Raid 10 минимальное количество дисков. Почему RAID5 — «must have»


Массивы RAID были разработаны в целях повышения надежности хранения данных, увеличения скорости работы с и для обеспечения возможности объединения нескольких дисков в один большой . Разные типы RAID решают разные задачи, здесь мы рассмотрим несколько наиболее распространенных конфигураций RAID массивов из одинаковых по размеру .



RAID 0

  • RAID 0 (Stripe). Режим, при использовании которого достигается максимальная производительность. Данные равномерно распределяются по дискам массива, объединяются в один, который может быть размечен на несколько. Распределенные операции чтения и записи позволяют значительно увеличить скорость работы, поскольку несколько одновременно читают/записывают свою порцию данных. Пользователю доступен весь объем , но это снижает надежность хранения данных, поскольку при отказе одного из дисков массив обычно разрушается и восстановить данные практически невозможно. Область применения - приложения, требующие высоких скоростей обмена с диском, например видеозахват, видеомонтаж. Рекомендуется использовать с высоконадежными дисками.

    RAID 1
  • RAID 1 (Mirror). Несколько дисков (обычно 2), работающие синхронно на запись, то есть полностью дублирующие друг друга. Повышение производительности происходит только при чтении. Самый надежный способ защитить информацию от сбоя одного из дисков. Из-за высокой стоимости обычно используется при хранении очень важных данных. Высокая стоимость обусловлена тем, что лишь половина от общей емкости доступна для пользователя.

    RAID 10
  • RAID 10 , также иногда называется RAID 1+0 - комбинация двух первых вариантов. (Массив RAID0 из массивов RAID1). Имеет все скоростные преимущества RAID0 и преимущество надежности RAID1, сохраняя недостаток - высокую стоимость дискового массива, так как эффективная ёмкость массива равна половине ёмкости использованных в нём дисков. Для создания такого массива требуется минимум 4 диска. (При этом их число должно быть чётным).
  • RAID 0+1 - Массив RAID1 из массивов RAID0. Фактически не применяется из-за отсутствия преимуществ по сравнению с RAID10 и меньшей отказоустойчивости.

    RAID 1E
  • RAID 1E - Похожий на RAID10 вариант распределения данных по дискам, допускающий использование нечётного числа (минимальное количество - 3)
  • RAID 2, 3, 4 - различные варианты распределенного хранения данных с дисками, выделенными под коды четности и различными размерами блока. В настоящее время практически не используются из-за невысокой производительности и необходимости выделять много дисковой емкости под хранение кодов ЕСС и/или четности.


    RAID 5
  • RAID 5 - массив, также использующий распределенное хранение данных аналогично RAID 0 (и объединение в один большой логический ) + распределенное хранение кодов четности для восстановления данных при сбоях. Относительно предыдущих конфигураций размер Stripe-блока еще больше увеличен. Возможно как одновременное чтение, так и запись. Плюсом этого варианта является то, что доступная для пользователя емкость массива уменьшается на емкость лишь одного диска, хотя надежность хранения данных ниже, чем у RAID 1. По сути, является компромиссом между RAID0 и RAID1, обеспечивая достаточно высокую скорость работы при неплохой надежности хранения данных. При отказе одного диска из массива данные могут быть восстановлены без потерь в автоматическом режиме. Минимальное количество дисков для такого массива - 3.
    "Программные" реализации RAID5, встроенные в южные мосты материнских плат, не отличаются высокой скоростью записи, поэтому годятся далеко не для всех применений.


    RAID 5EE
  • RAID 5EE - массив, аналогичный RAID5, однако кроме распределенного хранения кодов четности используется распределение резервных областей - фактически задействуется , который можно добавить в массив RAID5 в качестве запасного (такие массивы называют 5+ или 5+spare). В RAID 5 массиве резервный диск простаивает до тех пор, пока не выйдет из строя один из основных , в то время как в RAID 5EE массиве этот диск используется совместно с остальными HDD все время, что положительно сказывается на производительность массива. К примеру, массив RAID5EE из 5 HDD сможет выполнить на 25% больше операций ввода/вывода за секунду, чем RAID5 массив из 4 основных и одного резервного HDD. Минимальное количество дисков для такого массива - 4.


    RAID 6
  • RAID 6 - аналог RAID5 c большим уровнем избыточности - информация не теряется при отказе двух любых дисков, соответственно, общая ёмкость массива уменьшается на ёмкость двух дисков. Минимальное количество дисков, необходимое для создания массива такого уровня - 4. Скорость работы в общем случае примерно аналогична RAID5. Рекомендуется для применений, где важна максимально высокая надёжность.


    RAID 50
  • RAID 50 - объединение двух(или более, но это крайне редко применяется) массивов RAID5 в страйп, т.е. комбинация RAID5 и RAID0, частично исправляющая главный недостаток RAID5 - низкую скорость записи данных за счёт параллельного использования нескольких таких массивов. Общая ёмкость массива уменьшается на ёмкость двух , но, в отличие от RAID6, без потери данных такой массив переносит отказ лишь одного диска, а минимально необходимое число дисков для создания массива RAID50 равно 6. Наряду с RAID10, это наиболее рекомендуемый уровень RAID для использования в приложениях, где требуется высокая производительность в сочетании с приемлемой надёжностью.


    RAID 60
  • RAID 60 - объединение двух массивов RAID6 в страйп. Скорость записи повышается примерно в два раза, относительно скорости записи в RAID6. Минимальное количество дисков для создания такого массива - 8. Информация не теряется при отказе двух дисков из каждого RAID 6 массива.
  • Matrix RAID - технология, реализованная фирмой Intel в своих южных мостах, начиная с ICH6R, позволяющая организовать всего на двух дисках несколько массивов RAID0 и RAID1, одновременно создавая разделы как с повышенной скоростью работы, так и с повышенной надёжностью хранения данных.
  • JBOD (От английского "Just a Bunch Of Disks")- последовательное объединение нескольких физических в один логический, не влияющее на производительность (надёжность при этом падает аналогично RAID0), при этом могут иметь разные размеры. В настоящее время практически не применяется.
  • Технология RAID разработаная в 1980-х годах задумывалась как обьединение нескольких дисков в дисковый массив с целью увеличения емкости, повышения надежности и доступности данных. Рассмотрим вкратце основные уровни RAID

    RAID0: Чередование (Striping)

    Описание : Данные распределены по всем дискам массива равномерно. В массиве участвуют два или более дисков

    Производительность : Одновременно может быть записан и прочитан бит данных

    Плюсы : Быстродействие чтения/записи

    Минусы : Нет резервирования. Любой диск вышедший из строя приведет к разрушению массива и как следствие потере всех данных

    Использование : Приложения, которым необходим скоросной обмен данными, хранилище временных файлов, некритичные данные

    RAID1: Зеркалирование (Mirroring)

    Описание : Запись/чтение данных происходит одновременно на два или более дисков массива

    Производительность : Операции чтения выполняются бстрее т.к. данные считываются со всех дисков массива одновременно. Операции записи медленнее т.к. запись выполняется дважды или более раз (зависит от количества дисков в массиве)

    Плюсы : Выход из строя любого количества дисков массива кроме последнего не приводит к потере данных

    Минусы : Стоимость. Пропорциональна количеству дисков в массиве

    Использование : Системные разделы, разделы с важными данными, приложения использующие транзакции

    RAID3: Чередование с выделенным диском чётности (Virtual disk blocks)

    Описание : Данные чередуются по дискам массива на уровне байтов. Необходим дополнительный диск на котором хранится информация о четности. Минимально три диска в массиве

    Производительность : Низкая на операциях записи

    Плюсы : Данные остаются полностью доступными при выходе из строя одного диска

    Минусы : Производительность

    Использование : Редко меняющиеся, часто считываемые данные

    RAID4: Чередование с выделенным диском чётности (Dedicated parity disk)

    Описание : Данные чередуются на уровне блоков. Необходим дополнительный диск на котором хранится информация о четности. Минимально три диска в массиве

    Производительность : Низкая на операциях записи

    Плюсы : Это лучше чем RAID3. Данные остаются полностью доступными при выходе из строя одного диска. В массив можно добавить любое количество дисков

    Минусы : Узкое место такого массива — выделенный диск четности. Данные не считаются записанными, пока не будет записана контрольная сумма на диск четности

    Использование : Не подходит для высокопроизводительных систем с активной записью/чтением

    RAID5: Чередование чётности (Striped parity)

    Описание : В отличии от RAID4 данные и четность чередуются по всем дискам массива. Очень хорошо иметь дополнительный вакантный диск (hot spare disk) на случай если один из дисков массива выйдет из строя. Тогда контроллер подхватит вакантный диск и массив будет перестроен. Минимально три диска в массиве

    Производительность : Лучше, чем в RAID4 т.к. решена проблема выделенного диска четности

    Плюсы : Достигнут баланс чтения/записи/резервирования

    Минусы : Просадка производительности во время перестройки массива. Если не используется кеш записи (рейд-контроллер не оборудован батарейкой и не настроен), то просадка будет особенно чуствительна

    Использование : Веб-сервера, файловые сервера где используется интенсивное чтение данных

    RAID6: Двойное чередование чётности (Dual parity)

    Описание : Похож на RAID5 с той разницей, что в массиве присутствует два диска контроля четности, что повышает надежность системы. Минимально четыре диска в массиве

    Производительность : Хуже на 10%-15% чем в RAID5 из-за более сложного алгоритма рассчета контрольных сумм. Больше операций чтения/записи

    Плюсы : Повышена надежность сохранности данных. Система останется в работе при двух отказавших дисках

    Минусы : Стоимость. Просадка производительности во время перестройки массива

    Использование : Резервные хранилища данных с повышенной надежностью

    RAID10

    Описание : Из групп массивов RAID1 строится RAID0

    Производительность : Считается самым быстрым и надежным массивом

    Плюсы : Повышена надежность сохранности данных. Массив будет жизнеспособен пока в каждой группе массивов RAID1 будет рабочим последний диск

    Минусы : Стоимость, один из самых дорогих

    Использование : Веб-сервера с активным чтением данных, приложения используюшие транзакции

    Все современные материнские платы оснащены интегрированным RAID-контроллером, а топовые модели имеют даже по нескольку интегрированных RAID-контроллеров. Насколько интегрированные RAID-контроллеры востребованы домашними пользователями - вопрос отдельный. В любом случае современная материнская плата предоставляет пользователю возможность создания RAID-массива из нескольких дисков. Однако далеко не каждый домашний пользователь знает, как создать RAID-массив, какой уровень массива выбрать, да и вообще плохо представляет себе плюсы и минусы использования RAID-массивов.
    В этой статье мы дадим краткие рекомендации по созданию RAID-массивов на домашних ПК и на конкретном примере продемонстрируем, каким образом можно самостоятельно протестировать производительность RAID-массива.

    История создания

    Впервые термин «RAID-массив» появился в 1987 году, когда американские исследователи Паттерсон, Гибсон и Катц из Калифорнийского университета Беркли в своей статье «Избыточный массив недорогих дисков» (“A Case for Redundant Arrays of Inexpensive Discs, RAID”) описали, каким образом можно объединить несколько дешевых жестких дисков в одно логическое устройство так, чтобы в результате повышались емкость и быстродействие системы, а отказ отдельных дисков не приводил к отказу всей системы.

    С момента выхода этой статьи прошло уже более 20 лет, но технология построения RAID-массивов не утратила актуальности и сегодня. Единственное, что изменилось с тех пор, - это расшифровка аббревиатуры RAID. Дело в том, что первоначально RAID-массивы строились вовсе не на дешевых дисках, поэтому слово Inexpensive (недорогие) поменяли на Independent (независимые), что больше соответствовало действительности.

    Принцип действия

    Итак, RAID - это избыточный массив независимых дисков (Redundant Arrays of Independent Discs), на который возлагается задача обеспечения отказоустойчивости и повышения производительности. Отказоустойчивость достигается за счет избыточности. То есть часть емкости дискового пространства отводится для служебных целей, становясь недоступной для пользователя.

    Повышение производительности дисковой подсистемы обеспечивается одновременной работой нескольких дисков, и в этом смысле чем больше дисков в массиве (до определенного предела), тем лучше.

    Совместную работу дисков в массиве можно организовать с помощью либо параллельного, либо независимого доступа. При параллельном доступе дисковое пространство разбивается на блоки (полоски) для записи данных. Аналогично информация, подлежащая записи на диск, разбивается на такие же блоки. При записи отдельные блоки записываются на разные диски, причем запись нескольких блоков на различные диски происходит одновременно, что и приводит к увеличению производительности в операциях записи. Нужная информация также считывается отдельными блоками одновременно с нескольких дисков, что тоже способствует росту производительности пропорционально количеству дисков в массиве.

    Следует отметить, что модель с параллельным доступом реализуется только при условии, что размер запроса на запись данных больше размера самого блока. В противном случае осуществлять параллельную запись нескольких блоков практически невозможно. Представим ситуацию, когда размер отдельного блока составляет 8 Кбайт, а размер запроса на запись данных - 64 Кбайт. В этом случае исходная информация нарезается на восемь блоков по 8 Кбайт каждый. Если имеется массив из четырех дисков, то одновременно можно записать четыре блока, или 32 Кбайт, за один раз. Очевидно, что в рассмотренном примере скорость записи и скорость считывания окажутся в четыре раза выше, чем при использовании одного диска. Это справедливо лишь для идеальной ситуации, однако размер запроса далеко не всегда кратен размеру блока и количеству дисков в массиве.

    Если же размер записываемых данных меньше размера блока, то реализуется принципиально иная модель - независимый доступ. Более того, эта модель может использоваться и в том случае, когда размер записываемых данных больше размера одного блока. При независимом доступе все данные отдельного запроса записываются на отдельный диск, то есть ситуация идентична работе с одним диском. Преимущество модели с независимым доступом в том, что при одновременном поступлении нескольких запросов на запись (чтение) все они будут выполняться на отдельных дисках независимо друг от друга. Подобная ситуация типична, например, для серверов.

    В соответствии с различными типами доступа существуют и разные типы RAID-массивов, которые принято характеризовать уровнями RAID. Кроме типа доступа, уровни RAID различаются способом размещения и формирования избыточной информации. Избыточная информация может либо размещаться на специально выделенном диске, либо распределяться между всеми дисками. Способов формирования этой информации достаточно много. Простейший из них - это полное дублирование (100-процентная избыточность), или зеркалирование. Кроме того, используются коды с коррекцией ошибок, а также вычисление четности.

    Уровни RAID-массивов

    В настоящее время существует несколько RAID-уровней, которые можно считать стандартизованными, - это RAID 0, RAID 1, RAID 2, RAID 3, RAID 4, RAID 5 и RAID 6.

    Применяются также различные комбинации RAID-уровней, что позволяет объединить их достоинства. Обычно это комбинация какого-либо отказоустойчивого уровня и нулевого уровня, применяемого для повышения производительности (RAID 1+0, RAID 0+1, RAID 50).

    Отметим, что все современные RAID-контроллеры поддерживают функцию JBOD (Just a Bench Of Disks), которая не предназначена для создания массивов, - она обеспечивает возможность подключения к RAID-контроллеру отдельных дисков.

    Нужно отметить, что интегрированные на материнские платы для домашних ПК RAID-контроллеры поддерживают далеко не все RAID-уровни. Двухпортовые RAID-контроллеры поддерживают только уровни 0 и 1, а RAID-контроллеры с большим количество портов (например, 6-портовый RAID-контроллер, интегрированный в южный мост чипсета ICH9R/ICH10R) - также уровни 10 и 5.

    Кроме того, если говорить о материнских платах на чипсетах Intel, то в них тоже реализована функция Intel Matrix RAID, которая позволяет создать на нескольких жестких дисках одновременно RAID-матрицы нескольких уровней, выделив для каждой из них часть дискового пространства.

    RAID 0

    RAID уровня 0, строго говоря, не является избыточным массивом и соответственно не обеспечивает надежности хранения данных. Тем не менее данный уровень активно применяется в случаях, когда необходимо обеспечить высокую производительность дисковой подсистемы. При создании RAID-массива уровня 0 информация разбивается на блоки (иногда эти блоки называют страйпами (stripe)), которые записываются на отдельные диски, то есть создается система с параллельным доступом (если, конечно, это позволяет размер блока). Благодаря возможности одновременного ввода-вывода с нескольких дисков, RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, поскольку не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. В основном RAID 0 применяется в тех областях, где требуется быстрая передача большого объема данных.

    RAID 1 (Mirrored disk)

    RAID уровня 1 - это массив двух дисков со 100-процентной избыточностью. То есть данные при этом просто полностью дублируются (зеркалируются), за счет чего достигается очень высокий уровень надежности (как, впрочем, и стоимости). Отметим, что для реализации уровня 1 не требуется предварительно разбивать диски и данные на блоки. В простейшем случае два диска содержат одинаковую информацию и являются одним логическим диском. При выходе из строя одного диска его функции выполняет другой (что абсолютно прозрачно для пользователя). Восстановление массива выполняется простым копированием. Кроме того, этот уровень удваивает скорость считывания информации, так как эта операция может выполняться одновременно с двух дисков. Подобная схема хранения информации используется в основном в тех случаях, когда цена безопасности данных гораздо выше стоимости реализации системы хранения.

    RAID 5

    RAID 5 - это отказоустойчивый дисковый массив с распределенным хранением контрольных сумм. При записи поток данных разбивается на блоки (страйпы) на уровне байтов и одновременно записываются на все диски массива в циклическом порядке.

    Предположим, что массив содержит n дисков, а размер страйпа d . Для каждой порции из n–1 страйпов рассчитывается контрольная сумма p .

    Cтрайп d 1 записывается на первый диск, страйп d 2 - на второй и так далее вплоть до страйпа d n–1 , который записывается на (n –1)-й диск. Далее на n -й диск записывается контрольная сумма p n , и процесс циклически повторяется с первого диска, на который записывается страйп d n .

    Процесс записи (n–1) страйпов и их контрольной суммы производится одновременно на все n дисков.

    Для вычисления контрольной суммы используется поразрядная операция «исключающего ИЛИ» (XOR), применяемая к записываемым блокам данных. Так, если имеется n жестких дисков, d - блок данных (страйп), то контрольная сумма рассчитывается по следующей формуле:

    p n = d 1 d 2 ... d 1–1 .

    В случае выхода из строя любого диска данные на нем можно восстановить по контрольным данным и по данным, оставшимся на исправных дисках.

    В качестве иллюстрации рассмотрим блоки размером по четыре бита. Пусть имеются всего пять дисков для хранения данных и записи контрольных сумм. Если есть последовательность битов 1101 0011 1100 1011, разбитая на блоки по четыре бита, то для расчета контрольной суммы необходимо выполнить следующую поразрядную операцию:

    1101 0011 1100 1011 = 1001.

    Таким образом, контрольная сумма, записываемая на пятый диск, равна 1001.

    Если один из дисков, например четвертый, вышел из строя, то блок d 4 = 1100 окажется недоступным при считывании. Однако его значение легко восстановить по контрольной сумме и по значениям остальных блоков с помощью все той же операции «исключающего ИЛИ»:

    d 4 = d 1 d 2 d 4 p 5 .

    В нашем примере получим:

    d 4 = (1101) (0011) (1100) (1011) = 1001.

    В случае RAID 5 все диски массива имеют одинаковый размер, однако общая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 100 Гбайт, то фактический размер массива составляет 400 Гбайт, поскольку 100 Гбайт отводится на контрольную информацию.

    RAID 5 может быть построен на трех и более жестких дисках. С увеличением количества жестких дисков в массиве его избыточность уменьшается.

    RAID 5 имеет архитектуру независимого доступа, что обеспечивает возможность одновременного выполнения нескольких операций считывания или записи.

    RAID 10

    Уровень RAID 10 представляет собой некое сочетание уровней 0 и 1. Минимально для этого уровня требуются четыре диска. В массиве RAID 10 из четырех дисков они попарно объединяются в массивы уровня 0, а оба этих массива как логические диски объединяются в массив уровня 1. Возможен и другой подход: первоначально диски объединяются в зеркальные массивы уровня 1, а затем логические диски на основе этих массивов - в массив уровня 0.

    Intel Matrix RAID

    Рассмотренные RAID-массивы уровней 5 и 1 редко используются в домашних условиях, что связано прежде всего с высокой стоимостью подобных решений. Наиболее часто для домашних ПК применяется именно массив уровня 0 на двух дисках. Как мы уже отмечали, RAID уровня 0 не обеспечивает безопасности хранения данных, а потому конечные пользователи сталкиваются с выбором: создавать быстрый, но не обеспечивающий надежности хранения данных RAID-массив уровня 0 или же, увеличивая стоимость дискового пространства в два раза, - RAID-массив уровня 1, который обеспечивает надежность хранения данных, однако не позволяет получить существенного выигрыша в производительности.

    Для того чтобы разрешить эту нелегкую проблему, корпорация Intel разработала технологию Intel Matrix Storage, позволяющую объединить достоинства массивов уровней 0 и 1 всего на двух физических дисках. А для того, чтобы подчеркнуть, что речь в данном случае идет не просто о RAID-массиве, а о массиве, сочетающем в себе и физические и логические диски, в названии технологии вместо слова «массив» используется слово «матрица».

    Итак, что же представляет собой RAID-матрица из двух дисков по технологии Intel Matrix Storage? Основная идея заключается в том, что при наличии в системе нескольких жестких дисков и материнской платы с чипсетом Intel, поддерживающим технологию Intel Matrix Storage, возможно разделение дискового пространства на несколько частей, каждая из которых будет функционировать как отдельный RAID-массив.

    Рассмотрим простой пример RAID-матрицы из двух дисков по 120 Гбайт каждый. Любой из дисков можно разбить на два логических диска, например по 40 и 80 Гбайт. Далее два логических диска одного размера (например, по 40 Гбайт) можно объединить в RAID-матрицу уровня 1, а оставшиеся логические диски - в RAID-матрицу уровня 0.

    В принципе, используя два физических диска, также можно создать всего одну или две RAID-матрицы уровня 0, но вот получить только матрицы уровня 1 невозможно. То есть если в системе имеются всего два диска, то технология Intel Matrix Storage позволяет создавать следующие типы RAID-матриц:

    • одна матрица уровня 0;
    • две матрицы уровня 0;
    • матрица уровня 0 и матрица уровня 1.

    Если в системе установлены три жестких диска, то возможно создание следующих типов RAID-матриц:

    • одна матрица уровня 0;
    • одна матрица уровня 5;
    • две матрицы уровня 0;
    • две матрицы уровня 5;
    • матрица уровня 0 и матрица уровня 5.

    Если в системе установлены четыре жестких диска, то дополнительно имеется возможность создать RAID-матрицу уровня 10, а также комбинации уровня 10 и уровня 0 или 5.

    От теории к практике

    Ели говорить о домашних компьютерах, то наиболее востребованными и популярными являются RAID-массивы уровней 0 и 1. Использование RAID-массивов из трех и более дисков в домашних ПК - скорее исключение из правила. Связано это с тем, что, с одной стороны, стоимость RAID-массивов возрастает пропорционально количеству задействованных в нем дисков, а с другой - для домашних компьютеров первоочередное значение имеет емкость дискового массива, а не его производительность и надежность.

    Поэтому в дальнейшем мы рассмотрим RAID-массивы уровней 0 и 1 на основе только двух дисков. В задачу нашего исследования будет входить сравнение производительности и функциональности RAID-массивов уровней 0 и 1, созданных на базе нескольких интегрированных RAID-контроллеров, а также исследование зависимости скоростных характеристик RAID-массива от размера страйпа.

    Дело в том, что хотя теоретически при использовании RAID-массива уровня 0 скорость чтения и записи должна возрастать вдвое, на практике возрастание скоростных характеристик гораздо менее скромное и для разных RAID-контроллеров оно различно. Аналогично и для RAID-массива уровня 1: несмотря на то что теоретически скорость чтения должна увеличиваться вдвое, на практике не всё так гладко.

    Для нашего сравнительного тестирования RAID-контроллеров мы использовали материнскую плату Gigabyte GA-EX58A-UD7. Эта плата основана на чипсете Intel X58 Express с южным мостом ICH10R, имеющим интегрированный RAID-контроллер на шесть портов SATA II, который поддерживает организацию RAID-массивов уровней 0, 1, 10 и 5 с функцией Intel Matrix RAID. Кроме того, на плате Gigabyte GA-EX58A-UD7 интегрирован RAID-контроллер GIGABYTE SATA2, на базе которого реализованы два порта SATA II c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

    Также на плате GA-EX58A-UD7 интегрирован SATA III-контроллер Marvell 9128, на базе которого реализованы два порта SATA III c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

    Таким образом, на плате Gigabyte GA-EX58A-UD7 имеются три отдельных RAID-контроллера, на базе которых можно создать RAID-массивы уровней 0 и 1 и сравнить их друг с другом. Напомним, что стандарт SATA III обратно совместим со стандартом SATA II, поэтому на базе контроллера Marvell 9128, поддерживающего диски с интерфейсом SATA III, можно также создавать RAID-массивы с использованием дисков с интерфейсом SATA II.

    Стенд для тестирования имел следующую конфигурацию:

    • процессор - Intel Core i7-965 Extreme Edition;
    • материнская плата - Gigabyte GA-EX58A-UD7;
    • версия BIOS - F2a;
    • жесткие диски - два диска Western Digital WD1002FBYS, один диск Western Digital WD3200AAKS;
    • интегрированные RAID-контроллеры:
    • ICH10R,
    • GIGABYTE SATA2,
    • Marvell 9128;
    • память - DDR3-1066;
    • объем памяти - 3 Гбайт (три модуля по 1024 Мбайт);
    • режим работы памяти - DDR3-1333, трехканальный режим работы;
    • видеокарта - Gigabyte GeForce GTS295;
    • блок питания - Tagan 1300W.

    Тестирование проводилось под управлением операционной системы Microsoft Windows 7 Ultimate (32-bit). Операционная система инсталлировалась на диск Western Digital WD3200AAKS, который подключался к порту контроллера SATA II, интегрированного в южный мост ICH10R. RAID-массив собирался на двух дисках WD1002FBYS с интерфейсом SATA II.

    Для измерения скоростных характеристик создаваемых RAID-массивов мы использовали утилиту IOmeter, которая является отраслевым стандартом для измерения производительности дисковых систем.

    Утилита IOmeter

    Поскольку мы задумывали эту статью как своеобразное руководство пользователя по созданию и тестированию RAID-массивов, логично будет начать с описания утилиты IOmeter (Input/Output meter), которая, как мы уже отметили, является своеобразным отраслевым стандартом для измерения производительности дисковых систем. Данная утилита бесплатна, и ее можно скачать с ресурса http://www.iometer.org.

    Утилита IOmeter является синтетическим тестом и позволяет работать с неразбитыми на логические разделы жесткими дисками, благодаря чему можно тестировать диски независимо от файловой структуры и свести к нулю влияние операционной системы.

    При тестировании возможно создание специфической модели доступа, или «паттерна», которая позволяет конкретизировать выполнение жестким диском специфических операций. В случае создания конкретной модели доступа разрешается менять следующие параметры:

    • размер запроса на передачу данных;
    • случайное/последовательное распределение (в %);
    • распределение операций чтения/записи (в %);
    • количество отдельных операций ввода-вывода, работающих параллельно.

    Утилита IOmeter не требует инсталляции на компьютер и состоит из двух частей: собственно IOmeter и Dynamo.

    IOmeter - это контролирующая часть программы с пользовательским графическим интерфейсом, позволяющим производить все необходимые настройки. Dynamo - это генератор нагрузки, который не имеет интерфейса. Каждый раз при запуске файла IOmeter.exe автоматически запускается и генератор нагрузки Dynamo.exe.

    Для того чтобы начать работу с программой IOmeter, достаточно запустить файл IOmeter.exe. При этом открывается главное окно программы IOmeter (рис. 1).

    Рис. 1. Главное окно программы IOmeter

    Нужно отметить, что утилита IOmeter позволяет производить тестирование не только локальных дисковых систем (DAS), но и сетевых накопителей (NAS). К примеру, с ее помощью можно протестировать производительность дисковой подсистемы сервера (файл-сервера), используя для этого несколько сетевых клиентов. Поэтому часть закладок и инструментов в окне утилиты IOmeter относится именно к сетевым настройкам программы. Понятно, что при тестировании дисков и RAID-массивов эти возможности программы нам не потребуются, а потому мы не станем объяснять назначение всех вкладок и инструментов.

    Итак, при запуске программы IOmeter в левой части главного окна (в окне Topology) будет отображаться древовидная структура всех запущенных генераторов нагрузки (экземпляров Dynamo). Каждый запущенный экземпляр генератора нагрузки Dynamo называется менеджером (manager). Кроме того, программа IOmeter является многопотоковой и каждый отдельный запущенный поток экземпляра генератора нагрузки Dynamo называется Worker. Количество запущенных Worker’ов всегда соответствует количеству логических ядер процессора.

    В нашем примере используется только один компьютер с четырехъядерным процессором, поддерживающим технологию Hyper-Threading, поэтому запускается лишь один менеджер (один экземпляр Dynamo) и восемь (по количеству логических ядер процессора) Worker’ов.

    Собственно, для тестирования дисков в данном окне нет необходимости что-либо менять или добавлять.

    Если выделить мышью название компьютера в древовидной структуре запущенных экземпляров Dynamo, то в окне Target на вкладке Disk Target отобразятся все диски, дисковые массивы и прочие накопители (включая сетевые), установленные в компьютере. Это те накопители, с которыми программа IOmeter может работать. Носители могут быть помечены желтым или голубым цветом. Желтым цветом отмечаются логические разделы носителей, а голубым - физические устройства без созданных на них логических разделов. Логический раздел может быть перечеркнут или не перечеркнут. Дело в том, что для работы программы с логическим разделом его нужно прежде подготовить, создав на нем специальный файл, равный по размеру емкости всего логического раздела. Если логический раздел перечеркнут, то это значит, что раздел еще не подготовлен для тестирования (он будет подготовлен автоматически на первом этапе тестирования), ну а если раздел не перечеркнут, то это означает, что на логическом разделе уже создан файл, полностью готовый для тестирования.

    Отметим, что, несмотря на поддерживаемую возможность работы с логическими разделами, оптимально тестировать именно не разбитые на логические разделы диски. Удалить логический раздел диска можно очень просто - через оснастку Disk Management . Для доступа к ней достаточно щелкнуть правой кнопкой мыши на значке Computer на рабочем столе и в открывшемся меню выбрать пункт Manage . В открывшемся окне Computer Management в левой части необходимо выбрать пункт Storage , а в нем - Disk Management . После этого в правой части окна Computer Management отобразятся все подключенные диски. Щелкнув правой кнопкой по нужному диску и выбрав в открывшемся меню пункт Delete Volume …, можно удалить логический раздел на физическом диске. Напомним, что при удалении с диска логического раздела вся информация на нем удаляется без возможности восстановления.

    Вообще, с помощью утилиты IOmeter тестировать можно только чистые диски или дисковые массивы. То есть нельзя протестировать диск или дисковый массив, на котором установлена операционная система.

    Итак, вернемся к описанию утилиты IOmeter. В окне Target на вкладке Disk Target необходимо выбрать тот диск (или дисковый массив), который будет подвергаться тестированию. Далее необходимо открыть вкладку Access Specifications (рис. 2), на которой можно будет определить сценарий тестирования.

    Рис. 2. Вкладка Access Specifications утилиты IOmeter

    В окне Global Access Specifications имеется список предустановленных сценариев тестирования, которые можно присвоить менеджеру загрузки. Впрочем, эти сценарии нам не понадобятся, поэтому все их можно выделить и удалить (для этого предусмотрена кнопка Delete ). После этого нажмем на кнопку New , чтобы создать новый сценарий тестирования. В открывшемся окне Edit Access Specification можно определить сценарий загрузки диска или RAID-массива.

    Предположим, мы хотим выяснить зависимость скорости последовательного (линейного) чтения и записи от размера блока запроса на передачу данных. Для этого нам нужно сформировать последовательность сценариев загрузки в режиме последовательного чтения при различных размерах блока, а затем последовательность сценариев загрузки в режиме последовательной записи при различных размерах блока. Обычно размеры блоков выбираются в виде ряда, каждый член которого вдвое больше предыдущего, а первый член этого ряда равен 512 байт. То есть размеры блоков составляют следующий ряд: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт. Делать размер блока больше 1 Мбайт при последовательных операциях нет смысла, поскольку при таких больших размерах блока данных скорость последовательных операций не изменяется.

    Итак, сформируем сценарий загрузки в режиме последовательного чтения для блока размером 512 байт.

    В поле Name окна Edit Access Specification вводим название сценария загрузки. Например, Sequential_Read_512. Далее в поле Transfer Request Size задаем размер блока данных 512 байт. Ползунок Percent Random/Sequential Distribution (процентное соотношение между последовательными и выборочными операциями) сдвигаем до упора влево, чтобы все наши операции были только последовательными. Ну а ползунок , задающий процентное соотношение между операциями чтения и записи, сдвигаем до упора вправо, чтобы все наши операции были только чтением. Остальные параметры в окне Edit Access Specification менять не нужно (рис. 3).

    Рис. 3. Окно Edit Access Specification для создания сценария загрузки последовательного чтения
    при размере блока данных 512 байт

    Нажимаем на кнопку Ok , и первый созданный нами сценарий отобразится в окне Global Access Specifications на вкладке Access Specifications утилиты IOmeter.

    Аналогично нужно создать сценарии и для остальных блоков данных, однако, чтобы облегчить себе работу, проще не создавать сценарий каждый раз заново, нажимая для этого кнопку New , а, выбрав последний созданный сценарий, нажать кнопку Edit Copy (редактировать копию). После этого опять откроется окно Edit Access Specification с настройками нашего последнего созданного сценария. В нем достаточно будет поменять лишь название и размер блока. Проделав аналогичную процедуру для всех остальных размеров блоков, можно приступить к формированию сценариев для последовательной записи, что делается совершенно аналогично, за исключением того, что ползунок Percent Read/Write Distribution , задающий процентное соотношение между операциями чтения и записи, нужно сдвинуть до упора влево.

    Аналогично можно создать сценарии для выборочной записи и чтения.

    После того как все сценарии будут готовы, их нужно присвоить менеджеру загрузки, то есть указать, с какими сценариями будет работать Dynamo .

    Для этого еще раз проверяем, что в окне Topology выделено название компьютера (то есть менеджер нагрузки на локальном ПК), а не отдельный Worker. Это гарантирует, что сценарии нагрузки будут присваиваться сразу всем Worker’ам. Далее в окне Global Access Specifications выделяем все созданные нами сценарии нагрузки и нажимаем кнопку Add . Все выделенные сценарии нагрузки добавятся в окно (рис. 4).

    Рис. 4. Присвоение созданных сценариев нагрузки менеджеру нагрузки

    После этого нужно перейти к вкладке Test Setup (рис. 5), на которой можно задать время выполнения каждого созданного нами сценария. Для этого в группе Run Time задаем время выполнения сценария нагрузки. Вполне достаточно будет задать время, равное 3 мин.

    Рис. 5. Задание времени выполнения сценария нагрузки

    Кроме того, в поле Test Description необходимо указать название всего теста. В принципе, данная вкладка имеет массу других настроек, однако для наших задач они не нужны.

    После того как все необходимые настройки произведены, рекомендуется сохранить созданный тест, нажав на панели инструментов на кнопку с изображением дискеты. Тест сохраняется с расширением *.icf. Впоследствии можно будет воспользоваться созданным сценарием нагрузки, запустив не файл IOmeter.exe, а сохраненный файл с расширением *.icf.

    Теперь можно приступить непосредственно к тестированию, нажав на кнопку с изображением флажка. Вам будет предложено указать название файла с результатами тестирования и выбрать его местоположение. Результаты тестирования сохраняются в CSV-файле, который потом легко экспортировать в Excel и, установив фильтр по первому столбцу, выбрать нужные данные с результатами тестирования.

    В ходе тестирования промежуточные результаты можно наблюдать на вкладке Result Display , а определить, к какому сценарию нагрузки они относятся, можно на вкладке Access Specifications . В окне Assigned Access Specification исполняемый сценарий отображается зеленым, выполненные сценарии - красным, а еще не выполненные сценарии - синим цветом.

    Итак, мы рассмотрели базовые приемы работы с утилитой IOmeter, которые потребуются для тестирования отдельных дисков или RAID-массивов. Отметим, что мы рассказали далеко не обо всех возможностях утилиты IOmeter, но описание всех ее возможностей выходит за рамки данной статьи.

    Создание RAID-массива на базе контроллера GIGABYTE SATA2

    Итак, мы начинаем создание RAID-массива на базе двух дисков с использованием интегрированного на плате RAID-контроллера GIGABYTE SATA2. Конечно, сама компания Gigabyte не производит чипов, а потому под чипом GIGABYTE SATA2 скрывается перемаркированный чип другой фирмы. Как можно выяснить из INF-файла драйвера, речь идет о контроллере серии JMicron JMB36x.

    Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+G, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS нужно определить режим работы двух SATA-портов, относящихся к контроллеру GIGABYTE SATA2, как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

    Меню настройки RAID-контроллера GIGABYTE SATA2 довольно простое. Как мы уже отмечали, контроллер является двухпортовым и позволяет создавать RAID-массивы уровня 0 или 1. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива имеется возможность указать его название, выбрать уровень массива (0 или 1), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

    Если массив создан, то какие-либо изменения в нем уже невозможны. То есть нельзя впоследствии для созданного массива изменить, например, его уровень или размер страйпа. Для этого прежде нужно удалить массив (с потерей данных), а потом создать его заново. Собственно, это свойственно не только контроллеру GIGABYTE SATA2. Невозможность изменения параметров созданных RAID-массивов - особенность всех контроллеров, которая вытекает из самого принципа реализации RAID-массива.

    После того как массив на базе контроллера GIGABYTE SATA2 создан, текущую информацию о нем можно просмотреть, используя утилиту GIGABYTE RAID Configurer, которая устанавливается автоматически вместе с драйвером.

    Создание RAID-массива на базе контроллера Marvell 9128

    Конфигурирование RAID-контроллера Marvell 9128 возможно только через настройки BIOS платы Gigabyte GA-EX58A-UD7. Вообще, нужно сказать, что меню конфигуратора контроллера Marvell 9128 несколько сыровато и может ввести в заблуждение неискушенных пользователей. Впрочем, об этих незначительных недоработках мы расскажем чуть позже, а пока рассмотрим основные функциональные возможности контроллера Marvell 9128.

    Итак, несмотря на то что этот контроллер поддерживает работу с дисками с интерфейсом SATA III, он также полностью совместим с дисками с интерфейсом SATA II.

    Контроллер Marvell 9128 позволяет создать RAID-массив уровней 0 и 1 на базе двух дисков. Для массива уровня 0 можно задать размер страйпа 32 или 64 Кбайт, а также указать имя массива. Кроме того, имеется и такая опция, как Gigabyte Rounding, которая нуждается в пояснении. Несмотря на название, созвучное с именем компании-производителя, функция Gigabyte Rounding никакого отношения к ней не имеет. Более того, она никак не связана с RAID-массивом уровня 0, хотя в настройках контроллера ее можно определить именно для массива этого уровня. Собственно, это первая из тех недоработок конфигуратора контроллера Marvell 9128, о которых мы упоминали. Функция Gigabyte Rounding определена только для RAID-массива уровня 1. Она позволяет использовать для создания RAID-массива уровня 1 два диска (например, различных производителей или разные модели), емкость которых немного отличается друг от друга. Функция Gigabyte Rounding как раз и задает разницу в размерах двух дисков, применяемых для создания RAID-массива уровня 1. В контроллере Marvell 9128 функция Gigabyte Rounding позволяет установить разницу в размерах дисков 1 или 10 Гбайт.

    Еще одна недоработка конфигуратора контроллера Marvell 9128 заключается в том, что при создании RAID-массива уровня 1 у пользователя имеется возможность выбора размера страйпа (32 или 64 Кбайт). Однако понятие страйпа вообще не определено для RAID-массива уровня 1.

    Создание RAID-массива на базе контроллера, интегрированного в ICH10R

    RAID-контроллер, интегрированный в южный мост ICH10R, является самым распространенным. Как уже отмечалось, данный RAID-контроллер 6-портовый и поддерживает не только создание массивов RAID 0 и RAID 1, но также RAID 5 и RAID 10.

    Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+I, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS следует определить режим работы этого контроллера как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

    Меню настройки RAID-контроллера достаточно простое. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива можно указать его название, выбрать уровень массива (0, 1, 5 или 10), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

    Сравнение производительности RAID-массивов

    Для тестирования RAID-массивов с помощью утилиты IOmeter мы создали сценарии нагрузки последовательного чтения, последовательной записи, выборочного чтения и выборочной записи. Размеры блоков данных в каждом сценарии нагрузки составляли следующую последовательность: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт.

    На каждом из RAID-контроллеров создавался массив RAID 0 со всеми допустимыми размерами страйпов и массив RAID 1. Кроме того, дабы иметь возможность оценить прирост производительности, получаемый от использования RAID-массива, мы также протестировали на каждом из RAID-контроллеров одиночный диск.

    Итак, обратимся к результатам нашего тестирования.

    Контроллер GIGABYTE SATA2

    Прежде всего рассмотрим результаты тестирования RAID-массивов на базе контроллера GIGABYTE SATA2 (рис. 6-13). В общем-то контроллер оказался в буквальном смысле загадочным, а его производительность просто разочаровала.

    Рис. 6. Скорость последовательных
    и выборочных операций для диска
    Western Digital WD1002FBYS

    Рис. 7. Скорость последовательных

    c размером страйпа 128 Кбайт
    (контроллер GIGABYTE SATA2)

    Рис. 12. Скорость последовательных
    и выборочных операций для RAID 0
    c размером страйпа 4 Кбайт
    (контроллер GIGABYTE SATA2)

    Рис. 13. Скорость последовательных
    и выборочных операций
    для RAID 1 (контроллер GIGABYTE SATA2)

    Если посмотреть на скоростные характеристики одного диска (без RAID-массива), то максимальная скорость последовательного чтения составляет 102 Мбайт/с, а максимальная скорость последовательной записи - 107 Мбайт/с.

    При создании массива RAID 0 с размером страйпа 128 Кбайт максимальная скорость последовательного чтения и записи увеличивается до 125 Мбайт/с, то есть возрастает примерно на 22%.

    При размере страйпа 64, 32 или 16 Кбайт максимальная скорость последовательного чтения составляет 130 Мбайт/с, а максимальная скорость последовательной записи - 141 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 27%, а максимальная скорость последовательной записи - на 31%.

    Вообще-то это маловато для массива уровня 0, и хотелось бы, чтобы максимальная скорость последовательных операций была выше.

    При размере страйпа 8 Кбайт максимальная скорость последовательных операций (чтения и записи) остается примерно такой же, как и при размере страйпа 64, 32 или 16 Кбайт, однако с выборочным чтением - явные проблемы. При увеличении размера блока данных вплоть до 128 Кбайт скорость выборочного чтения (как и должно быть) возрастает пропорционально размеру блока данных. Однако при размере блока данных более 128 Кбайт скорость выборочного чтения падает практически до нуля (примерно до 0,1 Мбайт/с).

    При размере страйпа 4 Кбайт падает не только скорость выборочного чтения при размере блока более 128 Кбайт, но и скорость последовательного чтения при размере блока более 16 Кбайт.

    Использование массива RAID 1 на контроллере GIGABYTE SATA2 практически не изменяет (в сравнении с одиночным диском) скорость последовательного чтения, однако максимальная скорость последовательной записи уменьшается до 75 Мбайт/с. Напомним, что для массива RAID 1 скорость чтения должна возрастать, а скорость записи не должна уменьшаться в сравнении со скоростью чтения и записи одиночного диска.

    На основании результатов тестирования контроллера GIGABYTE SATA2 можно сделать только один вывод. Использовать данный контроллер для создания массивов RAID 0 и RAID 1 имеет смысл только в том случае, когда все остальные RAID-контроллеры (Marvell 9128, ICH10R) уже задействованы. Хотя представить себе подобную ситуацию довольно сложно.

    Контроллер Marvell 9128

    Контроллер Marvell 9128 продемонстрировал гораздо более высокие скоростные характеристики в сравнении с контроллером GIGABYTE SATA2 (рис. 14-17). Собственно, различия проявляются даже при работе контроллера с одним диском. Если для контроллера GIGABYTE SATA2 максимальная скорость последовательного чтения составляет 102 Мбайт/с и достигается при размере блока данных 128 Кбайт, то для контроллера Marvell 9128 максимальная скорость последовательного чтения составляет 107 Мбайт/с и достигается при размере блока данных 16 Кбайт.

    При создании массива RAID 0 с размером страйпа 64 и 32 Кбайт максимальная скорость последовательного чтения увеличивается до 211 Мбайт/с, а последовательной записи - до 185 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 97%, а максимальная скорость последовательной записи - на 73%.

    Существенной разницы по скоростным показателям массива RAID 0 с размером страйпа 32 и 64 Кбайт не наблюдается, однако применение страйпа 32 Кбайт более предпочтительно, поскольку в этом случае скорость последовательных операций при размере блока менее 128 Кбайт будет немного выше.

    При создании массива RAID 1 на контроллере Marvell 9128 максимальная скорость последовательных операций практически не изменяется в сравнении с одиночным диском. Так, если для одиночного диска максимальная скорость последовательных операций составляет 107 Мбайт/с, то для RAID 1 она равна 105 Мбайт/с. Также заметим, что для RAID 1 скорость выборочного чтения немного ухудшается.

    В целом же нужно отметить, что контроллер Marvell 9128 обладает неплохими скоростными характеристиками и его вполне можно задействовать как для создания RAID-массивов, так и для подключения к нему одиночных дисков.

    Контроллер ICH10R

    RAID-контроллер, встроенный в ICH10R, оказался самым высокопроизводительным из всех протестированных нами (рис. 18-25). При работе с одиночным диском (без создания RAID-массива) его производительность фактически такая же, как и производительность контроллера Marvell 9128. Максимальная скорость последовательного чтения и записи составляет 107 Мбайт и достигается при размере блока данных 16 Кбайт.

    Рис. 18. Скорость последовательных
    и выборочных операций
    для диска Western Digital WD1002FBYS (контроллер ICH10R)

    Если говорить о массиве RAID 0 на контроллере ICH10R, то максимальная скорость последовательного чтения и записи не зависит от размера страйпа и составляет 212 Мбайт/с. От размера страйпа зависит лишь размер блока данных, при котором достигается максимальное значение скорости последовательного чтения и записи. Как показывают результаты тестирования, для RAID 0 на базе контроллера ICH10R оптимально использовать страйп размером 64 Кбайт. В этом случае максимальное значение скорости последовательного чтения и записи достигается при размере блока данных всего 16 Кбайт.

    Итак, резюмируя, еще раз подчеркнем, что RAID-контроллер, встроенный в ICH10R, существенно превосходит по производительности все остальные интегрированные RAID-контроллеры. А учитывая, что он обладает и большей функциональностью, оптимально использовать именно этот контроллер и просто забыть о существовании всех остальных (если, конечно, в системе не применяются диски SATA III).

    © Андрей Егоров, 2005, 2006. Группа компаний ТИМ.

    Посетители форума задают нам вопрос: «Какой уровень RAID самый надежный?» Все знают, что наиболее распространенным является уровень RAID5, однако он отнюдь не лишен серьезных недостатков, которые неочевидны для неспециалистов.

    RAID 0, RAID 1, RAID 5, RAID6, RAID 10 или что такое уровни RAID?

    В своей статье я попытаюсь охарактеризовать самые популярные уровни RAID, а затем сформулирую рекомендации по использованию этих уровней. Для иллюстрации статьи я построил диаграмму, на которой поместил эти уровни в трехмерном пространстве надежности, производительности и ценовой эффективности.

    JBOD (Just a Bunch of Disks) – это простое объединение (spanning) жестких дисков, которое уровнем RAID формально не является. Томом JBOD может быть массив из одного диска или объединение нескольких дисков. Контроллеру RAID для работы с таким томом не требуется проведение каких-либо вычислений. На нашей диаграмме диск JBOD служит в качестве «ординара» или отправной точки – его значения надежности, производительности и стоимости совпадают с соответствующими показателями единичного жесткого диска.

    RAID 0 (“Striping”) избыточности не имеет, а информацию распределяет сразу по всем входящим в массив дискам в виде небольших блоков («страйпов»). За счет этого существенно повышается производительность, но страдает надежность. Как и в случае JBOD, за свои деньги мы получаем 100% емкости диска.

    Поясню, почему уменьшается надежность хранения данных на любом составном томе – так как при выходе из строя любого из входящих в него винчестеров полностью и безвозвратно пропадает вся информация. В соответствии с теорией вероятностей математически надежность тома RAID0 равна произведению надежностей составляющих его дисков, каждая из которых меньше единицы, поэтому совокупная надежность заведомо ниже надежности любого диска.

    Хороший уровень – RAID 1 (“Mirroring”, «зеркало»). Он имеет защиту от выхода из строя половины имеющихся аппаратных средств (в общем случае – одного из двух жестких дисков), обеспечивает приемлемую скорость записи и выигрыш по скорости чтения за счет распараллеливания запросов. Недостаток заключается в том, что приходится выплачивать стоимость двух жестких дисков, получая полезный объем одного жесткого диска.

    Изначально предполагается, что жесткий диск – вещь надежная. Соответственно, вероятность выхода из строя сразу двух дисков равна (по формуле) произведению вероятностей, т.е. ниже на порядки! К сожалению, реальная жизнь – не теория! Два винчестера берутся из одной партии и работают в одинаковых условиях, а при выходе из строя одного из дисков нагрузка на оставшийся увеличивается, поэтому на практике при выходе из строя одного из дисков следует срочно принимать меры – вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва HotSpare . Достоинство такого подхода – поддержание постоянной надежности. Недостаток – еще большие издержки (т.е. стоимость 3-х винчестеров для хранения объема одного диска).

    Зеркало на многих дисках – это уровень RAID 10 . При использовании такого уровня зеркальные пары дисков выстраиваются в «цепочку», поэтому объем полученного тома может превосходить емкость одного жесткого диска. Достоинства и недостатки – такие же, как и у уровня RAID1. Как и в других случаях, рекомендуется включать в массив диски горячего резерва HotSpare из расчета один резервный на пять рабочих.

    RAID 5 , действительно, самый популярный из уровней – в первую очередь благодаря своей экономичности. Жертвуя ради избыточности емкостью всего одного диска из массива, мы получаем защиту от выхода из строя любого из винчестеров тома. На запись информации на том RAID5 тратятся дополнительные ресурсы, так как требуются дополнительные вычисления, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких накопителей массива распараллеливаются.

    Недостатки RAID5 проявляются при выходе из строя одного из дисков – весь том переходит в критический режим, все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность, диски начинают греться. Если срочно не принять меры – можно потерять весь том. Поэтому, (см. выше) с томом RAID5 следует обязательно использовать диск Hot Spare.

    Помимо базовых уровней RAID0 - RAID5, описанных в стандарте, существуют комбинированные уровни RAID10, RAID30, RAID50, RAID15, которые различные производители интерпретируют каждый по-своему.

    Суть таких комбинаций вкратце заключается в следующем. RAID10 – это сочетание единички и нолика (см. выше). RAID50 – это объединение по “0” томов 5-го уровня. RAID15 – «зеркало» «пятерок». И так далее.

    Таким образом, комбинированные уровни наследуют преимущества (и недостатки) своих «родителей». Так, появление «нолика» в уровне RAID 50 нисколько не добавляет ему надежности, но зато положительно отражается на производительности. Уровень RAID 15 , наверное, очень надежный, но он не самый быстрый и, к тому же, крайне неэкономичный (полезная емкость тома составляет меньше половины объема исходного дискового массива).

    RAID 6 отличается от RAID 5 тем, что в каждом ряду данных (по-английски stripe ) имеет не один, а два блока контрольных сумм. Контрольные суммы – «многомерные», т.е. независимые друг от друга, поэтому даже отказ двух дисков в массиве позволяет сохранить исходные данные. Вычисление контрольных сумм по методу Рида-Соломона требует более интенсивных по сравнению с RAID5 вычислений, поэтому раньше шестой уровень практически не использовался. Сейчас он поддерживается многими продуктами, так как в них стали устанавливать специализированные микросхемы, выполняющие все необходимые математические операции.

    Согласно некоторым исследованиям, восстановление целостности после отказа одного диска на томе RAID5, составленном из дисков SATA большого объема (400 и 500 гигабайт), в 5% случаев заканчивается утратой данных. Другими словами, в одном случае из двадцати во время регенерации массива RAID5 на диск резерва Hot Spare возможен выход из строя второго диска... Отсюда рекомендации лучших RAIDоводов: 1) всегда делайте резервные копии; 2) используйте RAID6 !

    Недавно появились новые уровни RAID1E, RAID5E, RAID5EE. Буква “Е” в названии означает Enhanced .

    RAID level-1 Enhanced (RAID level-1E) комбинирует mirroring и data striping. Эта смесь уровней 0 и 1 устроена следующим образом. Данные в ряду распределяются точь-в-точь так, как в RAID 0. То есть ряд данных не имеет никакой избыточности. Следующий ряд блоков данных копирует предыдущий со сдвигом на один блок. Таким образом как и в стандартном режиме RAID 1 каждый блок данных имеет зеркальную копию на одном из дисков, поэтому полезный объем массива равен половине суммарного объема входящих в массив жестких дисков. Для работы RAID 1E требуется объединение трех или более дисков.

    Мне очень нравится уровень RAID1E. Для мощной графической рабочей станции или даже для домашнего компьютераоптимальный выбор! Он обладает всеми достоинствами нулевого и первого уровней – отличная скорость и высокая надежность.

    Перейдем теперь к уровню RAID level-5 Enhanced (RAID level-5E) . Это то же самое что и RAID5, только со встроенным в массив резервным диском spare drive . Это встраивание производится следующим образом: на всех дисках массива оставляется свободным 1/N часть пространства, которая при отказе одного из дисков используется в качестве горячего резерва. За счет этого RAID5E демонстрирует наряду с надежностью лучшую производительность, так как чтение/запись производится параллельно с бОльшего числа накопителей одновременно и spare drive не простаивает, как в RAID5. Очевидно, что входящий в том резервный диск нельзя делить с другими томами (dedicated vs. shared). Том RAID 5E строится минимум на четырех физических дисках. Полезный объем логического тома вычисляется по формуле N-2.

    RAID level-5E Enhanced (RAID level-5EE) подобен уровню RAID level-5E, но он имеет более эффективное распределение spare drive и, как следствие, – более быстрое время восстановления. Как и уровень RAID5E, этот уровень RAID распределяет в рядах блоки данных и контрольных сумм. Но он также распределяет и свободные блоки spare drive, а не просто оставляет под эти цели часть объема диска. Это позволяет уменьшить время, необходимое на реконструкцию целостности тома RAID5EE. Входящий в том резервный диск нельзя делить с другими томами – как и в предыдущем случае. Том RAID 5EE строится минимум на четырех физических дисках. Полезный объем логического тома вычисляется по формуле N-2.

    Как ни странно, никаких упоминаний об уровне RAID 6E на просторах Интернета я не нашел - пока такой уровень никем из производителей не предлагается и даже не анонсируется. А ведь уровень RAID6E (или RAID6EE?) можно предложить по тому же принципу, что и предыдущий. Диск HotSpare обязательно должен сопровождать любой том RAID, в том числе и RAID 6. Конечно, мы не потеряем информацию при выходе из строя одного или двух дисков, но начать регенерацию целостности массива крайне важно как можно раньше, чтобы скорее вывести систему из «критического» режима. Поскольку необходимость диска Hot Spare для нас не подлежит сомнению, логичным было бы последовать дальше и «размазать» его по тОму так, как это сделано в RAID 5EE, чтобы получить преимущества от использования бОльшего количества дисков (лучшая скорость на чтении-записи и более быстрое восстановление целостности).

    Уровни RAID в «числах».

    В таблицу я собрал некоторые важные параметры почти всех уровней RАID, чтобы можно было сопоставить их между собой и четче понять их суть.

    Уровень
    ~~~~~~~

    Избы-
    точ-
    ность
    ~~~~~~~

    Исполь-
    зование емкости дисков
    ~~~~~~~

    Произво-
    дитель-
    ность
    чтения

    ~~~~~~~

    Произво-
    дитель-
    ность
    записи

    ~~~~~~~

    Встроен-
    ный диск
    резерва

    ~~~~~~~

    Мин. кол-во дисков
    ~~~~~~~

    Макс. кол-во дисков

    ~~~~~~~

    Отл

    Отл

    Отл

    Отл

    Все «зеркальные» уровни – RAID 1, 1+0, 10, 1E, 1E0.

    Давайте еще раз попробуем досконально разобраться, чем же различаются эти уровни?

    RAID 1.
    Это – классическое «зеркало». Два (и только два!) жестких диска работают как один, являясь полной копией друг друга. Выход из строя любого из этих двух дисков не приводит к потере ваших данных, так как контроллер продолжает работу с оставшимся диском. RAID1 в цифрах: двукратная избыточность, двукратная надежность, двукратная стоимость. Производительность на запись эквивалентна производительности одного жесткого диска. Производительность чтения выше, так как контроллер может распределять операции чтения между двумя дисками.

    RAID 10.
    Суть этого уровня в том, что диски массива объединяются парами в «зеркала» (RAID 1), а затем все эти зеркальные пары в свою очередь объединяются в общий массив с чередованием (RAID 0). Именно поэтому его иногда обозначают как RAID 1+0 . Важный момент – в RAID 10 можно объединить только четное количество дисков (минимум – 4, максимум – 16). Достоинства: от "зеркала" наследуется надежность, от «нуля» – производительность как на чтение, так и на запись.

    RAID 1Е.
    Буква "E" в названии означает "Enhanced", т.е. "улучшенный". Принцип этого улучшения следующий: данные блоками "чередуются" ("striped") на все диски массива, а потом еще раз "чередуются" со сдвигом на один диск. В RAID 1E можно объединять от трех до 16 дисков. Надежность соответствует показателям "десятки", а производительность за счет большего "чередования" становится чуть лучше.

    RAID 1Е0.
    Этот уровень реализуется так: мы создаем "нулевой" массив из массивов RAID1E. Следовательно, общее количество дисков должно быть кратно трем: минимум три и максимум – шестьдесят! Преимущество в скорости при этом мы вряд ли получим, а сложность реализации может неблагоприятно отразиться на надежности. Главное достоинство – возможность объединить в один массив очень большое (до 60) количество дисков.

    Сходство всех уровней RAID 1X заключается в их показателях избыточности: ради реализации надежности жертвуется ровно 50% суммарной емкости дисков массива.

    Приветствую всех, уважаемые читатели блога сайт! Ранее, я уже публиковал статью о , очень рекомендую почитать. Там я только вкратце рассказал о том, что такое рейд массив десятого уровня, или «1+0» - как его еще называют. В этой статье будет подробный рассказ о всех преимуществах и недостатках такого вида Raid массива, а также о его сравнении с пятым рейдом.

    Как известно, Raid 10 вобрал в себя все хорошее из Raid 0 и Raid 1: увеличенную скорость доступа и повышенную надежность данных - соответственно. Рейд 10 представляет собой некую «полоску» зеркал, состоящих из пар жестких дисков, объединенных в рейд первого уровня. Иными словами, диски вложенного массива соединены парами в «зеркальный» рейд первого уровня, а эти вложенные массивы, в свою очередь - трансформируются в общий массив нулевого уровня, используя чередование данных.

    Описание особенностей массива raid 10 сводится к следующему:

    • если любой один диск из вложенных массивов raid 1 поломается - потери данных не произойдет. То есть, если «внутри» десятого raid находится всего четыре диска, что являет собой минимально допустимое количество, тогда возможен безболезненный выход из строя аж двух дисков одновременно;
    • следующая особенность (скорее недостаток) - невозможность замены поврежденных накопителей, если конечно массив не оснащен технологией «hot spare»;
    • если ориентироваться на высказывания производителей устройств и многочисленные тесты, то получается, что именно raid «1+0» обеспечивает наилучшую пропускную способность по сравнению с другими видами, кроме нулевого raid, конечно же.

    Количество дисков

    Отвечая на вопрос - сколько же дисков требуется для рейд 10, скажу, что для такого массива необходимо четное их количество. Причем, минимально допустимое количество винчестеров составляет 4, а максимальное 16. Также, бытует мнение, что raid «1+0» (он же 10) и «0+1» чем-то различаются. Это правда, но различие состоит только в последовательности соединения массивов.

    Последняя цифра обозначает тип массива самого верхнего уровня. Например, raid «0+1» обозначает некую зеркальную систему полос, внутри которой два нулевых рейда (общее количество: 4 жестких диска) объединяются в один рейд 1 - это как пример, «нулевых» рейд массивов тут может быть и больше. Причем, снаружи визуально эти два подвида рейд 10 ничем не отличаются. И чисто теоретически они имеют равную степень устойчивости к сбоям.

    На практике же, большинство производителей сейчас используют Raid 1+0 вместо Raid 0+1, объясняя это большей устойчивостью первого варианта к ошибкам и сбоям.

    Столько дисков может поломаться и потери данных не произойдет

    Повторюсь, главным недостатком raid 10 остается - необходимость включения в массив дисков «горячего резерва». Расчет примерно следующий: на 5 рабочих накопителей должен быть один резервный. Теперь пару слов про емкость дисков. Особенность емкости рейд 1 заключается в том, что вам всегда доступна лишь половина пространства винчестеров от их общего объема. В RAIDе 10 из 4 дисков общим объемом 4 Терабайта для записи будут доступны всего 2 Тб. Вообще, легко подсчитать доступный объем можно по формуле: F*G/2, F означает - количество дисков в массиве, а G - их емкость.

    Сравнение raid 10 vs raid 5

    Говоря о выборе между «десятым» raid и любым другим, на ум обычно приходит мысль о рейд 5. Raid 5 похож на первый по своему назначению, с той лишь разницей, что для него требуется минимум 3 накопителя. Причем один из них не будет доступен в качестве места для записи данных, на нем будет храниться лишь служебная информация.

    Пятый рейд способен пережить выпадение (поломку) только одного жесткого, поломка второго повлечет за собой потерю всех данных. Однако, рейд пятого уровня - хороший и дешевый способ продлить жизнь накопителям и снизить вероятность их поломки. Для того, чтобы наше сравнение было эффективным и наглядным, попробую упорядочить преимущества и недостатки пятого рейда перед десятым:

    1. Емкость массива raid 5 равна общему объему дисков за вычетом объема одного диска. В то время как в рейд 10, по факту, доступна лишь половина объема накопителей.
    2. При операциях чтения/записи взаимодействие с потоками данных может вестись параллельно с нескольких дисков. Поэтому скорость записи или чтения возрастает, по сравнению с обычным жестким диском. Но, без хорошего рейд-контроллера скорость будет не сильно высокой.
    3. Производительность рейд 5 в операциях случайного чтения/записи блоков ниже на 10–25% в сравнении с десятым. При поломке одного из дисков в пятом рейде весь массив переходит в критический режим - все операции записи и чтения сопровождаются дополнительными манипуляциями, производительность при этом резко падает.

    Итак, что же мы имеем в итоге: рейд 10 имеет лучшую отказоустойчивость и скорость, по сравнению с рейд 5 . Однако, собрать такой массив из дисков будет по карману далеко не каждому. Рейд 5 - некое промежуточное решение между нулевым массивом и зеркалом (рейд 1). О том, как сделать raid 10 из четырех дисков будет рассказано чуть ниже, хотя я уже затрагивал «вскользь» эту тему в статье, ссылка на которую указана вверху. Конечно же, для этой цели лучше использовать аппаратный уровень - нужен специальный контроллер, но хорошее оборудование стоит дорого.

    Так называемый «фейк рейд» (встроенный в материнскую плату) не отличается надежностью и быстротой, использовать не рекомендую. Лучше уж тогда организовать это все на программном уровне. Ну а сейчас, подробный пример создания массива на четырех дисках, используя рейд-контроллер. Для начала через BIOS выбираем соответствующую утилиту.

    Затем, в меню утилиты выбираем пункт «инициализация драйверов».

    Выделяем все наши диски.

    Снова возвращаемся к главному меню утилиты и выбираем пункт «создать массив».

    И на последнем шаге - указываем тип массива, его размер и другие параметры.





    

    2024 © gtavrl.ru.