Виртуальный роутер cisco. Обзор эмуляторов и симуляторов оборудования Cisco


Многоуровневый виртуальный полигон на персональном компьютере

Статья:

В настоящее время технологии виртуализации являются неотъемлемой составляющей IT-мира. Помимо промышленного применения технологии виртуальных машин, позволяющей сократить совокупную стоимость владения IT-инфраструктурой, о чем уже несколько лет пишут все кому не лень, технология также широко используется для изучения или тестирования системного, сетевого и прикладного программного обеспечения.

В большинстве публикаций чаще всего рассматривается виртуализация первого уровня. На одном или нескольких физических компьютерах, связанных реальными сетями, на базе некоторого ПО виртуализации функционирует множество виртуальных машин (VM), связанных виртуальными сетями (также эмулируемых при помощи ПО виртуализации), которые при необходимости связываются с реальными сетями через сетевые адаптеры физических компьютеров. Иными словами чаще всего рассматривается уровень реальных устройств и один уровень виртуальных объектов (обычно машин, на базе которых функционируют те или иные ОС). Правда, если быть более точным, в примерах, рассматриваемых в публикациях, неявно присутствуют объекты второго или более глубоких уровней виртуализации, но авторы практически никогда не акцентируют на этом свое внимание.

Рассмотрим следующую сеть, которая придумана исключительно ради примера, и сама по себе особой практической ценности в себе не несет (каждый может выбрать для себя любой другой пример, в том числе из реальной практики). Имеются две компании, у каждой есть головной офис с сервером в одной географической точке, и филиал с рабочей станцией в другой географической точке. Географические точки разделяет некоторый MPLS-backbone на базе маршрутизаторов Cisco. Для каждой компании в отдельности организован Layer 2 VPN между головным офисом и филиалом посредством технологии Ethernet over MPLS (EoMPLS) для возможности «прозрачного» взаимодействия на канальном уровне (Ethernet) между рабочей станцией и сервером через MPLS-backbone.
Ниже показана физическая структура рассматриваемой сети.

Также ниже показана логическая структура взаимодействия рабочих станций и серверов рассматриваемой сети. В каждой из компаний рабочая станция и сервер могут «прозрачно» взаимодействовать друг с другом, и изолированы от рабочей станции и сервера другой компании.

Задача заключается в том, что требуется эту сеть смоделировать и протестировать, в частности взаимодействие рабочих станций c серверами через EoMPLS среду, и все это необходимо выполнить, располагая одним единственным персональным компьютером. Достаточно знакомая ситуация для большинства специалистов по системным и сетевым технологиям, перед которыми возникает аналогичная задача и у которых, как правило, нет под рукой ни лишних компьютеров, ни, тем более уж, маршрутизаторов Cisco.

Что же, реальные компьютеры легко заменяются виртуальными машинами, создаваемых и запускаемых при помощи того или иного программного обеспечения, реализующих технологию виртуальных машин, например, того же VMware Workstation 6.0 (в этой статье автор рассматривает многоуровневую виртуализацию на примере именно данного программного обеспечения). Для моделирования маршрутизаторов Cisco c поддержкой EoMPLS хорошо подходит популярный симулятор Dynamips (а также удобная и наглядная графическая среда к нему - GNS3). Однако, возникает проблема: можно отдельно смоделировать виртуальные машины с установленными на них «реальными» полнофункциональными ОС MS Windows, и отдельно - маршрутизаторы Cisco c «реальными» полнофункциональными ОС Cisco IOS, но как увязать между собой две среды моделирования по сети?

Тем не менее, выход из ситуации есть. В VMware Workstation можно привязывать виртуальные коммутаторы VMnet к сетевым адаптерам физического компьютера (утилитой Virtual Network Editor), а виртуальные сетевые адаптеры виртуальных машин, соответственно, привязывать к соответствующим виртуальным коммутаторам VMnet (при конфигурировании виртуальной машины). Ниже показан пример такой привязки посредством виртуального коммутатора VMnet0:

В свою очередь, в среде GNS3 на базе Dynamips имеется объект типа «Cloud», который можно также проецировать на сетевые адаптеры физического компьютера. После этого объект можно подсоединять к сетевым интерфейсам других объектов среды GNS3, в том числе к интерфейсам маршрутизаторов Cisco. Следует особо отметить, что объект типа «Cloud» по сути своей не является каким-либо полноценным виртуальным устройством - это все лишь виртуальная «точка стыка» (как разъем на коммутационной панели), которую с сетевой точки зрения можно на что-нибудь спроецировать, например, на сетевой адаптер компьютера. Забегая вперед, также отметим, что объекты «Computer» и «Server», используемые в среде GNS3 также являются объектами типа «Cloud» (простыми «точками стыка» с соответствующими иконками для наглядности), а вовсе не какими-то эмуляциями компьютера или сервера программными средствами, как это, например, делается в учебном симуляторе Cisco Packet Tracer.

Ниже показан пример проецирования объекта типа «Cloud» C0, соединенного с сетевым интерфейсом маршрутизатора R0 в среде GNS3, на сетевой адаптер физического компьютера:

Неопытных специалистов может смутить длинный код (идентификатор сетевого транспорта, назначаемый ОС MS Windows для сетевого адаптера) в настройках, и чтобы не запутаться в названиях сетевого подключения, названиях сетевого адаптера, MAC-адресе адаптера и его идентификаторе, можно воспользоваться встроенной в ОС MS Windows утилитой GETMAC, запускаемой с ключом V (Verbose - подробная информация):

Таким образом, через подобное «двустороннее проецирование» на канальном уровне OSI (по сути Layer 2 Bridging) на один и тот же сетевой адаптер физического компьютера виртуальные маршрутизаторы в среде GNS3 на базе Dynamips могут на Ethernet-уровне взаимодействовать с виртуальными машинами в среде VMware Workstation (это многократно проверено экспериментально). Напрямую увязать по сети коммутаторы VMnet из VMware-среды с объектами типа «Cloud» (точками стыка) из GNS3 на базе Dynamips, увы, нет возможности (по крайней мере, без применения каких-либо специальных программных средств).

Теперь возникает новая загвоздка: количество сетевых «точек соприкосновения» между VMware-средой и Dynamips-средой может быть далеко не одно, а несколько (в рассматриваемом примере их 4 - две рабочие станции и два сервера), в то время как на физическом компьютере может быть один-два или вообще ни одного сетевого адаптера. К тому же, привязанность к сетевым адаптерам физического компьютера в любом случае мысль не самая разумная с точки зрения безопасности. Наконец, мы и не особо стремимся все разместить на первом уровне виртуализации, цель данной статьи - многоуровневая виртуализация.

В этой ситуации мы прибегнем к следующей нехитрой уловке: никто нам не мешает создать еще одну вспомогательную виртуальную машину с необходимым количеством сетевых адаптеров (столько, сколько нужно точек «соприкосновения»), установить на нее ОС, и самое главное - программное обеспечение GNS3 на базе Dynamips. Потом уже в GNS3 создать, настроить и запустить требуемую для моделирования сеть на базе маршрутизаторов Cisco. Таким образом, маршрутизаторы Cisco «переезжают» на второй уровень виртуализации (на первом находится сама вспомогательная виртуальная машина). Сетевые «точки соприкосновения» будут осуществляться через соответствующие объекты типа «Cloud» (точки стыка) в GNS3 на базе Dynamips, привязанные к соответствующим сетевым адаптерам виртуальной машины CISCONET, которые, в свою очередь, привязаны к соответствующим виртуальным коммутаторам VMnet, к которым мы можем подсоединять другие виртуальные машины. В нашем примере мы будем использовать вспомогательную виртуальную машину CISCONET с 4-мя сетевыми адаптерами (VMware Workstation 6.0 поддерживает до 10 сетевых адаптеров для виртуальной машины), привязанных к соответствующим виртуальным коммутаторам VMnet.

Таким образом, мы и приходим к двум уровням виртуализации: VMware-инфраструктура внутри физического компьютера (1-й уровень виртуализации), и Dynamips-инфраструктура внутри вспомогательной виртуальной машины (2-й уровень виртуализации).

Наконец, если вспомнить, что EoMPLS - это тоже своего рода виртуализация средствами Cisco IOS, то увидим, что в рассматриваемом примере имеется еще и 3-й уровень виртуализации. На 3-м уровне виртуализации находятся виртуальное «облако» MPLS и виртуальные цепочки передачи данных (virtual circuits) поверх этого облака, которые эмулируются средствами Cisco IOS на двух маршрутизаторах Cisco.

В итоге мы получаем следующую многоуровневую схему виртуализации:

Как видно из схемы выше, компьютер экспериментатора находится на уровне реальных объектов и с сетевой точки зрения полностью изолирован от виртуальных машин и виртуальных маршрутизаторов, что вполне разумно и правильно. Первый уровень виртуализации обеспечивается программным обеспечением VMware Workstation, на этом уровне находятся виртуальные рабочие станции (WINPC1, WINPC2), виртуальные серверы (WINSRV1, WINSRV2), и вспомогательная виртуальная машина CISCONET, а также виртуальные коммутаторы VMnet3-VMnet6. Второй уровень виртуализации обеспечивается программным средством GNS3 на базе Dynamips, работающим на виртуальной машине CISCONET, на этом уровне находятся виртуальные маршрутизаторы Cisco (R1, R2), а также виртуальные коммутаторы SW1-SW4, подсоединенные к соответствующим сетевым интерфейсам маршрутизаторов (R1, R2). Сетевое взаимодействие между первым и вторым уровнем виртуализации осуществляется за счет «двустороннего проецирования» на канальном уровне OSI: виртуальные коммутаторы VMnet3-VMnet6 привязаны к соответствующим сетевым адаптерам LAN1-LAN4 вспомогательной виртуальной машины CISCONET, а соответствующие порты виртуальных коммутаторов SW1-SW4 посредством соответствующих объектов типа «Cloud» (на схеме они не показаны, поскольку по сути своей они являются простыми «точками стыка» и не более того), также привязаны к соответствующим сетевым адаптерам LAN1-LAN4 вспомогательной виртуальной машины CISCONET. Наконец, третий уровень виртуализации обеспечивается средствами ОС Cisco IOS, работающими на виртуальных маршрутизаторах, на этом уровне находятся виртуальное MPLS-облако и виртуальные цепочки (VC 111, VC 222) по технологии EoMPLS. Виртуальные цепочки EoMPLS средствами самой ОС Cisco OS проецируются на соответствующие интерфейсы виртуальных маршрутизаторов (R1, R2) и тем самым обеспечивается сетевое взаимодействие между вторым и третьим уровнем виртуализации.

Перейдем теперь непосредственно к результатам моделирования этой многоуровневой конструкции на персональном компьютере. Вот как все выглядит после создания, настройки и запуска виртуальных машин, включая CISCONET, внутри которой также создана, настроена и запущена сеть с маршрутизаторами Cisco:

В виртуальной машине CISCONET четыре сетевых адаптера: LAN1, LAN2, LAN3 и LAN4, которые привязаны к соответствующим виртуальным коммутаторам VMnet3, VMnet4, VMnet5 и VMnet6. В свою очередь, сетевой адаптер виртуальной машины WINPC1 привязан к виртуальному коммутатору VMnet3, сетевой адаптер WINPC2 - к VMnet4, сетевой адаптер WINSRV1 - к VMnet5 и сетевой адаптер WINSRV2 - к VMnet6. Так реализуется одна сторона точек «соприкосновения»: виртуальные машины WINPC1, WINPC2, WINSRV1 и WINSRV2 могут взаимодействовать с виртуальной машиной CISCONET через соответствующие сетевые адаптеры этой машины. Очень важно отметить, что какая-либо коммутация или маршрутизация между сетевыми адаптерами виртуальной машины CISCONET средствами самой ОС MS Windows на этой машине по определению должна быть запрещена. В свою очередь, на машине CISCONET запущена среда GNS на базе Dynamips, в которой работают два виртуальных маршрутизатора Cisco. Соответствующие интерфейсы маршрутизаторов подсоединены к соответствующим виртуальным коммутаторам SW1, SW2, SW3 и SW4 (не путать их с виртуальными коммутаторами VMnet), а коммутаторы, в свою очередь, подключены к соответствующим объектам PC1, PC2, SRV1 и SRV2 (не путать их с виртуальными машинами VMware c аналогичными названиями). PC1, PC2, SRV1 и SRV2 по сути являются объектами типа «Cloud» - простыми «точками стыка», спроецированными на соответствующие сетевые адаптеры LAN1, LAN2, LAN3 и LAN4 виртуальной машины CISCONET. Таким образом, реализуется вторая сторона точек «соприкосновения»: соответствующие интерфейсы маршрутизаторов также могут взаимодействовать с виртуальной машиной CISCONET через соответствующие сетевые адаптеры этой машины.

Ниже частично показано, как реализуются необходимые привязки между виртуальными коммутаторами VMnet и сетевыми адаптерами виртуальной машины CISCONET, а также между объектами PC1, PC2, SRV1 и SRV2 (точками стыка) и сетевыми адаптерами виртуальной машины CISCONET. На снимке экрана видно окно с конфигурационным файлом виртуальной машины CISCONET, на котором видны MAC-адреса сетевых адаптеров и привязка к виртуальным коммутаторам VMnet. В другом окне отображена таблица сетевых подключений виртуальной машины CISCONET и соответствующие им названия сетевых адаптеров (присвоенные в ОС MS Windows этой машины), MAC-адреса адаптеров и идентификаторы сетевого транспорта. Наконец, в третьем окне отображено привязка объекта PC1 типа «Cloud» (точки стыка) к соответствующему идентификатору сетевого транспорта виртуальной машины CISCONET.

Для того чтобы не запутаться в сетевых привязках между различными объектами на различных уровнях виртуализации, сведем их в одну наглядную таблицу:

Сеть Виртуальные машины VMware Виртуальный коммутатор VMware Сетевое подключение CISCONET MAC-адрес сетевого адаптера CISCONET Идентификатор сетевого транспорта CISCONET Объект «Cloud» в GNS3 Виртуальный коммутатор в GNS3 Виртуальный маршрутизатор Cisco и сетевой интерфейс Виртуальная цепочка EoMPLS
Уровень виртуализации 1 Уровень 2 Уровень 3
1 WINPC1 CISCONET VMnet3 LAN1 00:0c:29:25:1f:ac C0E98EFF-BFA7- 472F-A5C0-A22293E1EE26 PC1 SW1 R1: FA0/0 VC 111
2 WINPC2 CISCONET VMnet4 LAN2 00:0c:29:25:1f:b6 390F3C01-A168- 40D8-A539- 1E417F3D6E1B PC2 SW2 R1: FA0/1 VC 222
3 WINSRV1 CISCONET VMnet5 LAN3 00:0c:29:25:1f:c0 6577836B-60A3- 4891-931C- 232ED8B2F8F2 SRV1 SW3 R2: FA0/0 VC 111
4 WINSRV2 CISCONET VMnet6 LAN4 00:0c:29:25:1f:ca 7834C67F-12F2- 4559-BEF4- C170C3E0B7DC SRV2 SW4 R2: FA0/1 VC 222

Теперь перейдем к результатам тестирования. На нижеприведенном снимке экрана видно, что соответствующие рабочие станции и сервера «видят» друг друга по сети (в том числе при помощи сетевых служб, использующих широковещательные запросы) сквозь MPLS-облако, благодаря виртуальным цепочкам EoMPLS. Специалистам по сетевым технологиям также будет интересно посмотреть на таблицы MPLS-коммутации и состояние виртуальных цепочек EoMPLS на маршрутизаторах Cisco. На втором снимке экрана видно, что виртуальные цепочки (VC 111, VC 222) успешно функционируют и по ним в обе стороны передано некоторое количество байтов:

Таким образом, многоуровневая виртуализация позволяет изучать и тестировать разнообразные примеры сетевой инфраструктуры, эффективно используя вычислительные ресурсы имеющегося под рукой персонального компьютера, который на сегодняшний день нередко имеет на «борту» многоядерный процессор и оперативную память большой емкости. К тому же многоуровневая виртуализация позволяет более гибко распределять вычислительные ресурсы и контролировать их использование. Так, например, в рассмотренном выше примере виртуальные маршрутизаторы работают в рамках вычислительных ресурсов вспомогательной виртуальной машины, а не реального компьютера, как это было бы в случае одноуровневой виртуализации.

Please enable JavaScript to view the

Новая инфраструктура виртуализации Cisco Virtualization Experience Infrastructure (VXI) решает проблемы, связанные с фрагментированностью существующих решений, которые существенно усложняют внедрение виртуальных настольных систем. Кроме того, новая инфраструктура расширяет возможности виртуализации традиционных настольных систем для обработки мультимедийных данных и видео.

Cisco VXI помогает преодолеть главные препятствия, мешающие предприятиям без ущерба для ощущений пользователей воспользоваться финансовыми преимуществами, возможностями защиты данных и средствами поддержки гибкого стиля работы, которые предоставляет виртуализация настольных систем, а также возможностями интеграции мультимедийных функций и функций совместной работы с использованием видео. Кроме того, Cisco VXI сокращает совокупную стоимость владения решениями для виртуализации настольных систем за счет радикального увеличения количества виртуальных систем, поддерживаемых одним сервером.

По прогнозам аналитиков, виртуализация настольных систем может сократить расходы на поддержку персональных компьютеров на 51 процент (на каждого пользователя) при том, что доля этой статьи расходов в ИТ-бюджетах, связанных с ПК, составляет 67 процентов. Виртуальные настольные системы также помогают защищать корпоративную интеллектуальную собственность за счет размещения информации не на физических пользовательских устройствах, а в центре обработки данных. При этом конечные пользователи смогут самостоятельно выбирать устройство, с помощью которого они получат доступ к своему виртуальному компьютеру. Все перечисленные преимущества в сочетании с повышением производительности и гибкости бизнеса с помощью мультимедийных и видеоприложений повышают ценность сетевых решений для конечных пользователей и компаний.

Среди рекомендуемых Cisco архитектур на основе Cisco VXI можно выделить следующие: архитектуру для совместной работы Cisco Collaboration, для центров обработки данных Cisco Data Center Virtualization и для сетей без границ Cisco Borderless Networks, – а также лучшие программные средства и устройства для виртуализации настольных систем.

На совместимость с решением Cisco VXI протестированы следующие технологии Cisco: приложения системы унифицированных коммуникаций (Cisco Unified Communications), оптимизированные для виртуальной среды и оконечных устройств, включая планшетный компьютер Cisco Cius; платформа Cisco Quad™; решение для балансировки нагрузки и оптимизации работы приложений Cisco ACE; программное обеспечение Cisco для ускорения работы глобальных сетей; многофункциональные устройства безопасности Cisco ASA; VPN-клиент Cisco AnyConnect™; среда унифицированных вычислений Cisco UCS™; коммутаторы семейств Cisco Nexus® и Cisco Catalyst®, предназначенные для центров обработки данных; многоуровневые коммутаторы для сетей хранения данных Cisco MDS; маршрутизаторы Cisco ISR.

В состав решения Cisco VXI входят системы виртуализации настольных компьютеров Citrix XenDesktop® 5 и VMware View™ 4.5, предоставленные лидерами отрасли, компаниями Citrix и VMware. Новая инфраструктура также поддерживает приложения для управления и обеспечения безопасности, системы хранения от компаний EMC и NetApp и множество приложений Microsoft.

Система Cisco VXI поддерживает широкий ассортимент оконечных устройств, в том числе IP-телефоны Cisco Unified, ноутбуки, корпоративные планшетные компьютеры, включая Cisco Cius и смартфоны. Cisco вместе с лидером отрасли компанией Wyse оптимизировала ряд аппаратных и программных технологий, чтобы сократить время отклика приложений, работающих в среде Cisco VXI и в связанных с ней архитектурах. Пользуясь открытостью экосистемы Cisco, компании DevonIT и IGEL также проверили свои устройства на совместимость с решением Cisco VXI.

Элементы решения Cisco VXI спроектированы и протестированы для совместной работы в разных вариантах установки, наилучшим образом отвечающих требованиям заказчика. Помимо гибкой поддержки мультимедиа, данное решение обеспечивает совместимость с широким кругом пользовательских устройств и методов доступа, предоставляя пользователям гибкую свободу выбора в зависимости от требований бизнеса или конкретного приложения.

Устройства Cisco для виртуализации настольных систем, оптимизированные для взаимодействия с использованием мультимедиа

Cisco анонсировала два устройства Cisco Virtualization Experience Client (VXC), поддерживающие функции виртуализации настольных систем в "бесклиентной" форме в тандеме с системой унифицированных коммуникаций Cisco:

  • Cisco VXC 2100 - компактное устройство, физически интегрированное с IP-телефонами Cisco Unified серий 8900 и 9900, которое позволяет оптимизировать среду рабочего места пользователя. Оно поддерживает питание по каналам Ethernet (Power-over-Ethernet, PoE) и может работать с одним или двумя мониторами. Устройство имеет четыре порта USB для подключения мыши и клавиатуры, если это необходимо для работы в виртуальной среде.
  • Cisco VXC 2200 - отдельное компактное бесклиентное устройство с обтекаемым корпусом, предоставляющее пользователям доступ к виртуальной настольной системе и бизнес-приложениям, работающим в виртуализированной среде. Устройство Cisco VXC 2200, при разработке которого учитывались требования охраны окружающей среды, может получать питание либо по каналам Ethernet (Power-over-Ethernet, PoE), либо с помощью дополнительного блока питания. Это устройство также имеет четыре порта USB и два видеопорта, с помощью которых подключаются устройства, необходимые для работы в виртуальной среде.

Для изучения Cisco курсов иногда требуется работать с реальными образами, так как Packet Tracer не всегда предоставляет все нужные нам возможности, его прошивка сильно урезана. Тогда на помощь нам приходит GNS3, о котором я писал ранее. С установкой и добавлением образов не должно возникнуть проблем, я думаю.

GNS3

Поэтому опишу типовую конфигурацию, которую мы будем воссоздавать:


Всё просто. На нашем реальном компьютере запускаем эмулятор GNS3. В нём работает виртуальная Cisco 2961, который цепляется к виртуальной машине VirtualBox (например, Windows XP). Можно строить конфигурации любой степени сложности, если позволят ресурсы, но мы остановимся на этой.

Итак, что нам нужно? Прежде всего, создаем новый интерфейс в системе, чтобы завернуть его в GNS3.

Для этого создаем новый интерфейс замыкания на себя (Loopback), адаптер Microsoft и сопоставляем его с облаком в GNS3.

Как ставить новый адаптер Loopback я описал в видео:

После создания интерфейса у нас появилось новое сетевое подключение в диспетчере реальной машины:

Я переименовал его в LOOPBACK, чтобы не перепутать ни с чем.

Теперь открываем GNS3:


Заходим в настройки и настраиваем VirtualBox машину:

В выпадающем списке есть все машины, которые установлены в гостевой ViBox. Выбираем любую, интересующую нас. В данном случае это Windows XP.


Далее перетаскиваем на поле GNS3 нужные нам объекты. Облако (это интерфейс в реальную машину), Виртуальную машину VirtualBox и роутер c2961, образ которого (взять можно с нашей файлопомойки) уже добавлен в гипервизор.


Заходим в настройки нашего облака C1. Здесь нам нужно указать, что оно связано с существующем интерфейсом LOOPBACK.

К сожалению, интерфейсы имеют неблагозвучные названия, поэтому приходится внимательно читать, чтобы не ошибиться. Таким же образом, кстати, можно связать виртуальную Cisco в GNS3 с любым другим интерфейсом, будь то Wireless или WAN. Выбираем нужный, кнопаем “Add”


Соединяем всё связями и запускаем. Тут же стартует виртуальная машина VirtualBox (Windows XP, мы ведь её указали). Там я настраиваю сетевой интерфейс, например, даю 192.168.200.2/24, а шлюзом ставлю *.1, т.е. это будет на роутере.


Тогда и в реальной машине открываю свойства LOOPBACK и даю ему другой сетевой адрес: 192.168.100.2/24, что не пересекается с виртуальной машиной. Ну шлюзом по умолчанию является само-собой *.1 этой подсети.

Вот такая картинка в итоге:


Подключаемся к роутеру R1 и идём в Console:

Здесь я навесил IP адреса, соответствующие шлюзам по умолчанию этих машин (реальной и виртуальной)


Вот конфигурация:

R1#conf t
R1(config)#int fa0/0
R1(config-if)#ip addr 192.168.100.1 255.255.255.0
R1(config-if)#no shut
R1(config-if)#exit
R1(config)#int fa0/1
R1(config-if)#ip addr 192.168.200.1 255.255.255.0
R1(config-if)#no shut
R1(config-if)#exit
R1(config)#

То есть со стороны реальной машины вешаем IP, который является шлюзом по-умолчанию для интерфейса Loopback, а со стороны виртуальной машины – IP, который является шлюзом по умолчанию для интерфейса виртуальной машины.

Теперь можем послать PING-запрос с виртуальной машины в реальную или наоборот:


Теперь мы можем поставить какой-нибудь WireShark или учиться иным способом маршрутизировать сеть, если добавить других виртуальных машин, адресов и LOOPBACK интерфейсов! Удачи!

Как вы знаете, иногда на блоге публикуются статьи наших хороших знакомых.

Сегодня Евгений расскажет нам о виртуализации маршрутизатора Cisco.

Имеется классическая схема организации сети: уровень доступа (SW1, SW2, SW3), уровень распределения (R1) и присоединение к глобальной сети (R2). На маршрутизаторе R2 организован сбор статистики и настроен NAT. Между R2 и R3 установлен аппаратный брандмауэр с функциями фильтрации трафика и маршрутизации (схема 1)

Не так давно была поставлена задача по миграции всей сети на альтернативный шлюз (R4). Новый шлюз обладает кластерным функционалом и способен горизонтально масштабироваться за счет увеличения количества нод кластера. Согласно плану введения в эксплуатацию, требовалось, чтобы в определенный период времени в сети было одновременно два шлюза – старый (R2) – для всех клиентских сетей, и новый (R4) – для сетей, участвующих в тестировании нового шлюза (схема 2).

Попытки реализовать PBR (Policy-based routing) на внутреннем маршрутизаторе (R1) не увенчались успехом – трафик зацикливался. Руководство на просьбы дополнительного оборудования ответило отказом. Время шло, маршрутизатора не было, задача буксовала…

И тут на глаза попалась статья из Интернета, которая рассказывала об изоляции таблиц маршрутизации на маршрутизаторах Cisco.

Я решил получить дополнительный маршрутизатор с независимой таблицей маршрутизации на базе существующего оборудования. Для решения задачи был составлен новый проект (Схема 3), подразумевающий наличие дополнительного маршрутизатора с возможностью PBR.

Соединительная сеть между R1 и R5:

Сеть: 172.16.200.0 /30

Интерфейс на R1: 172.16.200.2 /30

Интерфейс на R5: 172.16.200.1 /30

VLANID: 100 – старый маршрутизатор

VLANID: 101 – новый маршрутизатор

Замечание: в качестве R5 используется виртуальный маршрутизатор, созданный на базе R3 (Cisco IOS Software, C2900 Software (C2900-UNIVERSALK9_NPE-M), Version 15.0(1)M1, RELEASE SOFTWARE (fc1)).

Маршрутизатор R3 оснащен тремя гигабитными портами Ethernet, интерфейс Gi0/0 – используется для внутренней маршрутизации, Gi0/1 – для подключения к аппаратному файерволу, а Gi0/2 – для подключения к внешнему провайдеру.

Перейдем к настройке маршрутизатора R5.

Переходим в режим конфигурирования:
R3(config)#ip vrf zone1
этой командой на маршрутизаторе создается изолированная таблица маршрутизации. Название zone1 выбирается администратором самостоятельно. Так же можно назначить идентификатор и описание. Более подробно можно прочитать в документации. По завершению возвращаемся в режим конфигурирования с помощью команды exit .

Настраиваем сетевые интерфейсы:
R3(config)#interface GigabitEthernet0/0.100

R3(config-subif)#encapsulation dot1Q 100
R3(config-subif)#ip address 172.16.100.2 255.255.255.252
R3(config-subif)#exit
R3(config)#interface GigabitEthernet0/0.101
R3(config-subif)#ip vrf forwarding zone1
R3(config-subif)#encapsulation dot1Q 101
R3(config-subif)#ip address 172.16.100.6 255.255.255.252
R3(config-subif)#exit
R3(config)#interface GigabitEthernet0/0.1000
R3(config-subif)#ip vrf forwarding zone1
R3(config-subif)#encapsulation dot1Q 1000
R3(config-subif)#ip address 172.16.200.1 255.255.255.252
R3(config-subif)#exit
Сейчас необходимо настроить PBR. Для этого составим ACL, руководствуясь следующим правилом: все, кто попадает в ACL – маршрутизируются через старый шлюз, а остальные – через новый.
R3(config)#access-list 101 deny ip host 192.168.3.24 any
R3(config)#access-list 101 deny ip host 192.168.3.25 any
R3(config)#access-list 101 deny ip host 192.168.3.26 any
R3(config)#access-list 101 permit ip any any
Создаем Route-Map:
R3(config)#route-map gw1 permit 50
R3(config-route-map)#match ip address 101
R3(config-route-map)#set ip vrf zone1 next-hop 172.16.100.1
R3(config-route-map)#exit
И применяем его на интерфейс:
R3(config)#interface GigabitEthernet0/0.1000
R3(config-subif)#ip policy route-map gw1
R3(config-subif)#exit
Добавляем маршрут по умолчанию в таблицу маршрутизации zone1 :
R3(config)#ip route vrf zone1 0.0.0.0 0.0.0.0 GigabitEthernet0/0.101 172.16.100.5
и проверяем таблицу маршрутизации для zone1
R3#show ip route vrf zone1
Routing Table: zone1
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, + - replicated route

Gateway of last resort is 172.16.100.5 to network 0.0.0.0

S* 0.0.0.0/0 via 172.16.100.5, GigabitEthernet0/0.101
172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C 172.16.100.0/30 is directly connected, GigabitEthernet0/0.100
L 172.16.100.2/32 is directly connected, GigabitEthernet0/0.100
C 172.16.100.4/30 is directly connected, GigabitEthernet0/0.101
L 172.16.100.6/32 is directly connected, GigabitEthernet0/0.101
C 172.16.200.0/30 is directly connected, GigabitEthernet0/0.1000
L 172.16.200.1/32 is directly connected, GigabitEthernet0/0.1000
Задача по разделению трафика клиентских сетей на разные шлюзы решена. Из минусов принятого решения хотелось бы отметить увеличение нагрузки на аппаратную часть маршрутизатора и ослабление безопасности, так как маршрутизатор, подключенный к глобальной сети, имеет прямое подключение к локальной сети в обход аппаратного брандмауэра.

Хотим рассказать про операционную систему IOS , разработанную компанией Cisco . Cisco IOS или Internetwork Operating System (межсетевая операционная система) это программное обеспечение, которое используется в большинстве коммутаторов и маршрутизаторов Cisco (ранние версии коммутаторов работали на CatOS ). IOS включает в себя функции маршрутизации, коммутации, межсетевого взаимодействия и телекоммуникаций, интегрированных в мультизадачную операционную систему.

Не все продукты Cisco используют IOS . Исключения составляют продукты безопасности ASA , которые используют операционную систему Linux и роутеры-маршрутизаторы, которые запускают IOS-XR . Cisco IOS включает в себя ряд различных операционных систем, работающих на различных сетевых устройствах. Существует много различных вариантов Cisco IOS: для коммутаторов, маршрутизаторов и других сетевых устройств Cisco, версии IOS для определенных сетевых устройств, наборы функций IOS, предоставляющие различные пакеты функций и сервисов.

Сам файл IOS имеет размер в несколько мегабайт и хранится в полупостоянной области памяти под названием flash . Флэш-память обеспечивает энергонезависимое хранилище. Это означает, что содержимое памяти не теряется, когда устройство теряет питание. Во многих устройствах Cisco IOS копируется из флэш-памяти в оперативное запоминающее устройство ОЗУ (RAM), когда устройство включено, затем IOS запускается из ОЗУ, когда устройство работает. ОЗУ имеет множество функций, включая хранение данных, которые используются устройством для поддержки сетевых операций. Работа IOS в ОЗУ повышает производительность устройства, однако ОЗУ считается энергозависимой памятью, поскольку данные теряются во время цикла питания. Цикл питания - это когда устройство намеренно или случайно отключается, а затем снова включается.

Управление устройствами с IOS происходит при помощи интерфейса командной строки (CLI ), при подключении при помощи консольного кабеля, по Telnet , SSH либо при помощи AUX порта.

Названия версий Cisco IOS состоят из трех чисел, и нескольких символов a.b(c.d)e , где:

  • a – номер основной версии
  • b – номер младшей версии (незначительные изменения)
  • c порядковый номер релиза
  • d – промежуточный номер сборки
  • e (ноль, одна или две буквы) – идентификатор последовательности выпуска программного обеспечения, такой как none (который обозначает основную линию), T (Technology), E (Enterprise), S (Service provider), XA специальный функционал, XB как другой специальный функционал и т. д.

Rebuild – часто ребилды выпускаются чтобы исправить одну конкретную проблему или уязвимость для данной версии IOS. Ребилды производятся либо для быстрого устранения проблемы, либо для удовлетворения потребностей клиентов, которые не хотят обновляться до более поздней крупной версии, поскольку они могут использовать критическую инфраструктуру на своих устройствах и, следовательно, предпочитают свести к минимуму изменения и риск.

Interim release – промежуточные выпуски, которые обычно производятся на еженедельной основе и образуют срез текущих наработок в области развития.

Maintenance release – протестированные версии, которые включают в себя усовершенствования и исправления ошибок. Компания Cisco рекомендует, по возможности, обновлять ПО до версии Maintenance.

Стадии развития:

  • Early Deployment (ED) – ранее развертывание, вводятся новые функции и платформы.
  • Limited Deployment (LD) – первоначальная лимитированная развертка, включают в себя исправления ошибок.
  • General Deployment (GD) – общее развертывание ОС, происходит тестирование, доработка и подготовка к выпуску окончательной версии. Такие выпуски, как правило, стабильны на всех платформах
  • Maintenance Deployment (MD) – эти выпуски используются для дополнительной поддержки, исправлений ошибок и постоянного обслуживания программного обеспечения.

Большинство устройств Cisco, которые используют IOS , также имеют один или несколько «наборов функций» или «пакетов» - Feature Set . Например, выпуски Cisco IOS, предназначенные для использования на коммутаторах Catalyst, доступны как «стандартные» версии (обеспечивающие только базовую IP-маршрутизацию), «расширенные» версии, которые предоставляют полную поддержку маршрутизации IPv4 и версии «расширенных IP-сервисов», которые предоставляют расширенные функции, а также поддержку IPv6.

Каждый отдельный feature set соответствует одной категории услуг помимо базового набора (IP Base – Static Routes, OSPF, RIP, EIGRP. ISIS, BGP, IMGP, PBR, Multicast):

  • IP-данные (Data – добавляет BFD, IP SLAs, IPX, L2TPv3, Mobile IP, MPLS, SCTP)
  • Голос (Unified Communications – CUBE, SRST, Voice Gateway, CUCME, DSP, VXML)
  • Безопасность и VPN (Security - Firewall, SSL VPN, DMVPN, IPS, GET VPN, IPSec)

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!







2024 © gtavrl.ru.