Интерфейс ieee 1394 предназначен для. FireWire или чем ещё помогла цифровому миру компания Apple


Высокопроизводительная последовательная шина (High Performance Serial Bus) IEEE 1394 — FireWire создавалась как более дешевая и удобная альтернатива параллельным шинам (SCSI) для соединения равноранговых устройств. Шина позволяет связать до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники — цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплееры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства компьютеров (принтеры, сканеры, устройства хранения данных) и сами компьютеры могут объединяться в единую сеть. Шина не требует управления со стороны компьютера. Шина поддерживает динамическое реконфигурирование — возможность «горячего» подключения и отключения устройств. События подключения/отключения вызывают сброс и реинициализацию: определение структуры шины (дерева), назначение физических адресов всем узлам и, если требуется, выборы мастера циклов, диспетчера изохронных ресурсов и контроллера шины. Через доли секунды после сброса все ресурсы становятся доступными для последующего использования, и каждое устройство имеет полное представление обо всех подключенных устройствах и их возможностях. Благодаря наличию линий питания, интерфейсная часть устройства может оставаться подключенной к шине даже при отключении питания функциональной части устройства.

По инициативе VESA шина позиционируется как основа «домашней сети», объединяющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB .

Основные свойства шины FireWire перечислены далее:

Шина IEEE 1394 поддерживает два типа передач данных:

  • асинхронные передачи без каких-либо требований к скорости и задержке доставки. Целостность данных контролируется CRC-кодом. По адресации различают две разновидности:
  1. направленная асинхронная передача адресуется конкретному узлу, гарантированную доставку обеспечивает механизм квитирования и повторов;
  2. широковещательная асинхронная передача адресуется всем узлам и выполняется без гарантии доставки (квитирование и повторы не применяются).
  • Изохронные передачи с гарантированной пропускной способностью. Целостность данных контролируется CRC-кодом, гарантии доставки нет — квитирование и повторы не применяются.

Направленные асинхронные передачи являются основой для выполнения асинхронных транзакций — логически завершенных обменов между парами узлов. Протокол шины позволяет узлам с помощью асинхронных транзакций обращаться к памяти (регистрам) друг друга в режиме прямого доступа (DMA). При этом они не нуждаются в памяти и процессорных ресурсах «третьих лиц».

Изохронные передачи представляют собой потоки пакетов данных. Эти передачи ведутся широковещательно и адресуются через номер канала, передаваемый в каждом пакете. На шине может быть организовано до 64 изохронных каналов, передачи всех каналов «слышат» все устройства шины, но из всех пакетов принимают только данные интересующих их каналов. По шине могут передаваться и асинхронные потоки, для которых, в отличие от изохронных, не предоставляется гарантированная полоса пропускания.

Арбитраж определяет, какому из узлов, запрашивающих передачу, предоставляется это право. Арбитраж обеспечивает гарантированную пропускную способность для изохронных передач и справедливое предоставление доступа узлам для асинхронных транзакций. Арбитраж на шине IEEE 1394 выполняется перед посылкой любого пакета запроса (синхронного или изохронного) или ответа. Исключением является соединенная (concatenated) форма выполнения транзакций. Пакеты квитирования посылаются без арбитража — право на их передачу разыгрывать не надо, поскольку квитанцию посылает только тот единственный узел, к которому адресовался подтверждаемый пакет запроса или ответа.

Арбитражем занимается физический уровень каждого узла шины. Арбитраж выполняется распределенно иерархически: им занимаются все узлы, «верховным» арбитром является корневой узел (root node), автоматически выбираемый на этапе конфигурирования шины.

Физический уровень (PHY) предоставляет канальному уровню (LINK) следующие сервисы арбитража, перечисленные в порядке нарастания приоритетности:

  • справедливый арбитраж (fair arbitration service), используемый для передачи обычных асинхронных пакетов;
  • приоритетный арбитраж (priority arbitration service), используемый для передачи пакетов начала цикла и приоритетных асинхронных пакетов;
  • немедленный арбитраж (immediate arbitration service), используемый для передачи пакетов квитирования;
  • изохронный арбитраж (isochronous arbitration service), используемый для передачи изохронных пакетов.

Приоритет в арбитраже на шине IEEE 1394 определяется длительностью зазора арбитража (arbitration gap) — временем, в течение которого узел наблюдает покой шины перед началом передачи запроса арбитража. Чем меньше этот зазор, тем больше шансов у узла получить право на передачу. Исходная схема арбитража 1394 усовершенствовалась дважды: в 1394a были введены механизмы ускоренного арбитража, а в 1394b с его дуплексными соединениями был введен новый механизм — BOSS-арбитраж. Все усовершенствования направлены на снижение непродуктивных затрат времени.

Если на шине используются изохронные передачи, то все транзакции организуются в последовательность циклов — интервалов времени с номинальной длительностью 125 мкс. Начало каждого цикла отмечается широковещательным пакетом начала цикла (Cycle Start). Эти пакеты посылает узел, являющийся мастером циклов. Право на передачу этого пакета мастер получает через арбитраж, используя высокий приоритет. Организация циклов представлена на рисунке, где изображена работа двух изохронных каналов (Ch#J и Ch#K) и передача асинхронных пакетов A и B. После пакета начала цикла каждый узел, которому выделены изохронные каналы, имеет право передать по одному пакету для каждого канала (до прихода следующего пакета начала цикла). Для изохронных передач используется короткий зазор арбитража, так что асинхронные транзакции, использующие более длинный зазор, в изохронную часть цикла вклиниться не могут. После того как иссякнут изохронные пакеты данного цикла, выполняются асинхронные передачи, у которых для арбитража используются более длинные зазоры. Когда наступает пора посылки следующего пакета начала цикла, мастер цикла, дождавшись освобождения шины, снова получает право доступа (пользуясь своим приоритетом, обусловленным его положением в корне дерева) и посылает следующий пакет начала цикла. Таким образом, длительность цикла может отклоняться от номинального значения 125 мкс. Отклонения длительности цикла от номинального не страшны, поскольку пакет начала цикла несет значение системного времени точно на момент фактической передачи этого пакета.

Если на шине не используются изохронные передачи, то мастер циклов может отсутствовать и пакетов начала цикла на шине не будет. В этом случае все время на шине может заполняться асинхронными передачами с их длинными зазорами арбитража.

Конфигурирование шины IEEE 1394 выполняется в различных ситуациях:

  • автоматически при изменении конфигурации — при подсоединении и отсоединении устройств, а также включении/выключении их PHY-уровня;
  • при обнаружении каким-либо узлом фатальной ошибки — «зависания» шины;
  • по инициативе какого-либо узла, желающего, например, изменить топологию (сменить корневой узел).

Конфигурирование состоит из трех последовательных этапов.

  1. Сброс (Bus Reset), с момента которого прекращается передача полезного трафика.
  2. Идентификация дерева (Tree Identification), во время которой узлы выстраиваются в иерархическую структуру.
  3. Самоидентификация узлов (Self Identification), во время которой узлы присваивают себе уникальные физические идентификаторы.

Конфигурирование шины приводит ее в состояние, пригодное для передачи полезного трафика. Конфигурирование шины осуществляется исключительно аппаратными средствами PHY-уровня каждого узла (LINK-уровень конфигурируемых узлов может быть и отключен). Программные средства в этом процессе не участвуют. Благодаря чисто аппаратной реализации автоконфигурирование производится настолько быстро, что возможно сохранение непрерывности изохронных потоков.

В первоначальной версии шины самое большое время во всей процедуре конфигурирования занимал сброс. В физический уровень 1394 вносились усовершенствования, направленные на минимизацию потерь времени при сбросе. Остальные этапы конфигурирования происходят быстрее, но в случае образования петлевого соединения идентификация дерева никогда не закончится. Эта ситуация обнаруживается любым узлом, и сообщение о ней доводится до пользователя. В 1394b приняты меры по автоматическому исключению петлевых соединений.

Свойства любого узла сконфигурированной шины наблюдаемы и управляемы через его архитектурные регистры и память конфигурации. Они доступны со стороны шины через асинхронные транзакции к определенным адресам. Архитектурные регистры определяют поведение узла на шине. Память конфигурации раскрывает «прикладную ценность» узла и обеспечивает его уникальную идентификацию, не зависящую от непостоянного физического идентификатора.

Шина IEEE 1394, обеспечивая равноранговые взаимодействия между узлами, нуждается в централизованном управлении некоторыми функциями. Управляющие функции могут брать на себя разные узлы шины; в зависимости от наличия реализации тех или иных функций различают следующие варианты шины IEEE 1394:

  • неуправляемая шина, нуждающаяся только в корневом узле (root), управляющем арбитражем. Корень, который становится «верховным арбитром», выбирается на этапе идентификации дерева. Первоначальный кандидат на эту «должность» выбирается исходя из топологии соединений, с возможным случайным розыгрышем этого права между двумя победителями предпоследнего тура. После завершения выборов корня производится самоидентификация (и назначение физических адресов) узлов, после чего шина становится готовой к асинхронным транзакциям между узлами. Впоследствии программным путем (через асинхронные сообщения по шине) возможно переназначение корня (с определением новой структуры дерева и адресов узлов);
  • частично управляемая шина, которая в дополнение к корню должна иметь узлы, выполняющие роль мастера циклов и диспетчера изохронных ресурсов. Их работа обеспечивает возможность использования шины для изохронных передач;
  • полностью управляемая шина, которая должна иметь узел-диспетчер шины, обеспечивающий дополнительные сервисы управления.

Мастер циклов

Мастер циклов (Cycle Master) отвечает за регулярную передачу пакетов начала цикла. Для этого он должен быть устройством с поддержкой изохронных обменов, иметь регистры CYCLE_TIME и BUS_TIME. В информационном блоке BUS_INFO_BLOCK его памяти конфигурации должен быть установлен бит cmc (Cycle Master Capable) — признак способности к исполнению этой роли. Текущим мастером циклов является узел, у которого в регистре состояния (STATE) установлен бит cmstr (Cycle Master). Все узлы, кроме корневого, во время идентификации дерева (после сброса) должны обнулить у себя этот бит; корневой узел должен сохранять значение, которое было до сброса.

Если выбранный корневой узел не способен быть мастером циклов, а требуются изохронные передачи, то из узлов, способных быть мастером (судя по биту cmc), выбирается новый кандидат на роль корня. Для этого посылается широковещательный PHY-пакет конфигурирования с идентификатором нового кандидата и установленным битом R. Этот узел установит у себя бит RHB, а остальные его сбросят, что и обеспечит выбор данного узла новым корнем во время идентификации, вызванной посылкой этого пакета.

Мастер циклов является источником системного времени; для этого он имеет регистры CYCLE_TIME и BUS_TIME. Текущее значение регистра CYCLE_TIME передается мастером циклов в пакетах начала цикла. Сброс на шине (в любой форме) на значения этих регистров не влияет.

Регистр CYCLE_TIME (32 бита, рис. а) состоит из трех полей, соответствующих значениям трех счетчиков, соединенных каскадно:

  • cycle_offset — 12-битный счетчик по модулю 3072 (максимальное значение 3071, после него обнуляется), считающий импульсы с частотой 24,576 МГц. Период этого счетчика соответствует номинальной длительности цикла — 125 мкс;
  • cycle_count — 13-битный счетчик по модулю 8000, считающий циклы. Период этого счетчика — 1 с;
  • second_count — 7-битный счетчик, считающий секунды; период счета — 128 с.

Регистр BUS_TIME (32 бита, рис. б) содержит значение системного времени в секундах. Его младшие 7 бит (second_count_lo) отображают поле second_count предыдущего регистра. Остальные 25 бит (second_count_hi) отсчитывают 128-секундные интервалы. Период счетчика составляет 232 = 4 294 967 296 с (около 136 лет).

IEEE 1394

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Производитель Разнообразный
Произведено 1995–н.в
Спецификации
Длина 4.5 м максимально
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1.5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит /с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire, i-Link) - последовательная высокоскоростная шина , предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

  • Apple - FireWire
  • Sony - i.LINK
  • Yamaha - mLAN
  • - Lynx
  • Creative - SB1394

История

  • в 1986 году членами Комитета по Стандартам Микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины (Serial Bus)
  • в 1992 году разработкой интерфейса занялась Apple
  • в 1995 году принят стандарт IEEE 1394

Преимущества

  • Горячее подключение - возможность переконфигурировать шину без выключения компьютера
  • Различная скорость передачи данных - 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)
  • Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика
  • Поддержка атомарных операций - сравнение/обмен, атомарное увеличение (операции семейства LOCK - compare/swap, fetch/add и т. д.).
  • Открытая архитектура - отсутствие необходимости использования специального программного обеспечения
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

  • Создания компьютерной сети .
  • Подключения аудио и видео мультимедийных устройств.
  • Подключения принтеров и сканеров .
  • Подключения жёстких дисков , массивов RAID .

Основные сведения

Кабель представляет собой 2 витые пары - А и B, распаянные как A к B, а на другой стороне кабеля как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии - 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля - к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идет трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, а также ориентацию каждого порта - не подключен/к главному/от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции - это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение - запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции - это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путем инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требует выделения изохронных ресурсов - номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование

Сеть поверх 1394

Около 1998 г. содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне него. Существовали даже карты контроллеров с одним из разъемов, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъемом 1394 и поддержкой горячей замены.

Все это прослеживается в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Все эти идеи быстро кончились провалом, одна из главных причин - лицензионная политика Apple, требующего выплат за каждый чип контроллера.

MiniDV видеокамеры

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идет практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из ее структуры адресации.

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows - WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например firescope для linux.

Организация устройств IEEE 1394

Устройства IEEE 1394 организованы по трехуровневой схеме - Transaction, Link и Physical, соответствующие трем нижним уровням модели OSI .

Transaction Layer - маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.

Link Layer - формирует пакеты данных и обеспечивает их доставку.

Physical Layer - преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

IEEE 1394a

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b

IEEE 1394c

Появившийся в 2006 году стандарт 1394c позволяет использовать кабель Cat 5e от Ethernet . Возможно использовать параллельно с Gigabit Ethernet , то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина - 100 м, Максимальная скорость соответствует S800 - 800 Мбит/с.

Разъёмы

Существуют четыре (до IEEE 1394c - три) вида разъёмов для FireWire:

  • 4pin (IEEE 1394a без питания) стоит на ноутбуках и видеокамерах. Витая пара (два контакта) для передачи сигнала (информации) и вторая витая пара (др. два контакта) - для приема.
  • 6pin (IEEE 1394a). Дополнительно два провода для питания.
  • 9pin (IEEE 1394b). Дополнительно два контакта для экранов витых пар (приёма и передачи информации). И еще один контакт - резерв.
  • RJ-45 (IEEE 1394c).

См. также

Примечания

Ссылки

  • Интерфейс IEEE 1394 По материалам курса Kramer AV Academy - Архив журнала «625» № 7/2005 картинки, грамотно показаны как функциональные схемы, дерево узлов, схемы арбитража, так и разрез кабеля и смысл переходников.
  • 1394 Trade Association (англ.)
  • Рабочая группа IEEE p1394c (англ.)

Важность взаимодействия между различными компонентами и устройствами в компьютерной технике сложно переоценить. Без такого взаимодействия просто не было бы самой компьютерной техники. Но, с самого начала развития компьютеров каждый производитель решал (а кое-где и продолжает решать) эти проблемы по-своему. Как грибы после дождя росло количество всевозможных шин и разъёмов, по которым перегонялись данные, как внутри компьютера, так и снаружи. Но, если такое разнообразие решений внутри железной коробки шло (и идёт) во благо, стимулируя технический прогресс, то с периферией всё происходит наоборот. Море разных шин и разъёмов, которыми периферия может подключаться к компьютерам не выгодно никому - ни производителям самих компьютеров, ни производителям периферии. Стало ясно, что нужны универсальные шины. И они появились. К сожалению, общий беспорядок(когда каждый тянул одеяло на себя), не миновал и эту область. Поэтому, в середине девяностых годов, взглянув на заднюю стенку компьютера, можно было увидеть кучу разнообразных разъёмов: COM, LPT, VGA, PS/2 и некоторые другие. Каждый из этих разъёмов имел свои недостатки, требовал от разработчиков отдельной реализации и требовал свою долю отнюдь не безграничных компьютерных ресурсов. Необходимость действительно универсального разъёма назрела, и разработчики с энтузиазмом принялись за работу. Так, например, небезызвестная фирма Intel с середины девяностых годов начала агрессивно проталкивать на рынок своё детище - USB (Universal Serial Bus). По сравнению с существовавшими на то время разъёмами, USB стал подлинным прорывом, обеспечивая казалось бы, всё, о чём можно было мечтать. Но это только казалось:-) В тени шумихи вокруг USB тогда мало кто заметил рождение ещё одного формата, использующего последовательную шину (Serial Bus), который умел не меньше (а то и больше), чем его широко разрекламированный конкурент. Это IEEE 1394.

С чего всё начиналось

История IEEE 1394, теперь известного также как FireWire и как i-Link, началась ещё в 1986 году, когда члены Microcomputer Standards Committee (Комитет по Стандартам Микрокомпьютеров) захотели объединить существовавшие в то время различные варианты последовательной шины (Serial Bus). Новый проект был призван объединить существовавшие на то время наработки: IEEE 1014 VME, IEEE 1296 Multibus II, и IEEE 896 FutureBus+®. Задачей разработчиков стало создание универсального I/O (Input/Output) внешнего интерфейса, пригодного как для работы с мультимедиа, так и для работы с накопителями данных (Mass Storage Device), не говоря уже о более простых вещах - вроде принтеров, сканеров, и тому подобного. Результатом труда разработчиков стал окончательно утверждённый 12 декабря 1995 года 10 мегабайтный документ под названием 1394-1995.pdf, который описывал IEEE 1394. В названии стандарта нет никакого тайного смысла - просто это был 1394 по счёту стандарт, выпущенный комитетом. Интерфейс, который описывался в этом документе был воистину революционным. Он обеспечивал просто невероятные по тем временам скорости и удобство. Ведущую роль в разработке стандата сыграла, была Apple, которая дала ему имя FireWire, поэтому нет ничего удивительного в том, что она сразу же сделал ставку на использование этого стандарта в своих компьютерах (как обычно, Apple пошёл своим путём, и, пока пользователи PC заглядывали в рот Intel с недавно появившемся USB, сделал ставку на FireWire. Хотя и USB не был забыт. Настоящей лебединой песней для IEEE 1394 стало появление любительских DV камер. Ещё при их разработке стало ясно, что, кроме IEEE 1394 в качестве внешнего интерфейса для них ничего не подходит. Поэтому, Digital VCR Conference (DVC) приняла решение использовать IEEE 1394 как стандартный интерфейс для цифровых камер. Первой ласточкой стала Sony c DCR-VX1000 и DCR-VX700 цифровыми камерами, которые впервые имели IEEE 1394 выход. Но, вскоре за Sony подтянулись и другие производители. И сегодня IEEE 1394 практически монополизировал этот быстро развивающийся рынок. Сегодня любая, произведённая сегодня DV камера в обязательном порядке оснащается IEEE 1394 интерфейсом.

Свою лепту в развитие IEEE 1394 внесла и Texas Instruments, организовавшая массовое производство действительно дешёвых микросхем для реализации IEEE 1394 интерфейса, что сыграло огромную роль в бурном росте количества IEEE 1394 контролёров в персональных компьютерах.

Несмотря на такой успех нового стандарта (он оказался востребованным ещё до выхода окончательной спецификации), разработчики не стояли на месте. Уже в 2000 году вышла 1394a-2000 версия протокола, сразу же с энтузиазмом воспринятая производителями. А сегодня разрабатывается P1394b.

Что же такого хорошего в IEEE 1394?

Как уже говорилось, разработчики опирались на выпущенные ранее стандарты, и в IEEE 1394 вошло всё лучшее, что существовало на тот момент. Из главных особенностей IEEE 1394 можно отметить:

  • Последовательная шина вместо параллельного интерфейса позволила использовать кабеля малого диаметра и разъёмы малого размера.
  • Поддержка горячего подключения и отключения всего чего угодно.
  • Питание внешних устройств через IEEE 1394 кабель.
  • Высокая скорость
  • Возможность строить сети из различных устройств и самой различной конфигурации.
  • Простота конфигурации и широта возможностей. Через IEEE 1394 может работать самое различное оборудование, причём пользователю не придётся мучаться вопросом, как это всё правильно подключить.
  • Поддержка асинхронной и синхронной передачи данных.
На последнем пункте необходимо остановиться поподробнее.

Асинхронная передача . Asybnchronous, от греческого Asyn - другой и Chronous - время. Это означает, что данные обязательно будут доставлены в целости и сохранности, пусть и не всегда в срок. Получение каждого пакета проверяется и подтверждается, если пакет не дошёл, передача будет повторена заново.

Синхронная передача . Isochronous, от греческого Iso - тот же, такой же и Chronous - время. Это означает, что скорость и непрерывность потока важнее, чем сохранность данных. Если пакет пришёл с ошибкой, или не пришёл вообще, это даже не проверяется, не говоря уже о том, чтобы переслать пакет заново. Этот тип передачи отлично подходит для мультимедийных приложений, где потеря какой-либо части информации менее критична, чем большая задержка.

Как это всё работает?

IEEE 1394 делится на несколько уровней. Выглядит это так:

Внизу находится физический уровень (Physical Layer). Аппаратная составляющая, которая отвечает за перевод сигналов, полученных по кабелям в понятную компьютеру форму (и наоборот - за перевод данных в электрические сигналы, идущие по кабелям). Эта же часть отвечает за управление физическим каналом, т.е. определяет, должно устройство занимать канал прямо сейчас, или должно подождать. Кроме того, этот же уровень обеспечивает интерфейс для кабелей и разъёмов и отвечает за следующие процессы:

Интерфейс среды (Media Interface) - отвечает за состояние сигнала, передаваемого по кабелям.

Арбитраж (Arbitration) - различные IEEE 1394 устройства, включенные в сеть разбираются между собой, кто и в каком порядке может действовать.

Кодирование/Декодирование (Encode/Decode) - перевод данных в электрические сигналы, которые могут передаваться по кабелям и обратно.

Уровнем выше расположен уровень канала (Link Layer). Сюда доставляются уже готовые пакеты данных. Именно этот уровень отвечает за пересылку данных вверх и вниз, тут происходят следующие процессы:

Приёмник пакетов (Packet Receiver) - организует и отвечает за приём пакетов данных.

Передатчик пакетов (Packet Transmitter) - организует и отвечает за передачу пакетов данных.

Контроль циклов (Cycle Control) - пакеты передаются не поодиночке, а циклами. Здесь и осуществляется контроль над этими циклами.

Эти два уровня реализованы в "железе", т.е. выполняются аппаратно. Они полностью отвечают за формирование сигнала из данных, формирование данных из сигнала, и приём/передачу в нужное время и в нужное место. Поэтому, только этих двух уровней и хватает при синхронной передаче, когда никакого контроля над тем что передаётся и получается не требуется. При асинхронной передаче это не так, и там в действие вступает:

Сетевой уровень (Transaction Layer). На этом уровне происходит проверка полученных данных. Если всё нормально (ни один пакет не потерялся или не повредился), данные отправляются потребителю. Если обнаружена ошибка - возвращаемся на физический уровень и повторяем всё сначала, пока данные не будут получены без ошибок.

Все уровни (в том числе и первые два) контролируются firmware, и этот процесс называется менеджмент последовательной шины (Serial Bus management).

Такие процессы происходят в каждом IEEE 1394 устройстве, и два любых устройства образовывают между собой соединение типа точка-точка (point-to-point). Но, кроме этого, IEEE 1394 позволяет объединять множество таких устройств и соединений в одну логическую сеть. Для этого физический уровень (physical layer) позволяет иметь больше одного физического интерфейса на одном устройстве.

Рассмотрим подробнее, как разные устройства в одной логической сети разбираются, кто, когда, и что должен делать.

Инициализация сети происходит в несколько этапов:

Сброс (reset) - происходит каждый раз, когда требуется. Причиной для сброса может стать, например, физическое изменение конфигурации сети (подключили новое устройство или отключили старое). Со сброса шины и начинается процесс инициализации сети. Конфигурация, сформировавшаяся при этом, остаётся действительной и неизменной до следующего сброса шины.

Идентификация дерева (Tree identification) - подключенные устройства выясняют, какие из них родительские, а какие дочерние, и формируют логическое дерево. Определяется корневое устройство для всего дерева.

Примечание: Первое, что определяет устройство после включения, это сколько подключенных портов оно имеет. Один (leaf) или несколько (branch). Затем определяется родительские (parent) и дочерние (child) устройства (какое к какому подключено). На основе этих данных строится дерево и определяется корневое устройство.


Самоидентификация (Self identification) - каждое из устройств получает свой собственный ID узла внутри дерева, и выясняет на каких скоростях могут работать его непосредственные соседи. Топология полностью определена. Для адресации используются принципы, описанные в IEEE 1212. Это означает 64 битную прямую адресацию (48 бит на узел, остальные 16 используются дли идентификации шины), что позволяет организовать иерархическую адресацию для 63 узлов на 1023 шинах. Единственное ограничение - между двумя устройствами, которые хотят общаться между собой, должно быть не более 16 "хопов" (сегментов).

Инициализация сети завершена, в действие вступает нормальный арбитраж - рабочий режим работы сети. Устройства обмениваются данными, а корневое устройство следит за тем, чтобы они друг другу не мешали. Происходит это так:

Устройство, которое хочет начать передачу, вначале посылает запрос своему родительскому устройству. Родительское устройство, получив запрос, запрещает передачу всем остальным дочерним (в один момент обрабатывается только один запрос) и, в свою очередь, передаёт запрос дальше, своему родительскому устройству, где всё повторяется. В итоге запрос доходит до корневого устройства, которое, в свою очередь, разрешает передачу тому устройству, чей запрос пришёл первым. Всем остальным передача запрещается. Таким образом, если два устройства одновременно пошлют запрос на передачу данных, то ответ будет зависеть от того, чей запрос первым достигнет корневого устройства. Оно выигрывает арбитраж и получает право начать передачу. Проигравшее устройство. не получив разрешения на передачу, вынуждено ждать, пока выигравшее не освободит шину.


Всё это происходит на физическом уровне (physical layer). После того, как разрешение на передачу данных получено и требуется начать передачу данных, в дело вступает уровень канала (link layer). Как уже говорилось, именно он формирует пакеты и определяет - когда и сколько пакетов должно отсылаться. Передача данных начинается с запроса готовности к приему устройства, для которого предназначены данные, и, получив подтверждение готовности, начинает передачу. Данные идут пакетами, между которыми есть промежутки (gap). Типичный пакет данных 256 байт, или 2048 бит, из которых 160 бит приходится на заголовок. Таким образом, общая эффективность (сколько в пакете действительно данных, а не служебной информации) весьма высока и чем больше пакет, тем выше эффективность). В заголовок входит информация об отправителе, получателе и CRC. После пакета идёт небольшой промежуток, длиной меньше 0.75 msec (acknowledge gap), после чего получатель должен выслать 8-ми битовый блок данных, подтверждающий, что пакет получен в целости и сохранности (ack packet). Потом следует более длинный промежуток, длинной больше 1 msec, разделяющий пакеты (subaction gap). И так далее - пакет, acknowledge gap, подтверждающий байт (ack), subaction gap.

Для того, чтобы одно устройство, начав передавать данные, не заняло весь канал, не оставив соседям никаких шансов начать передачу, пока оно не закончит, введено понятие fairness interval. В течении одного fairness interval каждое устройство в шине получает одну возможность передать свои данные. После того как разрешение получено (арбитраж выигран), и порция данных передана, устройство должно ждать конца fairness interval и начала следующего цикла, прежде чем оно вновь получит возможность передать следующую порцию данных. Заканчивается fairness interval так называемым reset gap, который длиннее subaction gap, и вызывает сброс всей шины.

Для синхронной передачи используется несколько другая методика. Данные передаются "выстрелами", длина каждого 125 мsec. Таких выстрелов производится столько, сколько позволяет канал. Даже на одинарной (98.304 Mbit/sec) скорости за один такой цикл передаётся до 1000 байт. Чем выше скорость, тем больше данных успевает пройти. При этом, при синхроной передаче абсолютно не важно, получило принимающее устройство данные или нет. Пакеты просто идут один за другим, разделённые subaction gap, никаких ack packet никто не ждёт. Для того, чтобы принимающее устройство смогло разобраться, где синхронные, а где асинхронные данные, subaction gap при синхронной передаче короче. Это позволяет комбинировать в одном сеансе синхронные данные с асинхронными. Однако, в синхроном режиме одному устройству никогда не позволят захватить весь доступный канал. На синхроные данные может приходится не более 85% доступного канала, причём одно устройство не может занять больше 65%.

Как всё это выглядит?

IEEE 1394 позволяет передавать данные на скорости 98.304 Mbit/sec. Кроме этого, возможна передача в 2-x (196.608 Mbit/sec) и 4-x (393.216 Mbit/sec) режимах.

Первоначально появились чипы, которые способны работать только на 100 Мбитах (хотя спецификация позволяла и больше), но 200 и 400-мегабитные чипы не заставили себя долго ждать. Несмотря на такой кажущийся беспорядок, пользователи не должны испытывать ни малейших неудобств (это было одно из обязательных условий, которое ставилось перед разработчиками). Поэтому IEEE 1394 позволяет в одной сети использовать самые разные устройства одновременно. Причём, пользователю не придётся беспокоиться о том, что он может неправильно их подключить. Подключать можно что угодно, и в каких угодно сочетаниях, железки сами разберутся, кто с кем и на какой скорости может "разговаривать".

Для работы на таких высоких скоростях потребовались соответствующие кабели. Кабель для IEEE 1394 весьма сложная система, и спаять его самостоятельно (что возможно для USB) вряд ли возможно. Данные передаются по двум витым парам, каждая из которых отдельно экранирована. Для пущей надёжности, дополнительно экранируется и весь кабель. Кроме двух сигнальных пар, в кабеле предусмотрены две питающие жилы, которые могут обеспечить любое внешнее устройство током силой до 1.5 А и напряжением до 40 V. В разрезе кабель выглядит так:


Выбору разъёма, к которому должны подключаться IEEE 1394 устройства, было уделено самое пристальное внимание, ведь от разъёма в немалой степени зависит то, насколько удобно будет пользоваться новым интерфейсом. Разъём должен быть небольшим, но в то же время прочным, должен обеспечивать надёжное соединение, но в то же время легко соединяться-отсоединяться даже вслепую. Всем требованиям удовлетворил разъём, используемый в Nintendo GameBoy.

Как видно из фотографии, все контакты выведены в середину разъёма, а снаружи защищены толстым ободком из твёрдой пластмассы. Надёжность этой схемы доказана многими GameBoy, беспощадно растерзанными детьми разных возрастов.

Но даже такой продвинутый и удобный разъём не всех удовлетворил. В самом деле, зачем нам тянуть за собой две питающих жилы там, где подключенное устройство имеет собственное питание. Действительно незачем, решили разработчики и на свет появился новый, четырёхконтактный разъём. Этот новый разъём хоть и не обеспечивал такого надёжного соединения как традиционный шестиконтактный, зато позволял сэкономить место, что немаловажно на портативных устройствах. Кроме этого, кабель без двух дополнительных жил, ответственных за питание, можно сделать ещё тоньше и дешевле. Особо "по вкусу" четырёхконтактные разъёмы пришлись производителям компактных DV камер, и именно их можно увидеть на большинстве таких камер.

Производители материнских плат включают в свои последние решения поддержку обоих разъёмов:

Как это всё развивалось, и что мы имеем сегодня

Ничего идеального в мире нет, и IEEE 1394 не получился идеальным. Поэтому, выпустив первую версию стандарта в 1995 году, команда разработчиков не стала почивать на лаврах, а продолжила работу над следующими версиями стандарта. Так, уже в 2000 году вышла 1394а версия стандарта.

Или Firewire - это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Благодаря невысокой цене и большой скорости передачи данных эта шина становится новым стандартом шины ввода-вывода для персонального компьютера. Ее изменяемая архитектура и одноранговая топология делают Fireware идеальным вариантом для подключения жестких дисков и устройств обработки аудио- и видеоинформации. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени. В этом материале приведены некоторые общие сведения о стандарте IEEE 1394.

Зачем нужен новый интерфейс

Прежде всего, посмотрите на заднюю стенку своего компьютера. Там можно найти множество всяких разъемов: последовательный порт для модема, принтерный порт для принтера, разъемы для клавиатуры, мыши и монитора, SCSI-интерфейс, предназначенный для подключения внешних носителей информации и сканеров, разъемы для подключения аудио и MIDI устройств, а также для устройств захвата и работы с видеоизображениями. Это изобилие сбивает с толка пользователей и создает беспорядок из соединительных кабелей. Причем, нередко производители ноутбуков используют и другие типы коннекторов.

Новый интерфейс призван избавить пользователей от этой мешанины и к тому же имеет полностью цифровой интерфейс. Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, потому что в настоящее время эти данные сначала конвертируются в аналоговый сигнал, а затем обратно оцифровываются устройством-получателем сигнала. Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.

Цифровые устройства генерируют большие объемы данных, необходимые для передачи качественной мультимедиа-информации. Например:

Высококачественное видео
Цифровые данные = (30 frames / second) (640 x 480 pels) (24-bit color / pel) = 221 Mbps

Видео среднего качества
Цифровые данные = (15 frames / second) (320 x 240 pels) (16-bit color / pel) = 18 Mbps

Высококачественное аудио
Цифровые данные = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps

Аудио среднего качества
Цифровые данные = (11,050 audio samples / sec) (8-bit audio samples) (1 audio channel for monaural) = 0.1 Mbps

Обозначение Mbps - мегабит в секунду.

Для решения всех этих проблем и высокоскоростной передачи данных была разработана шина IEEE 1394 (Firewire).

IEEE 1394 - высокоскоростная последовательная шина

Стандарт поддерживает пропускную способность шины на уровнях 100, 200 и 400 Мбит/с. В зависимости от возможностей подключенных устройств одна пара устройств может обмениваться сигналами на скорости 100 Мбит/с, в то время как другая на той же шине - на скорости 400 Мбит/с. В начале следующего года будут реализованы две новые скорости - 800 и 1600 Мбит/с, которые в настоящее время предлагаются как расширение стандарта. Такие высокие показатели пропускной способности последовательной шины практически исключают необходимость использования параллельных шин, основной задачей которых станет передача потоков данных, например несжатых видеосигналов, внутри компьютера.

Таким образом, Firewire удовлетворяет всем вышеперечисленным требованиям, включая:

  • Цифровой интерфейс - позволяет передавать данные между цифровыми устройствами без потерь информации
  • Небольшой размер - тонкий кабель заменяет груду громоздких проводов
  • Простота в использовании - отсутствие терминаторов, идентификаторов устройств или предварительной установки
  • Горячее подключение - возможность переконфигурировать шину без выключения компьютера
  • Небольшая стоимость для конечных пользователей
  • Различная скорость передачи данных - 100, 200 и 400 Мбит/с
  • Гибкая топология - равноправие устройств, допускающее различные конфигурации
  • Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени
  • Открытая архитектура - отсутствие необходимости использования специального программного обеспечения
Благодаря этому шина IEEE 1394 может использоваться с:
  • Компьютерами
  • Аудио и видео мультимедийными устройствами
  • Принтерами и сканерами
  • Жесткими дисками, массивами RAID
  • Цифровыми видеокамерами и видеомагнитофонами

Простейшая система для видеоконференций, построенная на шине IEEE 1394, использующая два 15 fps аудио/видео канала загрузит всего третью часть 100Mbps интерфейса 1394. Но, в принципе, для этой задачи возможно и использование 400Mbps интерфейса.

Кабель IEEE 1394

Шесть контактов FireWire подсоединены к двум проводам, идущим к источнику питания, и двум витым парам сигнальных проводов. Каждая витая пара и весь кабель в целом экранированы.

Провода питания рассчитаны на ток до 1,5 А при напряжении от 8 до 40 В, поддерживают работу всей шины, даже когда некоторые устройства выключены. Они также делают ненужными кабели питания во многих устройствах. Не так давно инженеры Sony разработали еще более тонкий четырехпроводный кабель, в котором отсутствуют провода питания. (Они намерены добавить свою разработку к стандарту.) Этот так называемый AV-разъем будет связывать небольшие устройства, как "листья" с "ветками" 1394.

Гнездо разъема имеет небольшие размеры. Ширина его составляет 1/10 ширины гнезда разъема SCSI, у него всего шесть контактов (у SCSI - 25 или 50 разъемов).

К тому же кабель 1394 тонкий - приблизительно в три раза тоньше, чем кабель SCSI. Секрет тут прост - ведь это последовательная шина. Все данные посылаются последовательно, а не параллельно по разным проводам, как это делает шина SCSI.

Топология

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах.

Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе - 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х1024 4 байт) для каждого узла.

Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 - 3 порта). Шина допускает "горячее" подключение - соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса. Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом.

Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.

Протокол

Интерфейс позволяет осуществлять два типа передачи данных: синхронный и асинхронный. При асинхронном методе получатель подтверждает получение данных, а синхронная передача гарантирует доставку данных в необходимом объеме, что особенно важно для мультимедийных приложений.

Протокол IEEE 1394 реализует три нижних уровня эталонной модели Международной организации по стандартизации OSI: физический, канальный и сетевой. Кроме того, существует "менеджер шины", которому доступны все три уровня. На физическом уровне обеспечивается электрическое и механическое соединение с коннектором, на других уровнях - соединение с прикладной программой.

На физическом уровне осуществляется передача и получение данных, выполняются арбитражные функции - для того чтобы все устройства, подключенные к шине Firewire, имели равные права доступа.

На канальном уровне обеспечивается надежная передача данных через физический канал, осуществляется обслуживание двух типов доставки пакетов - синхронного и асинхронного.

На сетевом уровне поддерживается асинхронный протокол записи, чтения и блокировки команд, обеспечивая передачу данных от отправителя к получателю и чтение полученных данных. Блокировка объединяет функции команд записи/чтения и производит маршрутизацию данных между отправителем и получателем в обоих направлениях.

"Менеджер шины" обеспечивает общее управление ее конфигурацией, выполняя следующие действия: оптимизацию арбитражной синхронизации, управление потреблением электрической энергии устройствами, подключенными к шине, назначение ведущего устройства в цикле, присвоение идентификатора синхронного канала и уведомление об ошибках.

Чтобы передать данные, устройство сначала запрашивает контроль над физическим уровнем. При асинхронной передаче в пакете, кроме данных, содержатся адреса отправителя и получателя. Если получатель принимает пакет, то подтверждение возвращается отправителю. Для улучшения производительности отправитель может осуществлять до 64 транзакций, не дожидаясь обработки. Если возвращено отрицательное подтверждение, то происходит повторная передача пакета.

В случае синхронной передачи отправитель просит предоставить синхронный канал, имеющий полосу частот, соответствующую его потребностям. Идентификатор синхронного канала передается вместе с данными пакета. Получатель проверяет идентификатор канала и принимает только те данные, которые имеют определенный идентификатор. Количество каналов и полоса частот для каждого зависят от приложения пользователя. Может быть организовано до 64 синхронных каналов.

Шина конфигурируется таким образом, чтобы передача кадра начиналась во время интервала синхронизации. В начале кадра располагается индикатор начала и далее последовательно во времени следуют синхронные каналы 1, 2… На рисунке изображен кадр с двумя синхронными каналами и одним асинхронным.

Оставшееся время в кадре используется для асинхронной передачи. В случае установления для каждого синхронного канала окна в кадре шина гарантирует необходимую для передачи полосу частот и успешную доставку данных.

Резюме

Таким образом, в скором будущем, на задней панели компьютера можно будет увидеть выходы всего двух последовательных шин: USB для низкоскоростных применений и Firewire - для высокоскоростных. Причем путь в жизнь у шины IEEE 1394 произойдет гораздо быстрее, чем у USB. В этом случае производители программных продуктов и аппаратуры действуют сообща. Уже сейчас доступны различные виды устройств с шиной Firewire, поддержка этой шины будет встроена в операционную систему Windows 98 и в ближайшем будущем ведущие производители чипсетов для PC встроят поддержку этой шины в свои продукты. Так что 1998 год станет годом Firewire.

Что такое IEEE 1394?

Интерфейс IEEE 1394

Немного истории. 10 лет назад, на выставке IFA’95 в Берлине фирма Sony продемонстрировала первые промышленные модели цифровых видеокамер формата mini-DV. Это были камеры DCR-XV700 и DCR-XV1000 с выходным цифровым интерфейсом IEEE 1394 (FireWire) и новым для видеотехники 4-контактным разъемом DV Out. Уже в следующем году цифровые видеокамеры стали выпускаться и другими фирмами, в частности, появилась модель Panasonic NV-DS1, оснащенная двунаправленным интерфейсом DV In/Out и способная к цифровой записи как собственных съемок, так и аналоговых видеосигналов, поступающих на собственные разъемы Video и S-Video для композитного и раздельных видеосигналов.

С тех пор популярность интерфейса IEEE 1394, известного также как FireWire и i-Link, стала стремительно возрастать. Он стал обязательным для любой цифровой видеокамеры и поддерживается в большинстве современных ноутбуков.

А начиналось все гораздо раньше, когда Комитет по стандартам для микрокомпьютеров Института инженеров по электротехнике и электронике (IEEE) решил объединить имеющиеся наработки по последовательной шине и создать быстродействующий универсальный интерфейс, обеспечивающий работу с мультимедийной информацией, накопителями, формирователями, визуализаторами и синтезаторами данных. Ведущим разработчиком такого интерфейса была фирма Apple, которая решила применять его в своих компьютерах под названием FireWire. В процессе выполнения этих работ организовался консорциум с участием компаний Compaq, Matsushita, Philips, Sony, Toshiba и др., в результате чего в конце 1995 года IEEE принял соответствующий стандарт под порядковым номером 1394. Любопытно, что в цифровых камерах Sony интерфейс IEEE 1394 появился под названием i-Link раньше этого события.

Что такое IEEE 1394? Это стандартная технология шины последовательной передачи данных для соединения компьютера с периферией. При этом обеспечиваются следующие преимущества:

· высокая скорость (100, 200, или 400 Мб/с для IEEE 1394a; 800 Мб/с для IEEE 1394b, в перспективе 1,6 и 3,2 Гб/с);

· поддержка “горячего” (Fire) подключения и отключения. Автоматическое распознавание присоединения и отсоединения аппаратуры и возможности делать это при работающем компьютере, т.е. даже тогда, когда шина работает в полном режиме;

· возможности общения аппаратуры с IEEE 1394 In/ Out между собой без компьютера. Широко применяется, например, для редактирования при прямой перезаписи информации с одной видеокамеры на другую;

· простота конфигурирования и широта возможностей . Шина позволяет подключать до 63 устройств без применения концентраторов. На одном устройстве может быть до 27 разъемов для подключения к компьютеру и другим устройствам. Шина поддерживает конфигурирование Plug&Play;

· использование кабелей малого диаметра и миниатюрных разъемов (4 или 6 контактов). Интересно, что разъем был заимствован у компьютерной игры Nintendo Gameboy, так как показал высокую износостойкость в условиях беспощадной эксплуатации;

· пакетная передача данных. Мультимедийные данные, например видеофильм, разбиваются на пакеты с интервалами между ними. Число пакетов определяется тем, какой длины фильм посылается, а в интервалах посылается служебная информация, например, «Стоп» или «Пуск».

· поддержка асинхронной и изохронной передачи данных. При асинхронной передаче получение каждого пакета данных проверяется, и, если он не получен или принят с повреждением, передача повторяется и ошибки исправляются;

· питание внешних устройств через кабель IEEE 1394.

Составляющие IEEE 1394. Функциональная схема интерфейса IEEE 1394 показана на рисунке 1. Здесь внизу находится физический уровень, на котором происходит перевод стыкуемых мультимедийных сигналов в компьютерные форматы или наоборот, с формированием, кодированием/декодированием и арбитражем, определяющим, в каком порядке устройства IEEE 1394, составляющие сеть, могут работать.

Рис. 1 Функциональная схема интерфейса IEEE 1394

На уровне обрабатываются и формируются пакеты данных, организуется их прием и передача. Этих уровней достаточно для изохронной передачи данных, когда контроль за передаваемой и получаемой информацией не ведется. При асинхронной передаче данных такой контроль производится на программном уровне обработке, где данные проверяются и отправляются потребителю, если ошибок не обнаружено. В противном случае процедуры на нижнем уровне повторяются до устранения ошибок. Физический уровень может содержать несколько разъемов FireWire, причем два любых устройства IEEE 1394 могут соединяться между собой “точка в точку”(point-to-point).

Как работает IEEE 1394? Процесс инициализации интерфейса начинается со сброса шины. При этом выясняется, один или несколько портов в системе имеется, и к каким из них подключены родительские и дочерние устройства. По этим данным строится дерево и определяется корневой узел сети.

Рис. 2. Дерево узлов IEEE 1394


Каждое из IEEE 1394-устройств получает идентификационный номер и данные, на каких скоростях могут работать его прямые соседи. Используется 64-битная прямая адресация (48 бит на узел и 16 для идентификации шины), позволяющая реализовать иерархическую адресацию для 63 узлов на 1023 шинах. По завершении инициализации начинает работать арбитраж, следящий за тем, чтобы работающие устройства друг другу не мешали. Поэтому устройство, готовое начать передачу, сначала посылает сигнал запроса своему родительскому устройству в дереве. Это устройство, получив запрос, формирует сигал запрета своим дочерним устройствам и передает запрос дальше, своему родительскому устройству и так далее, пока запрос не дойдет до корневого устройства. В свою очередь корневое устройство формирует сигнал, разрешающий передачу устройству, выигравшему арбитраж по времени, т.е. тому, запрос от которого получен первым. При этом устройство, проигравшее арбитраж, ждет, пока шина не освободится.

По сигналу разрешения начинается работа на уровне компоновки, где формируются пакеты данных по 512 байт с интервалами между ними и определяется их адресация. 160 бит в каждом пакете занимает заголовок, куда входит информация об отправителе и получателе пакетов, а также о циклическом коде CRC исправления ошибок. Передача данных начинается по получению ответа о готовности запрашиваемого устройства к приему информации.

В течении времени до 0,75 мс после отправки каждого пакета данных ожидается получение подтверждения об их получении в виде байтовой посылки. Далее следует интервал > 1 мс, разделяющий пакеты, и т. д.

Каждому устройству сети IEEE 1394 предоставляется возможность передавать данные один раз в течение каждого промежутка времени, распределяемого по всем узлам. Если этого времени оказывается недостаточно, передача завершается на следующих циклах. Так сделано для того, чтобы передача длинной информации одного из источников не могла блокировать работу остальных.

Изохронная передача данных применяется, например, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части. В изохронном режиме данные передаются пакетами длительностью по 125 мс, т.е. чем выше скорость, тем больше данных может быть передано за это время. Пакеты следуют друг за другом, не ожидая байтов подтверждения получения. Для идентификации пакетов изохронной и асинхронной передачи промежуток между ними в первом случае короче, чем во втором. Это позволяет комбинировать и различать изохронные и асинхронные данные в каждом сеансе. На изохронные данные выделено до 85 % канала передачи, из которых устройство может занимать не более 65 %.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически. Это делает интерфейс весьма дружественным, так как пользователю не нужно заботиться о правильности подключения устройств.

Кабели и разъемы. Для работы интерфейса на высоких скоростях потребовались кабели с временем распространения сигнала, не превосходящим допустимых пределов. Для IEEE 1394 это 144 нс, после чего принимается решение о недоступности адресуемого устройства. Устройство кабеля для IEEE 1394 поясняется рисунке 3.

Рис. 3. Разрез кабеля FireWire

Диаметр этого кабеля равен 6 мм, и он содержит три витые пары проводников диаметром 0,87 мм:, одна из которых типа 22 AWG предназначена для питания от 8 до 30 В внешней нагрузки до 1,5 А, а две другие - раздельно экранированные пары сигнальных проводов типа 28 AWG. Все проводники с изолирующим заполнением заключены в экранирующую фольгу и оболочку из поливинилхлорида. Таким образом, кабель имеет сложную конструкцию, и изготовить его самостоятельно вряд ли возможно.

Рис. 4. Разъемы IEEE 1394 (6 контактов)
А) блочный б) кабельный

На фотографиях разъемов IEEE 1394 (рис. 4), заимствованных у компьютерной игры Nintendo Gameboy, видно, что контакты здесь находятся в середине разъемов и по бокам защищены от доступа металлическим ободком и изолирующей прокладкой у кабельного разъема. Пара проводов, предназначенная для питания внешних устройств, например сканера, не требуется при работе с цифровыми видеокамерами, имеющими собственное питание.

Рис. 5. Кабель IEEE 1394 i-Link

Для такого применения IEEE 1394 разработаны однорядные 4-контактные разъемы и кабели, вид одного из которых, i-Link Sony, показан на фотографии (рис. 5). Длина этого кабеля 96 см.

IEEE 1394 a. Хотя шина FireWire оказалась очень удобной, работы по ее совершенствованию продолжаются. Так, 2000 году был утвержден стандарт IEEE 1394а с дополнениями, целесообразность которых выяснилась в процессе эксплуатации. В частности, введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходной процесс установки надежного подсоединения или отсоединения устройства. Без этого иногда возникал не один, а целая серия сбросов шины по подключению нового устройства. Практика показала, что устройства IEEE 1394 могут быть несовместимыми, если пакеты в серии передаются с разной скоростью. По IEEE 1394а эта проблема решена добавлением сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей. Предусмотрены также возможности программного отключения порта FireWire, включения аппаратуры и перевода ее в дежурный режим. Большое внимание разработчики уделили повышению эффективности шины за счет уменьшения общей длительности технологических промежутков, разделяющих пакеты записи. С этой целью по IEEE 1394а:

· Повторные байты подтверждения получения не ожидаются, после первого обнаружения такого байта передача продолжается без прерываний.

· Введена возможность неоднократного запроса на передачу одного устройства в одном цикле, если другим устройствам шина не нужна.

· Уменьшено время на сброс шины . По IEEE 1394 передающее устройство не обнаруживает сигнал сброса, пока не закончится передача текущего пакета данных. Поэтому сигнал сброса поддерживался в течение времени, большего, чем максимальное время передачи одного пакета. Если же сигнал сброса формируется по признаку выигрыша устройством арбитража, в этом нет необходимости, и по IEEE 1394a сброс шины выполняется по завершению передачи этого устройства.

· Предусмотрены возможности прикрепления пакетов информации к уже передающимся . За счет этого достигается экономия на времени арбитража.

IEEE 1394 b. Этот стандарт, первая версия которого принята в 2002 году, относится к последовательной шине с увеличенной до 800 Мб/с и 1,6 Гб/с пропускной способностью. В перспективе пропускная способность может возрасти и до 3,2 Гб/с. Основой интерфейса IEEE 1394b является кодирование 8В10В в соответствии с алгоритмами, применяемыми в оборудовании для гигабайтных сетей, и оптоволоконные линии связи. Введено также измерение времени отклика. Введение такого измерения позволило узнавать время поступления ответа и увеличить длину кабелей. По IEEE1394b она может достигать 100 метров, правда для этого должен применяться стеклянный оптоволоконный кабель. При использовании пластикового оптоволокна максимальная длина кабеля уменьшается до 50 метров, а пропускная способность до 200 Мб/с. Изменились и разъемы: теперь это 9-контактные двухрядные разъемы. Вид разъемов на кабельном переходнике 9↔4 контактов показан на рисунке 6.

Рис. 6. Кабельный переходник IEEE 1394

Этот переходник и ему аналогичный 9↔6 контактов обеспечивает кабельную совместимость шины IEEE 1394b с предшествующими версиями IEEE 1394. В новом стандарте предусмотрено два режима передачи данных: β-режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Из других особенностей IEEE 1394b следует отметить новый способ арбитража. Если в предшествующих стандартах функцию арбитража выполняло корневое устройство, то теперь такую функцию выполняет любое устройство, постоянно посылающее сигналы запроса на передачу. Новый метод арбитража называется Bus Owner/Supervisor/Selector (BOSS). Его логическая схема показана на схеме, а принцип работы заключается в следующем.

Рис. 7. Арбитраж BOSS IEEE 1394b

Устройство, готовое к передаче данных, постоянно посылает сигналы запроса, но передача данных блокируется, пока на соответствующей шине присутствуют сигналы, передаваемые другим устройством. Как только последние прекращаются, по этой шине начинают передаваться сигналы ждущего устройства, в свою очередь блокирующего режимы передачи других устройств. Очевидно, что для работы системы арбитража BOSS шина данных должна быть двунаправленной. Поэтому такой арбитраж работает только в среде IEEE 1394b. Если в нее входит хотя бы одно другое устройство, для арбитража применяется ранее рассмотренный метод.

USB 2.0 и IEEE 1394а. Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышек, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности. USB 2.0 как и USB 1.1 использует 4-контактные разъемы, полностью совместимые между собой. Единственное отличие в подключении USB 2.0 и USB 1.1 заключается в том, что новый стандарт требует экранированных кабелей. Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств - 2,5 Вт. Общение устройств стандарта USB 2.0 происходит по схеме Master/Slave, т. е. все потоки данных управляются компьютером, что замедляет работу интерфейса. Длина кабеля для соединения двух устройств по шине USB 2.0 не должна превышать 5 метров. Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

С продвижением USB 2.0 на рынке стали появляться устройства, например, внешние жесткие диски со сдвоенным интерфейсом или одни и те же модели с разными интерфейсами. Казалось бы, по USB 2.0 они должны работать быстрее, чем по IEEE 1394a, но на практике, при прочих равных условиях производительность по FireWire 400 получается лучше, причем почти без проблем с “горячим” подключением. Вероятно, новая версия USB будет работать стабильней, но IEEE 1394a к тому времени несколько устареет и будет заменяться на IEEE 1394b. Кроме того, архитектура USB 2.0 по гибкости несопоставима с IEEE 1394, особенно при работе с мультимедийной аппаратурой.

Таким образом, шина USB 2.0 эффективна для компьютерной периферии, низкоскоростной и со средними требованиями к пропускной способности. Она дешева и достаточно производительна для большинства задач. Шина FireWire гораздо гибче и отлично подходит для работы с мультимедиа. Цифровые видеокамеры и телевизоры, DVD-проигрыватели и игровые приставки - все это при наличии портов FireWire легко соединить между собой, причем не обязательно вокруг компьютера.







2024 © gtavrl.ru.