Нейронная сеть глубокого обучения. Инженерный взгляд на вещи


Грядущая революция умных роботов предсказывалась каждые десять лет начиная с 1950-х годов. Тем не менее, она так и не произошла. Прогресс в области искусственного интеллекта происходил неуверенно, порою скучно, неся многим энтузиастам разочарование. Видимые успехи - компьютер Deep Blue, созданный в середине 1990-х IBM и обыгравший в 1997 году Гарри Каспарова в шахматы, или появление в конце 1990-х электронного переводчика - были скорее результатом «грубых» расчетов, чем переносом механизмов человеческого восприятия на процессы компьютерных вычислений.

Однако история разочарований и провалов теперь резко меняется. Всего десять лет назад алгоритмы компьютерного зрения и распознавания предметов могли идентифицировать шар или параллелепипед на простом фоне. Теперь они могут различать человеческие лица так же хорошо, как это могут делать люди, даже на сложном, естественном фоне. Полгода назад Google выпустил приложение для смартфонов, способное переводить текст с более чем 20-ти иностранных языков, считывая слова с фотографий, дорожных знаков или рукописного текста!

Все это стало возможным после того, как выяснилось, что некоторые старые идеи в области нейронных сетей , если их незначительно видоизменить, добавив «жизни», т.е. спроецировав детали человеческого и животного восприятия, могут дать ошеломляющий результат, которого никто и не ожидал. В этот раз революция искусственного разума кажется действительно реальной.

Исследования нейронных сетей в области машинного обучения в большинстве случаев были всегда посвящены поиску новых методик распознавания различных типов данных. Так, компьютер, подключенный к камере, должен, используя алгоритм распознавания изображений, суметь различить на картинке плохого качества человеческое лицо, чашку чая или собаку. Исторически, однако, использование нейронных сетей для этих целей сопровождалось существенными трудностями. Даже незначительный успех требовал человеческого вмешательства - люди помогали программе определить важные особенности изображения, такие как границы изображения или простые геометрические фигуры. Существующие алгоритмы не могли сами научиться делать это.

Положение дел резко изменилось благодаря созданию так называемых нейронных сетей с глубинным обучением , которые теперь могут проанализировать изображение почти так же эффективно, как человек. Такие нейронные сети используют изображение плохого качества как входные данные для «нейронов» первого уровня, который затем передает «картинку» через нелинейные связи нейронам следующего уровня. После определенной тренировки, «нейроны» более высоких уровней могут применять для распознавания более абстрактные аспекты изображения. Например, они могут использовать такие детали, как границы изображения или особенности его расположения в пространстве. Поразительно, но такие сети способны научиться оценивать наиболее важные особенности изображения без помощи человека!

Замечательным примером использования нейронных сетей с глубинным обучением является распознавание одинаковых объектов, сфотографированных под разными углами или в разных позах (если речь идет о человеке или о животном). Алгоритмы, использующие попиксельное сканирование, «думают» что перед ними два разных изображения, тогда как «умные» нейронные сети «понимают», что перед ними тот же самый объект. И наоборот - изображения двух собак разных пород, сфотографированных в одинаковой позе, прежними алгоритмами могли восприниматься как фотографии одной и той же собаки. Нейронные сети с глубинным обучением могут выявить такие детали изображений, которые помогут им различить животных.

Совмещение методик глубинного обучения, передовых знаний нейронауки и мощностей современных компьютеров открывает для искусственного интеллекта перспективы, которые мы даже не в силах пока оценить. Правда уже очевидно, что разум может иметь не только биологическую природу.

Об искусственных нейронных сетях сегодня много говорят и пишут – как в контексте больших данных и машинного обучения, так и вне его. В этой статье мы напомним смысл этого понятия, еще раз очертим область его применения, а также расскажем о важном подходе, который ассоциируется с нейронными сетями – глубоком обучении, опишем его концепцию, а также преимущества и недостатки в конкретных случаях использования.

Что такое нейронная сеть?

Как известно, понятие нейронной сети (НС) пришло из биологии и представляет собой несколько упрощенную модель строения человеческого мозга. Но не будем углубляться в естественнонаучные дебри – проще всего представить нейрон (в том числе, искусственный) как некий черный ящик с множеством входных отверстий и одним выходным.

Математически, искусственный нейрон осуществляет преобразование вектора входных сигналов (воздействий) X в вектор выходных сигналов Y при помощи функции, называемой функцией активации. В рамках соединения (искусственной нейронной сети — ИНС) функционируют три вида нейронов: входные (принимающие информацию из внешнего мира – значения интересующих нас переменных), выходные (возвращающие искомые переменные – к примеру, прогнозы, или управляющие сигналы), а также промежуточные – нейроны, выполняющие некие внутренние («скрытые») функции. Классическая ИНС, таким образом, состоит из трех или более слоев нейронов, причем на втором и последующих слоях («скрытых» и выходном) каждый из элементов соединен со всеми элементами предыдущего слоя.

Важно помнить о понятии обратной связи, которое определяет вид структуры ИНС: прямой передачи сигнала (сигналы идут последовательно от входного слоя через скрытый и поступают в выходной слой) и рекуррентной структуры, когда сеть содержит связи, идущие назад, от более дальних к более ближним нейронам). Все эти понятия составляют необходимый минимум информации для перехода на следующий уровень понимания ИНС – обучения нейронной сети, классификации его методов и понимания принципов работы каждого из них.

Обучение нейронной сети

Не следует забывать, для чего вообще используются подобные категории – иначе есть риск увязнуть в отвлеченной математике. На самом деле, под искусственными нейронными сетями понимают класс методов для решения определенных практических задач, среди которых главными являются задачи распознавания образов, принятия решений, аппроксимации и сжатия данных, а также наиболее интересные для нас задачи кластерного анализа и прогнозирования.

Не уходя в другую крайность и не вдаваясь в подробности работы методов ИНС в каждом конкретном случае, позволим себе напомнить, что при любых обстоятельствах именно способность нейронной сети к обучению (с учителем или «самостоятельно») и является ключевым моментом использования ее для решения практических задач.

В общем случае, обучение ИНС заключается в следующем:

  1. входные нейроны принимают переменные («стимулы») из внешней среды;
  2. в соответствии с полученной информацией изменяются свободные параметры НС (работают промежуточные слои нейронов);
  3. в результате изменений в структуре НС сеть «реагирует» на информацию уже иным образом.

Таков общий алгоритм обучения нейронной сети (вспомним собаку Павлова – да-да, внутренний механизм образования условного рефлекса именно таков – и тут же забудем: все же наш контекст предполагает оперирование техническими понятиями и примерами).

Понятно, что универсального алгоритма обучения не существует и, скорее всего, существовать не может; концептуально подходы к обучению делятся на обучение с учителем и обучение без учителя. Первый алгоритм предполагает, что для каждого входного («обучающегося») вектора существует требуемое значение выходного («целевого») вектора – таким образом, два этих значения образуют обучающую пару, а вся совокупность таких пар – обучающее множество. В случае варианта обучения без учителя обучающее множество состоит лишь из входных векторов – и такая ситуация является более правдоподобной с точки зрения реальной жизни.

Глубокое обучение

Понятие глубокого обучения (deep learning ) относится к другой классификации и обозначает подход к обучению так называемых глубоких структур, к которым можно отнести многоуровневые нейронные сети. Простой пример из области распознавания образов: необходимо научить машину выделять все более абстрактные признаки в терминах других абстрактных признаков, то есть определить зависимость между выражением всего лица, глаз и рта и, в конечном итоге, скопления цветных пикселов математически. Таким образом, в глубокой нейронной сети за каждый уровень признаков отвечает свой слой; понятно, что для обучения такой «махины» необходим соответствующий опыт исследователей и уровень аппаратного обеспечения. Условия сложились в пользу глубокого обучения НС только к 2006 году – и спустя восемь лет можно говорить о революции, которую произвел этот подход в машинном обучении.

Итак, прежде всего, в контексте нашей статьи стоит заметить следующее: глубокое обучение в большинстве случае не контролируется человеком. То есть этот подход подразумевает обучение нейронной сети без учителя. Это и есть главное преимущество «глубокого» подхода: машинное обучение с учителем, особенно в случае глубоких структур, требует колоссальных временных – и трудовых – затрат. Глубокое же обучение – подход, моделирующий человеческое абстрактное мышление (или, по крайней мере, представляет собой попытку приблизиться к нему), а не использующий его.

Идея, как водится, прекрасная, но на пути подхода встают вполне естественные проблемы – прежде всего, коренящиеся в его претензии на универсальность. На самом деле, если на поприще распознавания образов подходы deep learning добились ощутимых успехов, то с той же обработкой естественного языка возникает пока гораздо больше вопросов, чем находится ответов. Очевидно, что в ближайшие n лет вряд ли удастся создать «искусственного Леонардо Да Винчи» или даже – хотя бы! — «искусственного homo sapiens ».

Тем не менее, перед исследователями искусственного интеллекта уже встает вопрос этики: опасения, высказываемые в каждом уважающем себя научно-фантастическом фильме, начиная с «Терминатора» и заканчивая «Трансформерами», уже не кажутся смешными (современные изощренные нейросети уже вполне могут считаться правдоподобной моделью работы мозга насекомого!), но пока явно излишни.

Идеальное техногенное будущее представляется нам как эра, когда человек сможет делегировать машине большинство своих полномочий – или хотя бы сможет позволить ей облегчить существенную часть своей интеллектуальной работы. Концепция глубокого обучения – один из шагов на пути к этой мечте. Путь предстоит долгий – но уже сейчас понятно, что нейронные сети и связанные с ними все развивающиеся подходы способны со временем воплотить в жизнь чаяния научных фантастов.

Дізнавалася про бізнес-тренди на масштабній конференції у Києві. Це була насичена інсайтами субота, від якої ми отримали нові знання і знайомства, натхнення та з користю проведений час. На конфі були 4 потоки доповідей для власників бізнесу, ТОП-менеджерів, маркетологів, sales, ейчарів та інших спеціалістів. Одним із спікерів був Міністр інфраструктури Володимир Омелян, який розповідав про розвиток галузі, відновлення доріг та аеропортів.

Доброго всем времени суток уважаемые коллеги iOS-ники, наверняка каждый из вас работал с сетью и занимался парсингом данных c JSON. Для этого процесса есть куча библиотек, всевозможных инструментов которые можно юзать. Некоторые из них сложные, а некоторые простые. Я и сам очень долго если чесно парсил JSON руками, не доверяя этот процес каким-то сторонним библиотекам и в этом были свои плюсы.

9 сентября 2014 года в ходе очередной презентации, компания Apple представила собственную систему мобильных платежей — Apple Pay.

С помощью платежной системы Apple Pay пользователи iPhone 6 и iPhone 6+, а также владельцы новейших версий Apple Watch могут совершать покупки онлайн, пользоваться дополнительными преимуществами apple pay для мобильных приложений и совершать платежи при помощи технологии NFC (Near Field Communication). Для авторизации платежей используются технологии Touch ID или Face ID.

Технологии не стоят на месте, и процессы разработки движутся вместе с ними. Если раньше компании работали по модели «Waterfall», то сейчас, например, все стремятся внедрить «Scrum». Эволюция происходит и в сфере предоставления услуг по разработке программного обеспечения. Раньше компании предоставляли клиентам качественную разработку в рамках бюджета, останавливаясь на этом, сейчас же они стремятся обеспечить максимальную пользу для клиента и его бизнеса, предоставляя свою экспертизу.

За последние несколько лет появилось столько хороших шрифтов, в том числе бесплатных, что мы решили написать продолжение нашей для дизайнеров.

Каждый дизайнер имеет набор любимых шрифтов для работы, с которыми ему привычно работать и которые отражают его графический стиль. Дизайнеры говорят «Хороших шрифтов много не бывает», но сейчас можно смело представить ситуацию когда этот набор состоит только из бесплатных шрифтов.

Как часто проджект менеджеры оказываются между молотом и наковальней, когда пытаются найти баланс между всеми требованиями и сроками заказчика и ментальным здоровьем всей команды? Сколько нюансов нужно учесть, чтобы по обе стороны ответственности был мир и порядок? Как понять хороший ты менеджер или тебе срочно стоит подтягиваться по всем фронтам? Как определить, в каких аспектах именно ты, как ПМ, отстаешь, а где ты молодец и умничка? Именно об этом была очередная конференция Code’n’Coffee.

Технология распознавания образов все активнее входит в наш обиход. Компании и учреждения используют ее для решения самых разных задач: от обеспечения безопасности до исследования удовлетворенности клиентов. Инвестиции в продукты, в основе которых — данная функция, обещают вырасти до 39 миллиардов долларов к 2021 году. Вот лишь несколько примеров, как распознавание образов используется в разных сферах.







2024 © gtavrl.ru.