Узел коммутации пакетов. Схема организации связи на стс


Глава 7. Принципы построения систем коммутации.

§ Структура и классификация коммутационных узлов

Под коммутацией понимается замыкание, размыкание и пе­реключение электрических цепей. Коммутация осуществляется на коммутационных узлах. На сетях электросвязи посредством коммутации абонентские устройства соединяются между собой для передачи (приема) информации. Коммутация осуществляется на коммутационных узлах (КУ), являющихся составными частями сети электросвязи.

Абонентские устройства сети соединяются с КУ абонентскими линиями. КУ, находящиеся на территории одного населен­ного пункта, соединяются соединительными линиями. Если КУ находятся в разных городах, то линии связи, соединяющие их, на­зываются междугородными или внутризоновыми.

Коммутационный узел, в который включаются абонентские линии, называется коммутационной станцией или просто стан­цией. В некоторых случаях абонентские линии включаются в подстанции. Лицо, пользующееся абонентским устройством для пе­редачи и приема информации, называется абонентом. Для пе­редачи информации от одного абонентского устройства сети к другому требуется установить со­единение между этими устройст­вами через соответствующие узлы и линии связи. Для осуществ­ления соединения на коммутационных узлах устанавливается коммутационная аппаратура.

Совокупность линейных и станционных средств, предназна­ченных для соединения оконечных абонентских устройств, назы­вается соединительным трактом. Число коммутационных узлов между соединяемыми абонентскими устройствами зависит от ст­руктуры сети и направления соединения.

Для осуществления требуемого соединения коммутационный узел и абонентское устройство обмениваются управляющими сигналами.

На коммутационном узле соединение может устанавливаться на время, необходимое для передачи одного сообщения (напри­мер, одного телефонного разговора), или на длительное время, превышающее время передачи одного сообщения. Коммутация первого вида называется оперативной, а второго - кроссовой (долговременной).

Коммутационный узел (КУ) представляет собой комплекс оборудования, предназначенного для приема, обработки и распре­деления поступающей информации. Наиболее типичным примером КУ является коммутационная станция, в которую включа­ются абонентские и соединительные линии. Упрощенная струк­турная схема коммутационного узла представлена на рис.

Рис. Структура коммутационного узла

Для выполнения своих функций КУ должен иметь в своем составе следующие основные блоки :

Коммутационное поле (КП) - представляет собой сово­купность коммутационных приборов, с помощью которых обеспечивается соединение включенных в станцию абонент­ских и соединительных линий.


Управляющее устройство (УУ) - предназначено для управления процессом установления соединений. В его со­став входит аппаратура для приема, формирования и переда­чи управляющей информации. На основании информации о номере вызываемого абонента или направлении связи, при­нятой от источника вызова, УУ включает соответствующие элементы коммутационного поля, в результате чего осуще­ствляется соединение между соответствующими входом и выходом.

Блоки соединительных линий (БСЛ), через комплекты со­единительных линий (КСЛ) которых подключаются линии свя­зи от (к) других КУ посредством аналоговых или цифровых соединительных линий (СЛ). При использовании однонаправлен­ных СЛ разделяют входящие и исходящие КСЛ.

Блоки абонентских линий (БАЛ), через абонентские ком­плекты (АК) которых к станции подключаются абонентские линии.

В состав оборудования КУ также входят дополнительные блоки :

Кросс - устройство ввода и вывода линий.

Шнуровые комплекты (ШК), которые в АТС координат­ного типа служат для питания телефонных аппаратов, а также приема и посылки служебных сигналов в процессе установле­ния соединения.

Источники электропитания .

Приборы контроля за работой оборудования .

Приборы учета параметров нагрузки .

На коммутационных узлах могут устанавливаться соедине­ния следующих видов:

внутристанционное - соединение осуществляется между абонентами данной телефонной станции;

исходящее - соединение устанавливается по инициативе абонента данной станции с абонентом другой станции через со­единительную линию;

входящее - соединение устанавливается с абонентом дан­ной станции по вызову, поступившему по соединительной ли­нии от другой станции;

транзитное - на данной станции коммутируются две сое­динительные линии с целью соединения абонентов других станций.

Коммутационные узлы сетей связи классифицируются по ряду признаков:

по виду передаваемой информации (телефонные, теле­графные, вещания, передачи данных и др.);

по способу обслуживания соединений (ручные, автомати­ческие);

по месту, занимаемому в сети электросвязи (районные, центральные, узловые, оконечные, транзитные станции, узлы входящего и исходящего сообщения);

по типу сети связи (городские, сельские, учрежденческие, междугородные);

по типу коммутационного и управляющего оборудования (декадно-шаговые, координатные, квазиэлектронные, элект­ронные);

по емкости ,т. е. по числу входящих и исходящих линий или каналов (малой, средней, большой емкости);

по типу коммутации (оперативная, кроссовая);

по способу разделения каналов (пространственный, простран­ственно-временной);

по способу коммутации (коммутация каналов, коммута­ция сообщений, коммутация пакетов).

Для осуществления коммутации (соединения) линий (или каналов )и управления процессами установления соединения на АТС применяются коммутационные приборы.

Коммутационным прибором (КПр) называется уст­ройство, обеспечивающее скачкообразное изменение про­водимости электрических цепей на определенный проме­жуток времени. Различают коммутационные приборы кон­тактные и бесконтактные .

В контактных приборах проводимость меняется путем замыкания и размыкания контактов, включенных в электрическую цепь. В бескон­тактных приборах изменение проводимости достигается изменением какого-либо параметра (сопротивления, индук­тивности или емкости) одного из элементов электрической цепи. Изменение проводимости электрических цепей в коммутационном приборе осуществляется коммутацион­ным элементом (КЭ) .

К коммутационному прибору могут подключаться линии с различной проводностью (двух-, трехпроводные и т.д.), по­этому их коммутация осуществляется несколькими КЭ, кото­рые объединены в коммутационную группу . При этом комму­тационные элементы переключаются одновременно под влия­нием управляющего сигнала.

По способам управления КПр можно разделить на прибо­ры ручной и автоматической коммутации. Приборы ручной коммутации управляются механическим воздействием челове­ка (ключи, кнопочные переключатели, телефонные гнезда и штепселя). Приборы автоматической коммутации управляют­ся электрическими сигналами.

В коммутационном приборе в зависимости от числа входных и выходных линий может быть установлено раз­личное число коммутационных групп. Совокупность ком­мутационных групп, обеспечивающая коммутацию входов и выходов, называется коммутационным полем прибора.

Местоположение коммутационной группы в коммутацион­ном поле прибора (или в коммутационном блоке, постро­енном из нескольких приборов) называется точкой комму­тации .

Для коммутации электрических цепей используются при­боры, которые обеспечивают два устойчивых состояния своих коммутационных элементов (или групп). При этом электриче­ская цепь, проходящая через КЭ, в одном состоянии разом­кнута (т.е. закрытое состояние), а в другом замкнута (откры­тое состояние).

Коммутационные приборы различаются между собой структурными и электрическими параметрами.

К структурным параметрам относятся: число входов n, число выходов m, доступность входов D по отношению к выходам, число одновременно коммутируемых электриче­ских цепей (проводность), свойство памяти. Производными от этих параметров являются общее число точек коммутации T ,число коммутационных групп и число коммутационных элементов, а также максимальное число одновременных со­единений.

К электрическим параметрам коммутационных прибо­ров относятся: сопротивление коммутационного элемента в закрытом (разомкнутом) состоянии и открытом (замкнутом) состоянии отношение которых называется комму­тационным коэффициентом ; время переключе­ния КЭ из одного состояния в другое; вносимое затухание в разговорный тракт; уровень шумов; напряжение питания; величина тока, необходимого для переключения КЭ; потреб­ляемая мощность.

Некоторые коммутационные приборы обладают свой­ством памяти ,т.е. способностью сохранять рабочее со­стояние после прекращения подачи управляющего воздей­ствия. Это позволяет сократить расход электроэнергии для поддержания рабочего состояния прибора. Для возвращения прибора в исходное состояние требуется новое управ­ляющее воздействие.

Используемые в настоящее время коммутационные прибо­ры по структурным параметрам можно разделить на четыре типа:

1. Коммутационные приборы типа реле (1 x 1) имеют один вход и один выход.

2. Коммутационные приборы типа искатель (1 x m )име­ют один вход n = 1 и m выходов.

3. Коммутационные приборы типа многократный соеди­нитель n (1 x m ) имеют n входов и nm выходов.

4. Коммутационные приборы типа соединитель (n x m )имеют n входов и m выходов.

Посредством коммутационных приборов строятся ком­мутационные блоки, ступени искания и коммутационное поле автоматических телефонных (телеграфных и др.) станций и узлов, управляющие устройства, линейные и служебные ком­плекты.

Классификация. Узлы коммутации в зависимости от их положения в сети передачи данных могут выполнять довольно различные функции. В первую очередь следует отличать узлы коммутации, к которым подключены только соединительные линии, ведущие к другим узлам (т. е. транзитные узлы), от узлов, к которым, кроме того, подведены абонентские линии от оконечных установок. В последнем случае функции управления могут быть более многообразными, так как способы сигнализации, применяемые в абонентских и соединительных линиях, вообще говоря, не совпадают. Различие в функциях управления связано также с особыми услугами, предоставляемыми абонентам (см. разд. 3.2). Наконец, не следует забывать и о различных характеристиках нагрузки. Функции управления особенно обширны в таких транзитных узлах коммутации, к которым подключены соединительные линии от разных сетей передачи данных.

Однако практически более важную роль играет другое различие - различие между концентраторами и прочими коммутационными устройствами. Концентраторы предназначены для объединения нагрузки от нескольких периферийных оконечных установок таким образом, чтобы она передавалась в вышестоящий узел коммутации или (в частных сетях передачи данных) на центральную оконечную установку, например оборудование обработки данных (т. е. центральную ЭВМ), по меньшему числу соединительных линий (рис. 2.1).

Рис. 2.1. Оборудование коммутации данных, установленное в коммутируемых узлах сети: а) концентратор и коммутационный узел; б) концентратор: ОУПД -- оконечная установка передачи данных; АЛ - абонентская линия; К - концентратор; СЛ - соединительная линия; КУ - коммутационный узел; ЦУ - центральная установка, например ЭВМ

Концентраторы позволяют также передавать нагрузку в обратном направлении оконечным установкам. Соединительные тракты между оконечными установками, подключенными к одному концентратору, в общем случае проходят через вышестоящий узел коммутации. (Такие концентраторы называют линейными, в отличие от аналогичных устройств, которые служат для соединения большого числа линий с небольшим числом управляющих устройств, например регистров для приема знаков набора

номера, и известны под названием регистровых концентраторов.)

В первую очередь принцип построения коммутационного оборудования определяется используемым методом коммутации (см. том 1, разд. 6.1.2), который зависит от того, должно ли быть установлено или нет сквозное (прямое) соединение между оконечными установками. В первом случае нет необходимости в промежуточном запоминании данных в узлах коммутации (коммутация каналов). Если, однако, по мере возможности занимается только один тот или иной участок соединительного тракта, то требуется промежуточное хранение данных в памяти (коммутация сообщений). При этом в память могут заноситься целые сообщения (коммутация с запоминанием сообщений) или только их части (пакетная коммутация).

Для осуществления как коммутации каналов, так и коммутации сообщений при передаче данных разработано большое число разнообразных устройств. Тот или иной метод коммутации может быть реализован различными способами: возможна, например, коммутация каналов с пространственным и временным их разделением, а также временная коммутация значащих моментов или групп битов (байтов). Для промежуточного хранения данных можно использовать перфоленту или магнитный носитель. Большое значение имеет также вид управления: децентрализованное или централизованное, жесткое (с постоянными функциональными связями) или программное.

Структура и методы обслуживания. Многообразие возможностей реализации коммутационных функций приводит к тому, что не существует общей, пригодной во всех случаях структуры коммутационного оборудования, иначе говоря, единой обобщенной схемы из некоторых основных элементов, которые независимо от их конкретной реализации можно было бы выделить в любом коммутационном оборудовании. По-видимому, при одинаковых методах коммутации и местоположении узла в сети должны осуществляться одинаковые функции, однако указать однозначное и всегда справедливое правило, по которому им ставились бы в соответствие определенные элементы, едва ли возможно. Поэтому последующее изложение в значительной степени основано на примерах конкретных технически реализованных устройств.

Как уже отмечалось, устройства одинакового или сходного назначения могут называться по-разному. В дальнейшем употребляются главным образом такие названия, которые использованы в соответствующей литературе по описываемым коммутационным системам, насколько это допустимо при естественном стремлении к единству изложения.

Способами обслуживания называют способы, в соответствии с которыми обрабатываются требования, касающиеся занятия определенных устройств. При этом управляющие устройства следует

отличать от устройств, предназначенных непосредственно для коммутации или промежуточного запоминания данных. Система об» служивания с ожиданием характерна для централизованных управляющих устройств: занятие этих устройств связано с необходимостью ожидания их освобождения в порядке некоторой очереди - вообще говоря, с ограниченным числом мест ожидания и с упорядочением по приоритетам. Примером могут служить очереди, которые обрабатываются в узле коммутации вычислительным устройством по заданной программе, хранящейся в памяти. В противоположность этому возможность ожидания освобождения децентрализованных управляющих устройств, например зон памяти для промежуточного хранения данных, необходимых в процессе установления соединения, нередко не предусматривается; в таком случае говорят о системе с потерями. Часто нет возможности ожидания и при занятии устройств, непосредственно используемых для коммутации данных и запятых в течение всего времени, на которое установлено соединение. Таковы, например, промежуточные линии системы пространственной коммутации каналов. Иначе обстоит дело в случае процессов, происходящих при коммутации с временным разделением каналов: здесь уже можно говорить о системе с ожиданием.

Критерии оценки. Прежде чем рассматривать конкретные виды коммутационных систем, назовем некоторые критерии их оценки. В первую очередь должна быть охарактеризована область применения, т. е. указаны ее признаки в различных функциональных аспектах (например, первый аспект может касаться скорости передачи, второй - процедуры передачи данных). Важным показателем является также гибкость системы. Тенденции развития сетей передачи данных на ближайшие годы таковы, что для коммутационного оборудования все большее значение приобретает не только увеличение числа подключаемых линий и объема обслуживаемой им нагрузки, но и возможности перехода к сетям с другими признаками или к введению новых видов услуг для абонентов.

Производительность коммутационного оборудования грубо можно охарактеризовать допустимым числом подключаемых линий, максимально возможной нагрузкой, а также показателями, касающимися передаваемых данных - прежде всего скоростью передачи. Оборудование, предназначенное для коммутации каналов, характеризуется производительностью коммутаторов, а оборудование для коммутации сообщений возможной производительностью при приеме и передаче сообщений и, если известна длина сообщений, - емкостью запоминающего устройства. Наряду с этим необходимо иметь сведения о производительности управляющих устройств, т. е. о количестве соединений, которые могут быть установлены и разъединены за определенное время, или о количестве сообщений или пакетов, которые могут быть обработаны в

единицу времени. Однако сравнивать эти показатели можно лишь в том случае, если дополнительно принимаются во внимание вид устанавливаемого соединения или передаваемого сообщения, распределение интервалов между вызовами, длительности соединений и другие подобные параметры.

Наконец, большое значение, в особенности при централизованном управлении, имеет надежность коммутационной системы как единого целого. Надежность характеризуется средним временем между двумя полными отказами системы или другими аналогичными показателями . Чтобы обеспечить высокую надежность, прибегают к дублированию или даже многократному резервированию коммутационного оборудования (обычно его центральных частей). В связи с этим представляет интерес, на какое число подключенных линий влияет отказ одной сдублированной части коммутационного оборудования; это число называют объемом отказа. В больших коммутационных системах нередко считается допустимым отказ в объеме до десяти линий.

Коммутационный узел- представляет собой комплекс оборудования, предназначенного для приёма, обработки и распределения поступающей информации. Наиболее типичным примером КУ является коммутационная станция, в которую включаются абонентские и соединительные линии. Для выполнения своих функций КУ должен иметь в своём составе следующие основные блоки:

Коммутационное поле - совокупность коммутационных приборов, с помощью которых обеспечивается соединение включённых в станцию абонентских и соединительных линий.

Управляющее устройство (УУ)- предназначено для управления процессом установления соединений. В его состав входит аппаратура для приёма, формирования и передачи управляющей информации. На основании информации о номере вызываемого абонента или направления связи, принятой от источника вызова, УУ включает соответствующие элементы КП, в результате чего осуществляется соединение между соответствующим входом и выходом.

Коммутационный блок - часть ступени искания, представляющая собой совокупность точек коммутации, обслуживающих определенную группу входов

Блоки соединительных линий (БСЛ), через комплекты соединительных линий которых подключаются соединительные линии связи от других КУ.

Блоки абонентских линий (БАЛ), через абонентские комплекты котрых к станции подключаются абонентские линии.

Коммутационный элемент - элемент, осуществляющий коммутацию в сети связи

Точка коммутации - группа коммутационных элементов, осуществляющих коммутацию одновременно при подаче одного управляющего сигнала

В состав оборудования КУ также входят дополнительные блоки:

Кросс- устройство ввода и вывода линий.

Источники электропитания.

Приборы контроля за работой оборудования.

Приборы учёта параметров нагрузки.

На коммутационных узлах могут устанавливаться соединения следующих видов:

Внутристанционное- соединение осуществляется между абонентами данной телефонной станции;

Исходящее- соединение устанавливается по инициативе абонента данной станции с абонентом другой станции через соединительную линию;

Входящее- соединение устанавливается с абонентом данной станции по вызову, поступившему по соединительной линии от другой станции;

Транзитное- на данной станции коммутируются две соединительные линии с целью соединения абонентов других станций.

Взаимодействие блоков ЦСК можно рассмотреть на примере внутристанционного соединения. Для описания всего процесса обслуживания вызова в упрощенном виде поделим его на пять основных этапов. Для иллюстрации взаимодействия блоков при внутристанционном соединении на рис.2.1 представлена упрощенная структура ЦСК.

Этап 1. Абонент А снимает трубку телефонного аппарата и станция передает сигнал «ответ станции».

После снятия абонентом А трубки СУ определяет факт занятия абонентской линии путем сканирования модулей абонентских линий МАЛ (в абонентском комплекте АК). Затем СУ выдает команду на подключение модуля акустических сигналов (MAC) через цифровое коммутационное поле (коммутируется цифровой тракт в КП). Из модуля акустических сигналов абоненту А подается сигнал «ответ станции» частотой f = 425 Гц.

Рисунок 2.1. Упрощенная структура ЦСК при внутристанционном соединении.

Этап 2. Абонент набирает номер.

При наборе номера точка сканирования в абонентском комплекте абонента А изменяет свое состояние. Эти изменения определяются периферийными устройствами сканирования и передаются в СУ. После приема первого импульса набора номера СУ дает команду на отключение сигнала «ответ станции» из MAC, т.е. передача акустических сигналов через КП прекращается. Номер передается в СУ.

Этап 3. АТС анализирует номер и передает сигналы ПВ и КПВ.

После приема и анализа абонентского номера, СУ определяет по данным, хранящимся в ее памяти, направление связи как внутристанционное и дает команду на включение сигнала посылка вызова (ПВ) из модуля абонентских линий (МАЛ) частотой f=25 Гц абоненту В. Синхронно с сигналом ПВ абоненту А из модуля акустических сигналов (MAC), передается сигнал контроль посылки вызова) КПВ частотой f=425Гц,. MAC подключается через КП по команде из СУ.

Этап 4. Абонент В отвечает и происходит коммутация разговорного соединения.

При ответе абонента В изменяется состояние точки сканирования в его абонентском комплекте. Эта информация поступает в систему управления, которая отключает сигналы ПВ и КПВ и передача акустических сигналов через КП прекращается. Затем СУ коммутирует в КП разговорный тракт и происходит разговор абонентов.

Этап 5. Отбой и разъединение.

Если предположить, что первым положил трубку абонент В, то отбой определяется по изменению состояния точки сканирования в его абонентском комплекте. Эта информация поступает в систему управления, которая дает команду на подключение MAC через КП, т.е. коммутирует соединение акустических сигналов в КП. Из MAC абоненту А подается сигнал «занято», а СУ выдает команду на отключение разговорного соединения в КП. Абонент А кладет трубку. При отбое обоих абонентов система управления дает команду на разрушение соединения акустических сигналов КП, т.е. отключает MAC.

Конец работы -

Эта тема принадлежит разделу:

Способы построения сетей связи

Раздел Виды и построение сетей связи.. Способы построения сетей связи.. Структурно топологическое построение сетей связи..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Способы построения сетей связи
Для построения сети связи используются средства передачи и коммутации, которые в совокупности обеспечивают транспортировку информации от одного пользователя к другому. Функции перед

Построение сетей связи
Структурно-топологическое построение сетей связи предполагает моделирование сети, ее представление количественными показателями через соответствующие параметры, а также описание состава, конфигурац

Взаимодействия открытых систем
Связь представляет собой совокупность сетей и служб связи. Служба электросвязи - это комплекс средств, обеспечивающий представление пользователям услуг. Вторичные сети обеспечивают

Иерарахическая связь
Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем вы

Сеансовый уровень
Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами предст

Методы коммутации
Коммутация – процесс создания последовательного соединения функциональных единиц, каналов передачи или каналов связи на то время, которое требуется для транспортировки сигналов. Виды комму

Элементы теории телетрафика
В повседневной жизни приходится постоянно сталкиваться с обслуживанием, т. е. удовлетворением некоторых потребностей, и очень часто с очередями, когда обслуживание является массовым. Примерами проц

Математические модели систем распределения информации
Как и любая другая математическая теория, теория телетрафика оперирует не с самими системами распределения информации, а с их математическими моделями. Математическая модель системы распределения и

Основные задачи теории телетрафика
Основная цель теории телетрафика заключается в разработке методов оценки качества функционирования систем распределения информации. В соответствии с этим на первом месте в теории телетрафика стоят

Маршрутизаторы в сетевых технологиях
Объединение нескольких локальных сетей в глобальную WAN сеть происходит с помощью устройств и протоколов сетевого Уровня 3 семиуровневой эталонной модели. Таким образом, если LAN (локальная сеть) о

Принципы маршрутизации. Таблицы маршрутизации
Информационный поток данных, передаваемых с прикладного уровня, на транспортном уровне "нарезается" на сегменты, которые на сетевом уровне снабжаются заголовками и образуют пакет. Заголов

Системы сигнализации
Под сигнализацией в сетях связи понимается совокупность сигналов, передаваемых между элементами сети, и способов их передачи для обеспечения установления и разъединения соединения при обслуж

Основы сигнализации ОКС № 7
Рассмотренные выше системы сигнализации относятся к системам сигнализации по связанному каналу. В них имеется однозначное соответствие друг другу каналов передачи сигнальной и пользовательск

Дискретизация сигнала во времени
В системе передачис временнымразделением каналов (ВРК) исходный непрерывный сигнал каждого канала подвергается преобразованного в последовательность коротких импульсов, закон изменения амплитуды ко

Виды аим модуляции
Различают сигналы АИМ 1-го и 2-го рода. АИМ сигнал 1-го рода является результатом дискретизации непрерывного сигнала на интервалах Котельникова. При этом вершина каждого импульса меняется в соответ

Дифференциальная импульсно-кодовая модуляция
В ЦСП с ИКМ квантованию и кодированию подвергаются дискретные по времени отсчеты непрерывного сигнала, взятые из условия теоремы Котельникова. Однако такой метод передачи квантованных выборок сигна

Дельта-модуляция
При рассмотрении принципов ИКМ и ДИКМ предполагалось, что период дискретизации выбран в соответствии с теоремой Котельникова: Тд= 1/2Fв. Было выяснено, что некоторые преимущества, которы

Тракт передачи
Данная схема рассчитана на три канала. Разговорный сигнал от абонента в спектре 0,3 – 3,4 кГц поступает на ФНЧ, где происходит его ограничение по спектру, чтобы не было переходных помех с

Кодирующие устройства ЦСП
Наибольшее распространение в системах ВД-ИКМ получили нелинейные кодеры взвешивающего типа с цифровым компандированием эталонов. В таких кодерах характеристика компрессии (экспандирования) не являе

Декодирующие устройства ЦСП
Декодер осуществляет цифро-аналоговое преобразование кодовых групп ИКМ сигнала в АИМ сигнал, т.е. в отсчеты нужной полярности и амплитуды. Принцип построения нелинейного декодера взвешиваю

Структура временного цикла ЦСП
На выходе кодера формируется групповой цифровой сигнал с ИКМ, представляющий собой последовательность восьмиразрядных кодовых комбинаций каналов. В цикле передачи системы помимо информационных симв

Цикловая синхронизация
К системам цикловой синхронизации предъявляются следующие требования: время вхождения в синхронизм при первоначальном включении аппаратуры в работу и время восстановления синхронизма при е

Формирование линейных цифровых сигналов
Искажения импульсных групповых АИМ сигналов при прохождении их через цепи с неравномерными АЧХ возникают и при прохождении группового цифрового сигнала, предоставляющего собой однополярную последов

Регенерация формы цифрового сигнала
Проходя через среду распространения, цифровой сигнала ослабляется и подвергается искажению и воздействию помех, что приводит к изменению случайным образом временных интервалов между импульсами, уме

Ввод дискретной информации в групповой поток
Дискретные сигналы вводятся либо на определенные импульсные позиции, предусмотренные во временном цикле группового потока, либо на временные позиции определенных телефонных каналов, предназначенных

Принцип организации каналов передачи СУВ
Цифровые системы передачи на местных сетях используются для организации соединительных линий (СЛ) между сельскими или городскими АТС, между АТС и АМТС. По СЛ передаются не только ре

Коммутационный узел представляет собой устройство, предназначенное для приема, обработки и распределения поступающей информации. Для выполнения своих функций коммутационный узел должен иметь: коммутационное поле КП, предназначенное для соединения входящих и исходящих линий (каналов) на время передачи информации; управляющее устройство УУ, обеспечивающее установление соединения между входящими и исходящими линиями через коммутационное поле, а также прием и передачу управляющей информации.

К аппаратуре для приема и передачи управляющей информации относятся регистры Рег, или комплекты приема номера КПП, кодовые приемопередатчики и пересчетные устройства; линейные комплекты входящих и исходящих линий (каналов) ЛК, предназначенные для приема и передачи линейных сигналов (сигналов взаимодействия) по входящим и исходящим линиям или каналам для выделения каналов в системах передачи, а также для приема и передачи сигналов взаимодействия с управляющими устройствами узла; шнуровые комплекты ШК предназначены для питания микрофонов телефонных аппаратов, приема и посылки служебных сигналов в процессе установления соединения; устройства ввода и вывода линий (кросс). Кроме того, на узле имеются источники электропитания, устройства сигнализации и учета параметров нагрузки (количество сообщений, потерь, длительности занятия и др.).

В некоторых случаях коммутационный узел может иметь устройства приема и хранения информации, если таковая передается не непосредственно потребителю информации, а предварительно накапливается на узле. Такие узлы применяются в системах коммутации сообщений.

Коммутационные узлы сетей связи классифицируются по ряду признаков:

  • по виду передаваемой информации (телефонные, телеграфные, вещания, телеуправления, передачи данных и др.);
  • по способу обслуживания соединений (ручные, полуавтоматические, автоматические);
  • по месту, занимаемому в сети электросвязи (районные, центральные, узловые, оконечные, транзитные станции, узлы входящего и исходящего сообщения);
  • по типу сети связи (городские, сельские, учрежденческие, междугородные);
  • по типу коммутационного и управляющего оборудования (электромеханические, механоэлектронные, квазиэлектронные, электронные);
  • по системам применяемого коммутационного оборудования (декадно-шаговые, координатные, машинные, квазиэлектронные, электронные);
  • по емкости, т. е. по числу входящих и исходящих линий или каналов (малой, средней, большой емкости);
  • по типу коммутации (оперативная, кроссовая, смешанная);
  • по способу разделения каналов (пространственный, пространственно-временной, пространственно-частотный);
  • по способу передачи информации от передатчика к приемнику (узлы коммутации каналов, обеспечивающие коммутацию каналов для непосредственной передачи информации в реальном масштабе времени от передатчика к приемнику после установления соединительного тракта: узлы коммутации сообщений и узлы коммутации пакетов, обеспечивающие прием и накопление информации на узлах с последующей ее передачей в следующий узел или в приемник).

Ступени искания Каждая абонентская линия на АТС включается в абонентский комплект (АК), содержащий два реле, которые принимают сигнал вызова станции и отмечают состояние АЛ. Для создания разговорного тракта связи двух абонентов АК вызывающего абонента (в дальнейшем будем называть его абонентом А) должен соединиться с АК вызываемого абонента (абонент Б) через один из имеющихся на станции приборов коллективного пользования, называемых шнуровыми комплектами (ШК). Шнуровой комплект содержит около десятка реле, обеспечивает подачу постоянного тока питания в АЛ разговаривающих абонентов, посылает в АЛ информационные (акустические) сигналы, принимает сигналы отбоя после окончания разговора и выполняет ряд других функций. В системах АТС большой емкости в разговорном тракте участвуют два ШК - исходящий шнуровой комплект (ИШК) взаимодействующий с абонентом А, и входящий (ВШК), контролирующий линию абонента Б. Общее число ИШК (или ВШК) на АТС значительно (примерно в 10-12 раз) меньше числа АК, которое равно емкости станции. Это объясняется тем, что в каждый данный момент времени потребность в телефонной связи возникает только у небольшой части абонентов АТС. Различие в числе АК и ШК приводит к необходимости включения между этими приборами коммутационной ступени предварительного искания (ПИ) или предыскания Ступень предыскания характеризуют следующие параметры

  • емкость нагрузочной группы Nн.г, равная числу АК, включаемых в один коммутационный блок (статив) ступени предыскания; емкость абонентской группы Nа.г, равная суммарной емкости всех нагрузочных групп, обслуживаемых одной совокупностью (пучком) ШК или ИШК; число приборов (комплектов) VИШК в пучке ШК или ИШК, обслуживающем одну абонентскую группу;
  • доступность D, равная числу ШК или ИШК, к которым может подключиться какой-либо вызывающий АК. Если D < VИШК, то пучок ИШК является неполнодоступным, при D=VИШК пучок полнодоступный. Как видно приборы ступени предыскания в различных системах АТС называются по-разному: искатели вызовов (ИВ) - в машинных АТС; предыскатели (ПИ) - в декадно-шаговых АТС; приборы абонентского искания (АИ) - в координатных АТС. При отсутствии свободных ИШК, доступных вызывающему АК, возникают потери вызовов. В декадно-шаговых АТС абонент А получает при этом акустический сигнал "Занято" и должен дать отбой. В машинных и координатных АТС потери выражаются в том, что абонент А*, не получая никакого сигнала, ожидает освобождения какого-либо ИШК (при длительном ожидании абонент может дать отбой).

После завершения работы коммутационных приборов на ступени предыскания и подключения ИШК к АК абонента А последний получает акустический сигнал "Ответ станции" и набирает одну за другой цифры номера абонента Б. На основе этой адресной информации, поступающей из АЛ абонента А, приборй АТС должны соединить ШК, занятый абонентом А, с АК абонента Б, создав тем самым разговорный тракт связи абонентов А и Б. На АТС малой емкости для решения этой задачи достаточно одной ступени линейного искания (ЛИ), в выходы которой включены все АК данной станции

Параметрами ступени ЛИ являются:

  • емкость блока линейного искания МЛИ, равная числу АК, включаемых в выходы блока;
  • число входов блока NЛИ равное числу включаемых в данный блок ВШК (или ШК).

а - непосредственное управление и прямое установление соединений; б - регистровое управление В координатных АТС ступени предварительного и линейного искания объединены в ступень абонентского искания АИ. В примере на к входам ступени ЛИ подключены все ШК. Под изображением ступени ЛИ в кружках указаны цифры абонентского номера, на основе которых совершалась работа коммутационных приборов ЛИ. Из рассмотренного выше видно, что в процессе установления соединения на АТС совершается искание двух видов: свободное, не требующее использования адресной информации, и вынужденное, для выполнения которого такая информация необходима. Ясно, что ступень предыскания работает в режиме свободного искания, а на ступени ЛИ совершается вынужденное искание. После подключения ШК (или ВШК) к АК абонента Б осуществляется проба вызываемой АЛ. Если эта АЛ занята, т.е. участвует в другом, ранее установленном разговорном соединении, то абоненту А посылается акустический сигнал "Занято" из ШК (ВШК). В некоторых системах такой сигнал посылается из АК абонента А после освобождения ШК и приборов АТС на ступенях искания. Если АЛ абонента Б свободна, то в эту АЛ посылается "Сигнал вызова" для работы звонка телефонного аппарата, а в АЛ абонента А посылается акустический сигнал "Контроль посылки вызова" (КПВ). После ответа абонента Б посылка сигналов прекращается, и образуется цепь передачи разговорных токов.

При поступлении из АЛ разговаривающих абонентов сигналов отбоя (длительное размыкание шлейфа АЛ) установленное разговорное соединение нарушается и участвовавшие в нем приборы АТС освобождаются. Параметры посылаемых в АЛ информационных сигналов Наряду со ступенями предварительного и линейного искания на городских АТС применяются ступени группового искания (ГИ). Это вызвано тем, что общее число АК станции намного больше, чем емкость коммутационного блока ЛИ (N>М ЛИ), и, следовательно, включить все АК в один блок ЛИ невозможно. Поэтому ступень ЛИ разбивают на абонентские группы (емкостью Мп]л каждая), и для выбора этих групп используют одну или несколько ступеней ГИ Ступень ГИ характеризуют следующие параметры:

  • максимально возможное число направлений (абонентских групп) Н, которое может быть выбрано с помощью ступени ГИ;
  • доступность Д равная числу выходов одного направления, к которым в процессе искания может быть подключен вход коммутационного блока ГИ;
  • число входов Nвх одного блока ГИ.

Если на ступени ГИ использовать коммутационные блоки с H = 10, то одной ступени ГИ окажется недостаточно для выбора всех 30 блоков ЛИ. Поэтому в данном случае необходимы две ступени ГИ: одна ступень (IГИ) используется для выбора направления к одной из трех тысячных групп, а другая ступень (IIГИ) обеспечивает выбор сотенного блока ЛИ в пределах данной тысячной группы. В общем случае необходимое число ступеней ГИ s, общая емкость ГТС N и параметры H и МЛИ связаны соотношением Определим, например, число s ступеней ГИ для ГАТС, в предположении, что она является декадно-шаговой. Общая емкость сети N = NГАТС + Nпс + NАУПАТС = 4000 + 1000 + 500 = 5500; из табл. 1.2 определяем H=10, МЛИ = 100, поэтому условие принимает вид 10s-100>5500, т.е. 10s > 55, что выполняется при s = 2. На любой ступени ГИ всегда совершаются два,вида искания: вынужденное - для выбора требуемого направления и свободное - для выбора свободного выхода в данном направлении (т.е. выхода к следующей ступени искания). На рис. 6.3.2 указано" какие цифры набираемого абонентом номера используются в данном примере для вынужденного искания на ступенях IГИ и IIИ. Для упрощения шнуровые комплекты и ступень предыскажния. Рассмотренные выше принципы установления соединений относятся к АТС с непосредственным управлением, при котором адресная информация направляется непосредственно в управляющие комплекты (УК) коммутационных блоков ступеней искания. В отличие от этого на АТС с регистровым управлением адресная информация принимается и накапливается вначале в специальном приборе - регистре, откуда затем по мере необходимости передается быстродействующим способом в приборы управления на ступенях искания Для приема информации регистр должен подключаться к ШК. Во время разговора регистр не занимается, поэтому общее число регистров значительно (в 5-10 раз) меньше числа ШК. Различие в количестве ШК и регистров делает необходимой ступень регистрового искания (РИ). Ступень РИ всегда работает в режиме свободного искания, обеспечивая подключение любого свободного регистра к занявшемуся ШК.

Системы АТС различаются также по способу установления соединения на ступенях искания. На показана АТС с прямым установлением соединений, при котором УК коммутационного блока ЛИ являются индивидуальными, т.е. закреплены за отдельными входами блока. Такие УК фактически связаны с разговорными трактами и конструктивно совмещаются с ШК. В АТС с обходным установлением соединений коммутационные блоки обслуживаются коллективными УК, получившими в координатных АТС название маркеров. Маркер обслуживает поочередно все вызовы, поступающие на входы коммутационного блока, с разговорными трактами он не связан.

Коммутация – процесс замыкания, размыкания и переключения электрических цепей.

Коммутационный узел (КУ) - составная часть сети электросвязи, на которой осуществляется коммутация. КУ между собой соединяется соединительными линиями СЛ (местными или междугородными).

Коммутационная станция (станция) - КУ, в который включаются абонентские линии. Абонент – лицо, пользующееся абонентским устройством для передачи и приема информации.

Канал (линия) – совокупность технических средств (линейных и станционных, обеспечивающих соединение и передачу информации между двумя смежными КУ, а также между абонентским устройством (ТА, телетайп, компьютер и т.д.) и станцией.

КУ – устройство, предназначенное для приема, обработки и распределения поступающей информации.

Для выполнения своих функций КУ должно иметь:

  1. Коммутационное поле (КП), которое предназначено для коммутации входящих и исходящий линий (каналов) на t передачи информации.
  2. Управляющее устройство (УУ), которое обеспечивает установление соединения между входящей и исходящей линией в КП, а также прием и передачу управляющей информации аппаратуре приема и передачи управляющей информации относят: регистры (комплекты ПН), КПП, пересчетчики.
  3. Линейные комплекты ЛК (это АК и КСЛ), которые принимают и передают линейные сигналы (сигналы взаимодействия)
  4. Шнуровые комплекты (ШК) предназначены для питания микрофонов ТА и выдачи служебных сигналов
  5. Кросс – устройство ввода и вывода линий.
  6. Источники электропитания.
  7. Устройства сигнализации УС
  8. Устройства учета параметров нагрузки (количество сообщений, потерь, длительность занятия и т. д.)

КУ сетей связи классифицируется по ряду признаков:

  1. По виду передаваемой информации: телефонные, телеграфные, вещания, телеуправления, передача данных и т д.
  2. По способу обслуживания соединений: ручные, п/автомат, автоматические.
  3. По месту, занимаемому в сети электросвязи: районные, центральные, узловые, оконечные, транзитные станции, УВС, УИС.
  4. По типу сети связи: междугородные, городские, сельские, учережденческие.
  5. По типу коммутационного и управляющего оборудования: электромеханические, механоэлектронные, квазиэлектронные, электронные.
  6. По системам применяемого коммутационного оборудования: ДШ, координатные, машинные, квазиэлектронные, электронные.
  7. По емкости, т. е. по числу входящих и исходящих линий, включаемых абонентов: малой, средней, большой емкости.
  8. По типу коммутации: оперативная, кроссовая, смешанная.
  9. По способу разделения каналов: пространственный, пространственно-временной, проственно-частотный.
  10. По способу передачи информации от передатчика к приемнику: узлы коммутации каналов, узлы коммутации сообщений, узлы коммутации пакетов.

Расшифровки полученных сведений не будет, т. к. именно это является задачей и объектом нашего изучения в дальнейшем.

4.2. Построение однозвенных коммутационных блоков

Однозвенным включением называется такое, при котором вход и выход КС (коммутационной системы) соединяется через одну точку коммутации.

КБ – совокупность коммутационных приборов, имеющих все или часть общих выходов и объединенных общими параметрами (это понятие практически не используется в ДШ АТС)

Источники нагрузки – линии, по которым на вход коммутационной системы поступает тф нагрузка.

Пучок линий – совокупность линий, подключенных к выходу КС и доступных определенной группе источников нагрузки.

Нагрузочная группа – совокупность источников нагрузки, имеющих доступ к определенному пучку линий, например, включенных в заданном направлении ступени искания (на все входы данного КБ).

Ступень искания – часть КП данного КУ, состоящая из соединенных между собой однотипных КБ. КБ обладает теми или иными структурными параметрами. Их можно получить, объединив определенным образом входы и выходы коммутационных приборов.

КБ характеризуется следующими структурными параметрами: числом входов и выходов, числом ПЛ, Д-доступносью входов по отношению к выходам, числом звеньев (точек коммутации), общим числом точек коммутации для построения блока, проводностью линий, коммутируемых в блоке, числом одновременных соединений в блоке.

При построении КБ можно выполнять следующие операции: объединение входов, объединение выходов, последовательное соединение коммутационных приборов (организация многозвенных схем). Операции можно объединять.

В КС включение выходов по отношению ко входам может быть полнодоступно или НПД.

ПД включение - это когда любой вход КС может быть соединен с любым свободным выходом

НПД включение – это когда вход можно соединить только с частью определенных выходов блока.

Д доступность – число выходов КС, с которыми вход КС может получить соединение (число выходов КС в данном направлении – для ступени ГИ)

Направление – это пучок линий, по любой из которой можно придти в требуемую точку коммутации.

Объединение входов :

Коммутационные параметры n x m
n - вход
m – выход

КБ могут быть построены на основе любых коммутационных приборов ШИ, ДШИ, МКС, МСФ и др.


Получился КБ с параметрами 1х2m, каждый вход имеет доступ к 2m выходам, следовательно Д=2m

Условные обозначения МКС на схеме:

Параметры n х 2m

Увеличение числа выходов и Д путем объединения входов требует увеличения объема оборудования, т.е. увеличения числа коммутационных приборов.

Объединение выходов

к m
Д = m

Входы всех коммутационных приборов имеют доступ к одной и той же группе выходов. Максимальное число одновременных соединений в таком КБ определяется числом m, если к > m , или числом входов к, если к < m .

КБ кроме функции коммутации линий могут осуществлять другие функции, например:

То, что было рассмотрено выше – практически это коммутаторы.

Коммутатор - это простейший однозвенный полнодоступный КБ, в который любой вход имеет доступ к любому выходу.

Недостаток однозвенных КБ заключается в том, что для создания КС с параметрами n х m потребуется n × m коммутационных приборов – очень много: например 100х100, МКС типа 10х10 – нужно 100 таких МКС (немыслимо)

4.3. Однозвенные ступени искания

Ступень искания – часть КП для всей совокупности входов которой имеется доступ к одним и тем же направлениям, объединяющим выходы.

КП строится из отдельных КБ, которые затем объединяются в ступени искания.

Различают несколько разновидностей ступени искания: ступени предварительного, группового, линейного и регистрового искания. В соответствии с этим СИ могут работать в режиме свободного, группового и линейного (вынужденного) искания.

4.3.1. Режимы искания

  1. Режим свободного искания – когда нет приема адресной информации (информация набора номера) и входящей линии предоставляется любой свободный канал (выход) из числа доступных.

    При этом число направлений Н = 1, а Д = М

    В таком режиме работают ступени ПИ и РИ.

  2. Режим вынужденного искания (линейное искание)- когда искание совершается под воздействием принимаемой адресной информации и входящему каналу представляется определенный исходящий канал, следовательно Н = М, а Д = 1

    В таком режиме работает ступень ЛИ.

  3. Режим группового искания – когда поиск определенного направления совершается под воздействием адресной информации, т. е. в режиме вынужденного искания, а выход в заданном направлении – в режиме свободного искания. Т. о. входящему каналу предоставляется любой свободный исходящий канал в определенном направлении, следовательно

    1 < Н < М, а Д > 1

    В таком режиме работает ступень ГИ.

  4. В некоторых системах существуют комбинированные ступени искания. Например, в АТСК ступень АИ объединяет ступени ПИ и ЛИ, но одновременно может устанавливаться только одно соединение, поэтому для данного соединения выполняется режим либо свободного, либо линейного искания.

4.3.2. Ступень ЛИ

Однозвенную ступень ЛИ можно построить с помощью ДШИ-100, Максимальная емкость станции, построенной таким образом может быть равна 100 (не более)

В этом случае каждая АЛ имеет свой индивидуальный ДШИ. АЛ подключается к щеткам своего искателя и еще заводится на соответствующие контакты всех 100 искателей данной АТС. Одноименные памели в одноименных декадах. запараллеливаются и подключается к соответствующим АЛ. АК служит для приема сигнала вызова от абонента и согласуют 2-х проводные абонентские линии с многопроводными линиями станционных приборов. Для установления соединения абонент должен набрать 2-значный номер. По первой цифре щетки поднимаются на требуемую декаду (выбор десятка), а по второй в данной декаде выберут нужную памель (выбор единицы). Следовательно, и подъем, и вращение щеток будут вынужденными, а режим искания на ступени ЛИ называется линейным. Такой способ построения неэкономичный, т. к. требуется большое число дорогих искателей (для каждого абонента).

4.3.3. Ступень ПИ

В процессе эксплуатации установлено, что одновременно может потребоваться 10-15% соединений от общего числа абонентов на АТС (на АТС на 100 абонентов максимальное число одновременных соединений – 50, но реально еще меньше – 10-15). Поэтому достаточно иметь 10 - 15 ДШИ на ступени ЛИ, но пользоваться ими должны иметь возможность все 100 абонентов.

Тогда за каждым абонентом можно закрепить индивидуальный ШИ, который называется предискателем, а в контактное поле его включить выходы к ЛИ.

Это режим прямого предыскания (бывает еще обратное предыскание) и линейные искатели становятся групповыми приборами. Их число зависит от нагрузки.

а) Процесс установления соединения при прямом предыскании проходит так: при снятии абонентом трубки ТА (вызов станции) приходят в движение щетки ПИ, отыскивающие в своем поле выход к свободному в данный момент ЛИ (режим свободного искания). После занятия ЛИ из станции абонент получает “ответ станции” и начинает набирать 2-значный номер. По первой цифре вынужденный подъем щеток, по второй – вынужденное вращение и затем выход на ТА вызываемого абонента.

Упрощенная схема

Т. о. ступень ПИ позволяет создать более экономичную схему АТС, т.к. по стоимости 100 ШИ + 10-15 ДШИ дешевле, чем 100 ДШИ.

Через ступень ПИ происходит подключение АЛ к станционным приборам (ЛИ).

б) При обратном предыскании образуется шнуровая пара – ИВ – ИЛ, число которых = 10-15 на сотенную группу.

ИВ – искатель вызова

АЛ многократно включается в поле всех ИВ и ЛИ. При снятии абонентом трубки сигнал “занятия” поступает на АК и отмечается соответствующим потенциалом в поле ИВ. Пусковое устройство ПУ приводит в действие свободный ИВ, который отыскивает в своем поле линию вызывающего абонента, а из “жестко” связанного с ним ЛИ абонент получает “ответ станции” и начинает набирать 2-значный номер. В режиме вынужденного искания щетки ЛИ находят выход к ТА вызываемого абонента.

ИВ работает в режиме свободного искания, который называется предысканием (предварительное искание)

Максимальная емкость АТС со ступенями ПИ и ЛИ может быть =100 номеров, что обусловлено емкостью поля ЛИ.

4.3.4. Ступень ГИ

Поскольку увеличение емкости АТС за счет увеличения контактного поля искателя невозможно, вводится принцип группового искания, который реализуется с введением ступени ГИ.

Одна ступень ГИ увеличивает емкость АТС в 10 раз (на порядок), т. к. на ступени имеем 10 направлений (10 декад), в каждую из которой подключается 10 линий к 100-ой по емкости группе ЛИ, отсюда 100х10=1000 номеров.

Если 2 ступени ГИ, то емкость = 100х10х10=10000номеров

Режим искания на ступени ГИ – групповой, т.е. подъем щеток – вынужденный, вращение – свободное.

Для реализации ГИ используется 1 цифра абонентского номера.

Пример: Какова емкость АТС с 2 ступенями ГИ?
100х10х10=10000номеров

Какова значность набираемого абонентом номера?
2(ЛИ) + 1(IГИ) + 1(IIГИ) = 4

В качестве коммутационных приборов на ступени ГИ ДШ АТС применяется ДШИ.

Итак, однозвенные ступени искания используются на АТС типа ДШ (в основном), т.к. РИ на АТСК тоже.







2024 © gtavrl.ru.