с применением мерных цепей .

Во многих странах землемеров и межевщиков называли «натягивающие веревки». Египетских землемеров называлигарпедонапты , что означает протягивающие, закрепляющие веревку, римских – агрименсорами , в России – веревщиками . Во многих древних источниках веревка специальной длины упоминается как единица длины. Мерная веревка наложила отпечаток на некоторые фундаментальные геометрические термины, например, понятие линия означает натянутая нить. .

Размеры объектов определяли путем измерения у них только прямых линий. Размеры отдельных элементов фигур на местности определялись путем измерения или откладывания заданного расстояния по вынесенному на местность направлению. В геодезических работах до 16в. угловые измерения не производились .

Древние люди умели измерять расстояния до удаленных объектов косвенными способами , основанными на пропорциональном делении, с помощью реек, шеста или жезла. Применялись не только отдельные рейки, но и комплекты скрепленных реек, составлявшие простейший измерительный инструмент – угольник , горизонтальный или вертикальный. Фалес для определения высот предметов применял метод измерения длины тени . Этим методом он (в 6в. до н.э.) измерил высоту пирамиды, заметив, что длина ее тени находится в таком же отношении к длине тени вертикального шеста, как их высоты (Плутарх «Пир семи мудрецов»). Он определил высоту пирамиды путем наблюдения ее тени, когда тень человека имеет ту же длину, что и он сам.

В наше время лазерный дальномер («лазерная рулетка») - незаменимый инструмент строителей и отделочников. Основное назначение этого прибора, хотя далеко не единственная способность, - измерение расстояний. Дальномеры применяют как для замеров внутри помещений, так и для работ на открытых объектах. Сегодня речь пойдет о дальномерах компании BOSCH .

Это компактный оптико-электронный прибор для измерения расстояний. Современные модели этих приборов имеют расширенный спектр функций: позволяют вычислять площади, объемы помещений, проводить замеры недоступных объектов (по теореме Пифагора), передавать информацию на ПК и др. При этом большинство дальномеров имеют противоударный, пыле- и влагозащищенный корпус, а потому, подходят для работы в любых условиях.

Принцип действия.

Внешне работа с дальномером выглядит так: человек ставит прибор на ровную поверхность и включает. Прибор настраивается и генерирует лазерный луч красного цвета, направленный в нужную точку. Точка отображается на приемном устройстве. Расстояние от объекта до прибора сразу отображается на дисплее дальномера.

Принцип работы лазерного дальномера следующий: прибор посылает импульсы, которые отражаются от цели. Затем встроенный микропроцессор вычисляет расстояние на основании времени, которое прошло с момента отправки импульса до момента приема его отражения.

Преимущества перед обычной рулеткой:

  • измерения может легко проводить один человек;
  • лазерным дальномером можно измерить и те объекты, которые невозможно измерить обычной рулеткой из-за наличия препятствий;
  • лазерный дальномер измеряет быстрее и с большей точностью;
  • поскольку лазерный луч видимый, ориентируясь на эту линию, гораздо удобнее проводить работы: устанавливать окна, подоконники, выравнивать полы, развешивать картины и т. д.;
  • лазерный дальномер может определять не только расстояния, но и другие величины (площадь, объем и т. д.).

Принципы выбора.

Выбирая дальномер, в первую очередь определите спектр задач, для которых он вам может понадобиться. Переплачивать за наличие у прибора максимального количества функций совсем не обязательно. Вот основные пункты, согласно которым рекомендуется выбирать этот прибор.

1. Класс (бытовой или профессиональный).

Для несложных отделочных работ в квартире вполне достаточно прибора бытового класса. Если же вы работаете в жестких условиях эксплуатации, со сложными объектами, стоит подумать о приборе профессионального класса. Разумеется, стоимость профессионального дальномера выше, чем бытового. Хотя и бытовые дальномеры могут быть достаточно функциональны и надежны.

2. Дальность измерений.

Самая большая дальность измерений современных моделей дальномеров может составлять до 200 м. Если вы планируете пользоваться прибором только в квартире, или на небольшой стройплощадке (например, при строительстве загородного дома), достаточно приобрести прибор с максимальной дальностью измерения 30–50 м. Если же существует необходимость в измерении больших расстояний и вы приобретаете прибор с максимальной дальностью более 50 м, обратите внимание, есть ли у выбранной модели возможность установки на штатив. При замере больших дистанций штатив вам будет просто необходим.

3. Точность измерений.

Большинство лазерных дальномеров могут обеспечить точность измерений ±1,5–2 мм: этого вполне достаточно для решения широкого круга задач как в бытовом, так и в профессиональном строительстве.

4. Производитель.

Самые лучшие лазерные дальномеры производят компании BOSCH, Stabila, Trimble, Leica и др. Приборы европейских марок, как правило, дороже дальномеров китайских производителей, но китайские менее надежны.

5. Гарантия и сервис.

Любая серьезная фирма предоставляет на свой прибор гарантию и дает возможность сервисного обслуживания. Обычно гарантия составляет от 1 до 2 лет на бытовые дальномеры и от 2 до 3 лет на профессиональные. Покупая дальномер определенной фирмы, узнайте, имеется ли в вашем городе сервисный центр этого производителя.

6. Эргономика, дизайн.

Выбирая лазерную рулетку, подержите ее в руках. Дальномер должен удобно лежать в руке, не выскальзывать и быть не слишком тяжелым. Чем меньше прибор по размеру, тем он удобнее: можно легко положить «рулетку» в карман. Чтобы дальномер не выскальзывал из рук при работе, некоторые производители снабжают его корпус резиновыми насадками.

7. Функциональная насыщенность.

Наличие в дальномере каждой из функций увеличивает его цену. Убедитесь, что вы не переплачиваете за те функции, которые вам не понадобятся.

  • Встроенный Bluetooth. Система беспроводного обмена данных позволяет мгновенно переносить данные измерений в компьютер, ноутбук или КПК.
  • Встроенная откидная скоба. Позволяет производить измерения от внутреннего угла.
  • Вычисление площади и объема. Очень удобная и полезная функция. Может понадобиться даже при косметическом ремонте.
  • Встроенная память. Используется для хранения постоянных величин, участвующих в вычислениях и замерах.
  • Встроенный оптический визир. Помогает визуализировать лазерную точку при наведении на цель. Функция удобна, если измерения проводятся при ярком солнечном свете, снижающем видимость точки. Хотя, если встроенного визира у прибора нет, можно будет купить оптический визир (отражающую пластину) отдельно.

Дальномер Bosch PLR 30 (бытовой).

Прибор внешне напоминает мобильный телефон и легко помещается в кармане. Благодаря простому и понятному управлению работа с PLR-30 не требует дополнительной подготовки. В PLR 30 есть различные встроенные практичные функции, такие как вычисление площади и объема, непрямое измерение длины, функция «минимум/максимум», функции сложения и вычитания, а также функция памяти. Результаты отображаются на большом жидкокристаллическом дисплее.

Благодаря рукоятке со специальными накладками, препятствующими скольжению, инструмент удобно и надежно лежит в руке. PLR 30 оснащен лазером с дальностью светового луча 650 нМ и соответствует второму классу лазеров (это означает его безопасность). А еще данную модель дальномера можно устанавливать на фотоштатив, что очень удобно.

Bosch DLE 50 - профессиональный прибор с широким спектром функций и высокой точностью измерений. При этом его габариты примерно те же, что у обычного мобильного телефона (100 х 58 х 32), а его масса всего 160 г. Являясь самым маленьким из всех дальномеров, Bosch DLE 50 измеряет с абсолютной точностью и находит себе множество способов применения. Прибор измеряет расстояния в диапазоне от 0,05 до 30 м с погрешностью не более ±1,5 мм (предельное расстояние - 50 м). Стандартное время измерений в зависимости от дальности и условий освещения составляет 0,5–4 с. Выполнив действие, прибор подает акустический сигнал.

Фиксируемый упорный штифт, с помощью которого можно производить замеры из узких и труднодоступных мест, - еще одна отличительная особенность DLE 50.

Также есть режим сканирования, функция минимум-максимум, функция сложения, вычитания и запоминания. Корпус с резиновыми накладками снабжен упорным штифтом для измерения из труднодоступных мест, есть резьба под штатив ¼, резиновые накладки на корпусе. Прибор идеален для отделочников, строителей, архитекторов и экспертов.

Bosch DLE 150 Connect.

Еще более удобен прибор Bosch DLE 150 Connect. Он может выполнять измерения до 150 м с точностью до 2 мм. Дальномер имеет подсвечиваемый дисплей с четкой, понятной индикацией, множество полезных функций и интуитивно понятное управление. Интерфейс Bluetooth позволяет DLE 150 Connect осуществлять беспроводную передачу результатов измерений на КПК или ноутбук. При этом прибор исключает возможность ошибки или потери данных измерений при их передаче. Максимальный радиус передачи данных - 10 м.

Лазерный дальномер BOSCH DLE 150 Professional.

Простота и точность измерений расстояния, площади и объема, а также ряд других величин, вычисляемых с помощью теоремы Пифагора, делают BOSCH DLE 150 идеальным инструментом для отделочников, строителей, архитекторов и экспертов. DLE 150 имеет множество функций, таких как измерение длины, режим сканирования, функция сложения и вычитания. Модель снабжена универсальным наконечником для измерений от угла, плоскости или кромки. Еще одно удобное и полезное свойство - функция непрерывного измерения, позволяющая отображать высоты или расстояния до стены во время работы с инструментом. Функция «Непрерывное измерение» позволяет перемещать прибор по отношению к цели, причем результат будет обновляться каждые 0,5 с.


Полезные советы.

Несмотря на безопасность инфракрасных лазеров включенный дальномер категорически запрещается направлять на людей - это может привести к травмам сетчатки глаза, особенно на близком расстоянии. Чтобы избежать попадания лазерного луча в глаза, при работе можно использовать специальные защитные очки.

При ярком солнечном свете лазерную точку на расстоянии больше 10 м может быть не видно. Свет солнца затрудняет визуализацию лазерной точки при наведении на цель. Помощь в обнаружении светового пятна от лазера могут оказать специальные очки с красным светофильтром. Однако, такие очки актуальны лишь при измерениях на малых дистанциях. На больших расстояниях рекомендуется пользоваться отражающей пластиной.

Если дальномер планируется использовать вне помещения и этот прибор не содержит встроенного визира, желательно приобрести оптический визир (отражающую пластину) отдельно. Она поможет визуализировать лазерную точку.

Когда дальномер недостаточно жестко установлен на поверхности или измерения проводятся «с руки», точность измерений снижается. Для хорошей фиксации прибора рекомендуется использовать штатив. Эта рекомендация особенно актуальна при измерении больших расстояний.

Компания «Тераинвест» предлагает возможность купить строительные лазерные дальномеры - современные измерительные приборы, которые позволяют с высокой точностью определить расстояние между заданными поверхностями. Это даёт возможность легко и быстро выполнять необходимые замеры, получать результат высокой точности, полностью заменяя рулетку как средство измерений. В итоге будут получены данные, погрешность которых измеряется в миллиметрах.

На сегодня дальномер лазерный - наиболее простой в использовании, удобный и точный прибор, который используется для проведения измерений в строительстве. Его использование актуально как для промышленного, так и для бытового применения. Конструктивно он включает в себя передающий и приёмный блок с микропроцессором (последний выполняет функции обработки полученных данных, их отображения, запоминания).

Принцип работы лазерного прибора для измерения расстояния состоит в направлении лазерного луча на заданный оператором предмет, который в свою очередь отразит его и будет улавливаться приёмным блоком. Расстояние будет определено исходя из времени прохождения луча, при этом точность полученных данных будет зависеть от плотности воздуха и скорости звука.

Как выбрать лазерный строительный дальномер

На смену классическому прибору для измерения расстояний - рулетке - пришел строительный лазерный дальномер, позволяющий измерять расстояния до 200 метров включительно с погрешностью до 1 мм.
Данный прибор позволяет измерять расстояния как на открытой местности, так и в закрытых помещениях, в том числе труднопроходимых и труднодоступных, при этом не теряя в точности измерений. Это делает его необходимым элементом любого стоительства или реконструкции помещений и зданий.
Все измерения расстояния строительным лазерным дальномером выполняются очень быстро и без приложения практически каких-либо усилий со стороны пользователя.
Чтобы правильно выбрать дальномер, вам необходимо определиться:

  • для каких целей необходимо прибор;
  • в каких условиях он будет использоваться чаще всего;
  • с функционалом прибора: часть дальномеров оснащены дополнительными функциями;
  • со штативом - при некоторых видах работ он может понадобиться.

У нас вы сможете купить лазерный дальномер по выгодным ценам в любое удобное время. Звоните!







2024 © gtavrl.ru.