Высокая частота озу. Скорость оперативной памяти: мифы и факты


В данном исследовании мы попробуем найти ответ на следующий вопрос - что важнее для достижения максимальной производительности компьютера, высокая частота оперативной памяти или же ее низкие тайминги. А помогут нам в этом два комплекта оперативной памяти производства Super Talent. Давайте посмотрим, как выглядят модули памяти внешне, и какими характеристиками обладают.

⇡ Super Talent X58

Данный комплект производитель "посвятил" платформе Intel X58, о чем свидетельствует надпись на наклейке. Однако здесь сразу же возникает несколько вопросов. Как всем хорошо известно, для достижения максимальной производительности на платформе Intel X58 настоятельно рекомендуется использовать трехканальный режим работы оперативной памяти. Несмотря на это, данный комплект памяти Super Talent состоит лишь из двух модулей. Конечно, у ортодоксальных сборщиков систем такой подход может вызвать недоумение, однако рациональное зерно в этом все же есть. Дело в том, что сегмент топовых платформ относительно невелик, и большинство персональных компьютеров используют оперативную память в двухканальном режиме. В этой связи покупка комплекта из трех модулей памяти обычному пользователю может показаться неоправданной, а если необходимо действительно много оперативной памяти, можно приобрести три комплекта по два модуля в каждом. Производитель указывает, что память Super Talent WA1600UB2G6 может работать на частоте 1600 МГц DDR при таймингах 6-7-6-18. Теперь давайте посмотрим, какая информация зашита в SPD профиле этих модулей.

И опять наблюдается некоторое несоответствие реальных и заявленных характеристик. Максимальный профиль JEDEC предполагает работу модулей на частоте 1333 МГц DDR при таймингах 9-9-9-24. Впрочем, присутствует расширенный профиль XMP, частота которого совпадает с заявленной - 800 МГц (1600 МГц DDR), но тайминги несколько отличаются, причем в худшую сторону - 6-8-6-20, вместо 6-7-6-18, которые указаны на наклейке. Тем не менее, данный комплект оперативной памяти без проблем работал в заявленном режиме - 1600 МГц DDR при таймингах 6-7-6-18 и напряжении 1,65 В. Что касается разгона, то более высокие частоты модулям не покорились, несмотря на установку повышенных таймингов и увеличение напряжения питания. Более того, при увеличении напряжения Vmem до уровня 1,9 В наблюдалась нестабильность работы и в исходном режиме. К сожалению, радиаторы очень прочно приклеены к чипам памяти, поэтому мы не рискнули их снимать, опасаясь повредить модули памяти. А жаль, тип используемых микросхем мог бы пролить свет на такое поведение модулей.

⇡ Super Talent P55

Второй комплект оперативной памяти, который мы рассмотрим сегодня, производитель позиционирует как решение для платформы Intel P55. Модули оснащены низкопрофильными радиаторами черного цвета. Максимальный заявленный режим предполагает работу данных модулей на частоте 2000 МГц DDR при таймингах 9-9-9-24 и напряжении 1,65 В. Теперь посмотрим на зашитые в SPD профили.

Наиболее производительный профиль JEDEC предполагает работу модулей на частоте 800 МГц (1600 МГц DDR) при таймингах 9-9-9-24 и напряжении 1,5 В, а профили XMP в данном случае отсутствуют. Что касается разгона, то при небольшом повышении таймингов данные модули памяти оказались способны работать на частоте 2400 МГц DDR, о чем свидетельствует скриншот ниже.

Более того, система загружалась и при частоте модулей 2600 МГц DDR, однако запуск тестовых приложений приводил к зависанию или перезагрузке. Как и в случае с предыдущим комплектом памяти Super Talent, данные модули никак не реагировали на повышение напряжения питания. Как оказалось, лучшему разгону памяти и стабильности работы системы более способствовало увеличение напряжения контроллера памяти, встроенного в процессор. Впрочем, поиск максимально возможных частот и параметров, при которых достигается стабильность работы в таких экстремальных режимах, оставим энтузиастам. Далее мы сосредоточимся на изучении следующего вопроса - в какой степени частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. В частности, мы попробуем выяснить, что лучше - установить скоростную оперативную память, работающую с высокими таймингами, или же предпочтительнее использовать как можно более низкие тайминги, пусть и не при максимальных рабочих частотах.

⇡ Условия тестирования

Тестирование проводилось на стенде следующей конфигурации. Во всех тестах процессор работал на частоте 3,2 ГГц, причины этого будут объяснены ниже, а мощная видеокарта была необходима для тестов в игре Crysis.

Как уже говорилось выше, мы попробуем выяснить, как частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. Конечно, данные параметры можно просто задать в BIOS и провести тесты. Но, как оказалось, при частоте Bclk равной 133 МГц, диапазон рабочих частот оперативной памяти в использованной нами материнской плате составляет 800 - 1600 МГЦ DDR. Этого оказывается недостаточно, ведь один из рассматриваемых сегодня комплектов памяти Super Talent поддерживает режим DDR3-2000. Да и вообще, скоростных модулей памяти выпускается все больше, производители уверяют нас в их небывалой производительности, так что выяснить их реальную производительность определенно не помешает. Для того, чтобы установить частоту памяти, скажем, 2000 МГц DDR, необходимо увеличить частоту шины Bclk. Однако при этом изменятся частоты как ядра процессора, так и его кэш-памяти третьего уровня, которая работает с той же частотой, что и шина QPI. Разумеется, сравнивать результаты, полученные в таких разных условиях, некорректно. Кроме того, степень влияния частоты CPU на результаты тестирования может оказаться куда значительнее таймингов и частоты оперативной памяти. Возникает вопрос - нельзя ли как-то обойти эту проблему? Что касается частоты процессора, то в некоторых пределах ее можно изменять с помощью множителя. Однако при этом желательно выбирать такое значение частоты bclk, чтобы итоговая частота оперативной памяти была равна одному из стандартных значений 1333, 1600 или 2000. Как известно, в настоящее время базовая частота bclk в процессорах Intel Nehalem равна 133.3 МГц. Давайте посмотрим, какова будет частота оперативной памяти при разных значениях частоты шины bclk с учетом множителей, которые может выставить используемая нами материнская плата. Результаты приведены в таблице ниже.

Частота bclk, МГц
133.(3) 150 166.(6) 183.(3) 200
Множитель памяти Частота оперативной памяти, МГц DDR
6 800 900 1000 1100 1200
8 1066 1200 1333 1466 1600
10 1333 1500 1667 1833 2000
12 1600 1800 2000 2200 2400

Как видно из таблицы, при частоте bclk равной 166 МГц, для оперативной памяти можно получить частоты 1333 и 2000 МГц. Если частота bclk равна 200 МГц, то получаем совпадение частот оперативки при 1600 МГц, а также требуемые 2000 МГц. В остальных случаях совпадений со стандартными частотами памяти не наблюдается. Так какую же частоту bclk в итоге предпочесть - 166 или 200 МГц? Ответ на этот вопрос подскажет следующая таблица. Здесь приведены значения частоты CPU, в зависимости от множителя и частоты bclk. Для оценки влияния таймингов нам необходимы не только одинаковые частоты памяти, но и CPU, чтобы это не влияло на получаемые результаты.

Частота bclk, МГц
Множитель CPU 133.(3) 150.0 166.(6) 183.(3) 200.0
9 1200 1350 1500 1647 1800
10 1333 1500 1667 1830 2000
11 1467 1650 1833 2013 2200
12 1600 1800 2000 2196 2400
13 1733 1950 2167 2379 2600
14 1867 2100 2333 2562 2800
15 2000 2250 2500 2745 3000
16 2133 2400 2667 2928 3200
17 2267 2550 2833 3111 3400
18 2400 2700 3000 3294 3600
19 2533 2850 3167 3477 3800
20 2667 3000 3333 3660 4000
21 2800 3150 3500 3843 4200
22 2933 3300 3667 4026 4400
23 3067 3450 3833 4209 4600
24 3200 3600 4000 4392 4800

В качестве отправной точки мы брали максимальную частоту процессора (3200 МГц), которую он может показать при базовой частоте bclk равной 133 МГц. Из таблицы видно, что в данных условиях только при частоте bclk=200 МГц можно получить точно такую же частоту CPU. Остальные частоты хоть и близки к 3200 МГц, но не точно равны ей. Конечно, в качестве исходной можно было взять частоту CPU и поменьше, скажем - 2000 МГц, тогда можно было бы получить корректные результаты при всех трех значениях шины bclk - 133, 166 и 200 МГц. Тем не менее, мы отказались от этого варианта. И вот почему. Во-первых, настольных процессоров Intel c архитектурой Nehalem с такой частотой нет, и вряд ли они появятся. Во-вторых, снижение частоты CPU более чем в 1,5 раза может привести к тому, что он станет ограничивающим фактором, и разница в результатах практически не будет зависеть от режима работы оперативной памяти. Собственно, первые прикидки именно это и показывали. В-третьих, вряд ли тот пользователь, который покупает заведомо слабый и дешевый процессор, будет сильно озабочен вопросом выбора дорогой скоростной оперативной памяти. Итак, мы будем тестировать при значениях базовой частоты bclk - 133 и 200 МГц. Частота CPU в обоих случаях одинакова и равна 3200 МГц. Ниже приведены скриншоты утилиты CPU-Z в данных режимах.

Если вы обратили внимание, частота QPI-Link зависит от частоты bclk и, соответственно, они отличаются в 1,5 раза. Это, кстати, позволит выяснить, как влияет частота кэш-памяти третьего уровня в процессорах Nehalem на общую производительность. Итак, приступим к тестированию.

Интересный факт: скорее всего, если Вас спросят о том, на что влияет частота оперативной памяти, Вы подумаете о тактовой частоте. Соответственно, Вы ответите, что она влияет на количество тактов и на скорость.

Это правильно лишь отчасти и сейчас мы во всем разберемся.

1. Страничка теории

Сразу стоит уточнить, что когда говорят о частоте оперативной памяти, а не процессора, то имеется в виду частота передачи данных. Она соответствует определенным значениям тактовой частоты.

Всего существует четыре типа частоты ОП:

  • DDR. Бывает 200, 266, 333 и 400 МГц (МТ/с). Соответствует значениям тактовой частоты 100, 133, 166 и 200 МГц соответственно.
  • DDR2. Бывает 400, 533, 667, 800 и 1066 МГц (МТ/с). Соответствует 200, 266, 333, 400 и 533 МГц тактовой частоты.
  • DDR3. Бывает 800, 1066, 1333, 1600, 1800, 2000, 2133, 2200 и 2400 МГц (МТ/с). Соответствует 400, 533, 667, 800, 1800, 1000, 1066, 1100 и 1200 МГц тактовой частоты.
  • DDR4. Бывает 2133, 2400, 2666, 2800, 3000, 3200 и 3333 МГц (МТ/с). Соответствует 1062, 1200, 1333, 1400, 1500, 1600 и 2666 МГц.

Несложно догадаться, что такое деление связано с поколениями. То есть выходили новые, более мощные модули оперативной памяти с более высокой частотой, причем как самой памяти, так и тактовой. В связи с этим придумывали новые поколения.

Это интересно: DDR3 нередко оказывается менее мощным, нежели DDR2. Связано это с высокими значениями задержек. Они в языке программистов называются таймингами.

А теперь переходим к самому главному.

2. Значение частоты оперативной памяти

Если сказать просто, чем выше частота ОП, тем быстрее будет передаваться информация. Соответственно, рассматриваемое нами понятие влияет, в первую очередь, на скорость работы.

Именно поэтому частоту оперативной памяти называют Data rate или скоростью передачи данных. Это важно запомнить!

Вот другое определение, которое дает более широкое понимание: Частота передачи данных – это число операций, связанных с передачей данных, за единицу времени. В качестве единицы времени чаще всего выбирается секунда.

Поэтому вышеупомянутые цифры в МГц выражают еще и количество операций по передаче данных в секунду.

Например, если мы говорим о DDR4-2133, это означает, что такой модуль может выполнять 2133 операции каждую секунду. Обычно эти цифры пишутся на самих модулях.

Это количество выражается в так называемых трансферах (с английского это слово означает «переход»). Как и в случае с битами, здесь есть Мегатрансферы, Гигатрансферы и так далее.

Причем деление то же самое – 1024 Мегатрансфера равны одному Гигатрансферу. Поэтому в списке, приведенном выше, рядом с обозначением «МГц» стоит «МТ/с» в скобках. Это и означает «Мегатрансфер в секунду».

Да и вообще, правильнее будет выражать данное значение именно в МТ/с или же ГТ/с (Гигатрансфер в секунду).

Если у Вас возникают вопросы, пишите их в комментариях ниже.

Существует очень простой метод перевода количества операций в секунду в тактовую частоту, то есть из МТ/с в МГц. Необходимо первое поделить на два, чтобы получилось второе.

То есть если мы, например, имеем дело с модулем DDR4-2400, то, чтобы получить тактовую частоту, необходимо 2400 поделить на 2. Получится 1200 МГц. Это, кстати, тоже можно было достаточно легко понять, если внимательно смотреть на тот список.

Запомните: Частота оперативной памяти – это количество выполняемых ею операций в секунду. Ее значение равно значению тактовой умноженной на 2. Этот параметр влияет на скорость работы ОП. Это главное.

3. Что еще важно понимать

Существует достаточно много заблуждений, связанных с рассматриваемым нами понятием.

Сейчас мы постараемся развеять некоторые их них. Вот список заблуждений:

  • Если поставить два модуля оперативной памяти, скорость работы компьютера увеличится. Это не так по той простой причине, что операционная система будет работать с тем модулем, который менее мощный. Почему это так, толком непонятно, но факт остается фактом. Поэтому лучше ставить один модуль, но мощный, а слабый убирать до лучших времен.
  • Даже если будет два модуля, система сможет с ними справиться. На самом деле, использование двух ОП очень опасно, так как влечет за собой ошибки в системе и даже критические прекращения работы компьютера. Так что лучше вообще отказаться от такой идеи.
  • Частота материнской платы никак не влияет на частоту оперативной памяти. Это вовсе не так, если частота материнки меньше того, что может выдавать ОП, память будет работать не на максимуме своих возможностей. То есть в ее мощности попросту не будет никакого смысла. Поэтому очень важно покупать оперативную память с такой частотой, которая не будет превышать максимальную в материнской платы.

Также при покупке обращайте внимание на значение таймингов.

Помните: чем меньше тайминг, тем быстрее работает компьютер.

Сравните несколько вариантов и выберете лучший в этом отношении.

Успехов в покупках и использовании оперативной памяти!

Частота оперативной памяти – чем выше частота, тем быстрее будет передана информация на обработку и тем выше будет производительность компьютера. Когда говорят о частоте оперативной памяти, имеют ввиду частоту передачи данных, а не тактовую частоту.

  1. DDR — 200/266/333/400 МГц (тактовые частота 100/133/166/200 МГц).
    DDR2 — 400/533/667/800/1066 МГц (200/266/333/400/533 МГц тактовая частота).
  2. DDR3 — 800/1066/1333/1600/1800/2000/2133/2200/2400 Мгц (400/533/667/800/1800/1000/1066/1100/1200 МГц тактовая частота). Но из-за высоких значений таймингов (задержек) одинаковые по частоте модули памяти проигрывают в производительности DDR2.
  3. DDR4 — 2133/2400/2666/2800/3000/3200/3333.

Частота передачи данных

Частота передачи данных (правильно ее называть — скорость передачи данных, Data rate) — количество операция по передачи данных в секунду через выбранный канал. Измеряется в гигатрансферах (GT/s) или мегатрансферах (MT/s). Для DDR3-1333 скорость передачи данных будет 1333 MT/s.

Нужно понимать, что это не тактовая частота. Реальной частотой будет половина от указанной, DDR (Double Data Rate) – это удвоенная скорость передачи данных. Поэтому память DDR-400 работает на частоте 200 МГц, DDR2-800 на частоте 400 МГц, а DDR3-1333 на 666 МГц.

Частота оперативной памяти, указанная на плате, это максимальная частота, с которой она сможет работать. Если установить 2 платы DDR3-2400 и DDR3-1333, то система будет работать на максимальной частоте самой слабой платы, т.е. на 1333. Таким образом, пропускная способность понизится, но снижение пропускной способности не единственная проблема, могут появится ошибки при загрузке операционной системе и критических ошибках в ходе работы. Если вы собрались покупать оперативную память, нужно учитывать частоту на которой она может работать. Эта частота должна соответствовать частоте, поддерживаемой материнской платой.

Максимальная скорость передачи данных

Второй параметр (на фото PC3-10666) — это максимальная скорость передачи данных измеряемая в Mb/s. Для DDR3-1333 PC3-10666 максимальная скорость передачи данных — 10,664 MB/s.

Тайминги и частота оперативной памяти

Многие материнские платы, при установке на них модулей памяти, устанавливают для них не максимальную тактовую частоту. Одна из причин – это отсутствие прироста производительности при повышении тактовой частоты, ведь при повышении частоты повышаются рабочие тайминги. Конечно, это может повысить производительность в некоторых приложениях, но и понизить в других, а может и вообще никак не повлиять на приложения, которые не зависят от задержек памяти или от пропускной способности.

Тайминг определяет время задержки памяти. Для примера, параметр CAS Latency (CL, или время доступа) определяет сколько тактовых циклов модуля памяти приведет к задержке в возврате данных, запрашиваемых процессором. Оперативная память с CL 9 задержит девять тактовых циклов, чтобы передать запрашиваемые данные, а память с CL 7 задержит семь тактовых циклов, чтобы передать их. Обе оперативки могут иметь одинаковые параметры частот и скорости передачи данных, но вторая оперативка будет передавать данные быстрее, чем первая. Эта проблема известна как «латентность».

Чем меньше параметр тайминга — тем быстрее память.

Для примера. Модуль памяти Corsair установленный на материнскую плату M4A79 Deluxe будет иметь такие тайминги: 5-5-5-18. Если увеличить тактовую частоту памяти до DDR2-1066, тайминги увеличатся и будут иметь следующие значения 5-7-7-24.

Модуль памяти Qimonda при работе на тактовой частоте DDR3-1066 имеет рабочие тайминги 7-7-7-20, при увеличения рабочей частоты до DDR3-1333 плата устанавливает тайминги 9-9-9-25. Как правило, тайминги прописаны в SPD и для разных модулей могут отличаться.

Процессор компьютера хранит в оперативной памяти часть данных, которые нуждаются в обработке. Чем выше показатели и емкость оперативки, тем быстрее возможно выполнение различных задач, поставленных пользователем. Особенно критичным показателем оперативной памяти является ее объем. Важной характеристикой планки является частота записи или считывания данных.

Чем выше объем памяти, тем больше процессов может в ней храниться и тем быстрее будет доступ к хранящейся информации со стороны операционной системы и процессора компьютера.

Выбор планки

Перед произведением выбора необходимо узнать, какой тип планки установлен в компьютере. Большинство современных систем используют для работы DDR3 платы, которые выигрывают как в быстродействии, так и в стабильности работы у большинства других типов памяти. Еще не совсем популярность DDR2, правда большинство современных производителей отдает свое предпочтение в сторону DDR3. Тип планки может быть определен в соответствии с надписью на самой оперативке или по документации, которая шла в одном комплекте с компьютером.

При выборе объема оперативной памяти также следует подбирать наиболее оптимальное значение. Если вы используете компьютер для запуска офисных приложений и программ, увеличение оперативной памяти до показателя более чем 4 ГБ в сумме является бессмысленным. Для игровой системы подойдет объем памяти в 8 ГБ.

Планка оперативной памяти должна соответствовать используемому оборудованию, иначе значительного увеличения производительности добиться не удастся.

Частота работы приобретаемой планки также является показателем, который влияет на скорость работы компьютера. Важно, чтобы устанавливаемые модули имели одинаковую частоту. Например, если в компьютере будут установлены две платы с частотой по 1333 и 1866 МГц, итоговая частота работы обеих планок будет равняться 1333 МГц, т.е. второй модуль будет работать на меньшей мощности.

Увеличить производительность в играх также поможет двухканальный принцип работы оперативной памяти, который заключается в установке двух плат оперативной памяти меньшего объема в сторону более высокой скорости считывания информации. Например, для компьютера лучше установить 4 ГБ оперативки из 2-х планок по 2 ГБ. Производительность такой системы будет выше, чем у устройства только с одним модулем на 4 ГБ. Таким образом удастся добиться большей производительности системы, т.к. одна планка большего размера работает значительно медленней, чем память меньшего объема.

Производительность оперативной памяти | Может ли память ограничивать частоту кадров в играх?

С некоторой периодичностью мы публикуем материалы, в которых изучаем, как работа популярных приложений зависит от скорости работы обычной оперативной памяти. Сегодня под словом "обычной" мы подразумеваем DDR3-1600.

Поэкспериментировав с настройками памяти в одной из игр, мы заметили заметную прибавку в скорости работы. После обзора "FX против Core i7: является ли CPU в играх бутылочным горлышком?" у нас осталась готовая тестовая система, поэтому сейчас - самый подходящий момент, чтобы сделать ещё одну версию анализа игр, но с большим упором на память.

Сказанное нами шесть лет назад по поводу частоты и таймингов актуально и сегодня. Задержка CAS по-прежнему измеряется в циклах, циклы DDR3-2133 по-прежнему в два раза быстрее, чем DDR3-1066, а у DDR3-2133 CAS 10 осталось такое же время отклика, как у DDR3-1066 CAS 5. Более того, DDR3-2133 также предлагает в два раза больше пропускной способности, чем DDR3-1066.

К счастью, если бюджет ограничен, не обязательно зацикливаться на модулях DDR3-1066, а для повышения пропускной способности можно уменьшить значение CAS, которое для большинства модулей легко спустится ниже базового значения 10. Кроме того, дешёвая память DDR3-1600 и средняя по цене DDR3-2133 CAS 9 теперь стоит почти столько же.

Мы вооружены разогнанным CPU и двумя видеокартами Radeon HD 7970 в CrossFire, которые помогут избежать узких мест. Итак, каким образом изменения в конфигурации памяти повлияют на производительность в играх?

Производительность оперативной памяти | Конфигурация и тесты

Тестовая конфигурация
CPU Intel Core i7-3960X (Sandy Bridge-E): 6ядер/12потоков 3,3 ГГц, 12 Мбайт общего кэша L3, LGA 2011 разгон до 4,4 ГГц (44 x 100 МГц) при напряжении ядра 1,325 В
Материнская плата Asus P9X79, BIOS 3203 (11/26/2012)
Кулер CPU Coolink Corator DS 120 мм Tower, термопаста w/Zalman ZM-STG1
Сеть Встроенный контроллер Gigabit LAN
Память G,Skill F3-17600CL9Q-16GBXLD (16 Гбайт) DDR3-2200 CAS 9-11-9-36 1,65 В
Видеокарта 2 x MSI R7970-2PMD3GD5/OC: GPU 1010 МГц, GDDR5-5500
Накопитель Mushkin Chronos Deluxe DX 240 Гбайт, SATA 6 Гбит/с SSD
Питание Seasonic X760 SS-760KM: ATX12V v2,3, EPS12V, 80 PLUS Gold
ПО и драйвера
Операционная система Microsoft Windows 8 Professional RTM x64
Графический драйвер AMD Catalyst 12.10

Платформа Intel LGA 2011 обладает достаточной гибкостью для тестов как двухканальной, так и четырёхканальной конфигурации памяти. ASUS P9X79 и разогнанный Core i7-3760X со степпингом C2 мы взяли из предыдущих обзоров.

Из-за базовой частоты в 100 МГц, системная плата P9X79 настроила старые модули G.Skill DDR3-2200 CAS 9 в режим DDR3-2133 CAS 9-11-9-28. Для тестов DDR3-1600 C9 мы использовали такую же память и тайминги. В варианте с пониженными таймингами используется эта же память в режиме DDR3-1600 CAS 7-9-7-21.

Если у вас есть пара карт Radeon HD 7970, вполне вероятно, что вы играете на разрешении 2560x1600 пикселей или больше. Мы начали с разрешения 1920x1080 пикселей и повышали его до 5760x1080 пикселей.

Конфигурация тестов (3D-игры)
Aliens vs. Predator Использование AvP Tool v.1.03, SSAO/тесселяция/тени вкл.
Тестовая конфигурация 1: качество текстур High, без AA, 4x AF
Тестовая конфигурация 2: качество текстур Very High, 4x AA, 16x AF
Battlefield 3 Режим кампании, "Going Hunting" 90-секунд Fraps
Тестовая конфигурация 1: качество Medium (без AA, 4x AF)
Тестовая конфигурация 2: качество Ultra (4x AA, 16x AF)
F1 2012 Версия Steam, встроенный бенчмарк
Тестовая конфигурация 1: качество High, без AA
Тестовая конфигурация 2: качество Ultra, 8x AA
Elder Scrolls V: Skyrim Обновление 1.7, Celedon Aethirborn уровень 6, 25-секунд Fraps
Тестовая конфигурация 1: DX11, уровень детализации High без AA, 8x AF, FXAA вкл.
Тестовая конфигурация 2: DX11, уровень детализации Ultra, 8x AA, 16x AF, FXAA вкл.
Metro 2033 Полная версия, встроенный бенчмарк, сцена "Frontline"
Тестовая конфигурация 1: DX11, High, AAA, 4x AF, без PhysX, без DoF
Тестовая конфигурация 2: DX11, Very High, 4x AA, 16x AF, без PhysX, DoF вкл.

Производительность оперативной памяти | Результаты тестов

Хотя 3DMark и не отражает реальную производительность в играх, он всё же позволяет легко сравнить показатели различных конфигураций. Также он показывает, что в тесте Physics с уменьшением скорости передачи данных памяти результат ухудшается. В этом есть смысл, поскольку пакет Physics даёт нагрузку на все вычислительные ядра. Нехватка данных для них – это верный путь снижения производительности.


В игре Aliens vs. Predator разница между различными конфигурациями памяти минимальна, даже на разрешении 2560x1600 пикселей частота кадров, похоже, сдерживается мощной комбинацией двух GPU Radeon HD 7970.


Результаты F1 и Metro 2033

Результаты F1 2012 наполняют смыслом всю нашу сегодняшнюю затею. Каждый шаг в увеличении пропускной способности памяти даёт заметный прирост скорости работы.


А вот Metro 2033 наоборот, не демонстрирует никакой значимой разницы между нашими четырьмя конфигурациями. Чуть ниже мы посмотрим на детальный разброс FPS в этой игре во время тестовых прогонов.


Metro 2033, секунда за секундой

Metro 2033 даёт нам весьма интересный посекундный график частоты кадров. Мы решили не включать графики каждого теста, поскольку это только засорит страницу. Вместо этого, мы сравнили самые медленные и самые быстрые конфигурации памяти.


Когда в качестве минимальной средней частоты кадров мы выбираем уровень 40 FPS, на самом деле мы отслеживаем, чтобы частота кадров не опускалась ниже 20 FPS. Наши видеокарты могут удержать такой уровень на настройках детализации Very High даже с памятью, установленной в режим DDR3-1600 CAS 9.


К сожалению, при разрешении 4800x900 пикселей уровень производительности на настройках Very High назвать нормальным никак нельзя. Чтобы игра работала на 5760x1080 пикселей, нам пришлось понизить детализацию.


При появлении в Metro 2033 дыма или тумана производительность существенно падает. Хорошо, что эти проседания во время геймплея на разрешении 5760x1080 пикселей с отключённым MSAA незаметны. Однако нас беспокоит, что с четырёхканальной конфигурацией впадины на графике ниже, ведь с увеличением пропускной способности ожидаешь уменьшения минимального порога, но никак не увеличения.

Battlefield 3 и Skyrim

Колебания производительности в Battlefield 3 слишком малы, чтобы отнести их к различиям в конфигурации. В таком случае, дешёвая память DDR3-1600 занимает здесь более выгодную позицию.


Elder Scrolls V: Skyrim выигрывает от более быстрой RAM, однако с увеличением разрешения и, соответственно, графической нагрузки, преимущество уменьшается.


Battlefield 3, кадр за кадром

Время рендеринга одного кадра более показательно, чем среднее количество кадров, поскольку именно отдельные медленные кадры разрушают погружение в игру, в результаты вы теряете концентрацию, врезаетесь в стену, либо вас убивают. Когда рекомендуемая нами для игр средняя частота кадров составляет 40 FPS, а минимальная 20, очень важно, чтобы ни один кадр не рендерился более 50 миллисекунд. В данном тесте чем ниже значения, тем лучше (быстрее).






Часто при запуске игра может идти с рывками, но в данном случае рывки совпадают с включением Fraps. К счастью, ни в одном из прогонов скачки не превышают порога 50 мс.

Skyrim, кадр за кадром

Длительность кадра в Elder Scrolls V: Skyrim превысила 50 мс лишь на разрешении 5760x1080 пикселей, при котором у всех конфигураций наблюдаются проблемы.






Хотя средняя частота кадров при настройках качества Ultra в Skyrim падает, скачки длительности кадра понижаются. В течение всего теста мы заметили только один долгий кадр на всех конфигурациях, что совсем не страшно.

Энергопотребление, средняя производительность и эффективность

Поскольку мы не используем разгон, то смогли понизить напряжение модулей, работающих в режиме DDR3-1600 C9 до 1,50 В и, соответственно, понизить общее энергопотребление системы на несколько ватт.

К сожалению, пониженная скорость передачи данных также повлияла на показатели средней производительности.

Intel XMP (Extreme Memory Profiles) – это настройки для автоматического разгона памяти. Поскольку более быстрая RAM повышает среднюю производительность в играх, с разгоном памяти эффективность системы увеличивается.

Производительность оперативной памяти | Пропускная способность и понижение таймингов иногда кое-что значат

Два из пяти игровых тестов: F1 2012 и The Elder Scrolls V: Skyrim продемонстрировали, что пропускная способность и тайминги могут существенно повлиять на частоту кадров в играх. Оба параметра оказываются одинаково важны. Такие результаты можно было предугадать, ведь эти две игры меньше ограничены графической подсистемой, чем другие.

С другой стороны, в Metro 2033, Battlefield 3 и Aliens vs. Predator мы вообще не заметили разницы. Производительность первых двух сильнее всего связана со скоростью графического адаптера (или адаптеров), установленного в системе, что объясняет, почему полоса пропускания и тайминги памяти не оказали существенного влияния. Появление долгих кадров, вызывающих проседания FPS, похоже, больше зависит от графической части системы, нежели от задержек или пропускной способности оперативной памяти.

Если говорить об играх, на производительность которых различия в памяти всё же влияют, то стоит отметить, что разницу во время геймплея можно заметить лишь в одной игре. Но даже в этом случае средняя частота кадров настолько высока, что ваши глаза (или мониторы) должны быть быстрее наших примерно в два раза, чтобы ощутить прирост от быстрой памяти на практике. В данном случае мы говорим об игре F1 2012, которая, в среднем, набирает более 100 FPS и всё равно масштабируется при ускорении работы памяти. На самом деле, такой уровень FPS важно поддерживать, если вы используете технологии AMD HD3D и Eyefinity одновременно, поскольку частота кадров для мониторов 60 Гц делится надвое. Если у вас нет трёх стереоскопических мониторов, большой прирост производительности к высокой частоте кадров нужен разве что для хвастовства.







2024 © gtavrl.ru.