Технология ATM. Поле контрольной суммы заголовка HEC


Технология ATM

Технология асинхронного режима передачи (Asynchronous Transfer Mode, АТМ) разработана как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN (Broadband-ISDN, B-ISDN).

Технология АТМ совмещает в себе - коммутацию пакетов и коммутацию каналов. Она взяла на вооружение передачу данных в виде адресуемых пакетов, использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми. С помощью техники виртуальных каналов, предварительного заказа параметров качества обслуживания канала и приоритетного обслуживания виртуальных каналов с разным качеством обслуживания удается добиться передачи в одной сети разных типов трафика без дискриминации.

Разработку стандартов АТМ осуществляет группа организаций под названием АТМ Forum под эгидой специального комитета IEEE, а также комитеты ITU-T и ANSI. АТМ - это сложная технология, требующая стандартизации в самых различных аспектах, поэтому, хотя основное ядро стандартов было принято в 1993 году, работа по стандартизации активно продолжается

Сеть АТМ имеет классическую структуру крупной территориальной сети - конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы АТМ пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей АТМ определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически. В публичных сетях АТМ таблицы маршрутизации могут строиться администраторами вручную, или могут поддерживаться протоколом PNNI.

Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла АТМ, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т.п.

Для ускорения коммутации в больших сетях используется понятие виртуального пути - Virtual Path, который объединяет виртуальные каналы, имеющие в сети АТМ общий маршрут между исходным и конечным узлами или общую часть маршрута между некоторыми двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии АТМ применена на двух уровнях - на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).



Стандарт АТМ не вводит свои спецификации на реализацию физического уровня. Основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети – это скорость 155 Мбит/с. Магистральное оборудование АТМ работает и на более высоких скоростях 622 Мбит/с и 2,5 Гбит/с. Существует также оборудование АТМ, которое поддерживает скорости PDH, такие как 2 и 34/45 Мбит/с.

Технология АТМ это типичная технология глобальных сетей, основанная на технике виртуальных каналов. Особенности же технологии АТМ совмещение в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как «второстепенный».

Трафик вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Компьютер посылает пакеты в сеть в случайные моменты времени, по мере возникновения в этом необходимости. При этом интенсивность посылки пакетов в сеть и их размер могут изменяться в широких пределах. Чувствительность компьютерного трафика к потерям данных высокая, так как без утраченных данных обойтись нельзя и их необходимо восстановить за счет повторной передачи.

Мультимедийный трафик, передающий, например, голос или изображение, характеризуется низким коэффициентом пульсаций, высокой чувствительностью к задержкам передачи данных (отражающихся на качестве воспроизводимого непрерывного сигнала) и низкой чувствительностью к потерям данных.

Подход, реализованный в технологии АТМ, состоит в передаче любого вида трафика - компьютерного, телефонного или видео - пакетами фиксированной и очень маленькой длины в 53 байта. Пакеты АТМ называют ячейками - cell. Поле данных ячейки занимает 48 байт, а заголовок - 5 байт.

Чтобы пакеты содержали адрес узла назначения и в то же время процент служебной информации не превышал размер поля данных пакета, в технологии АТМ применен прием передачи ячеек в соответствии с техникой виртуальных каналов с длиной номера виртуального канала в 24 бит, что вполне достаточно для обслуживания большого количества виртуальных соединений каждым портом коммутатора сети АТМ.

На выбор размера ячейки большее влияние оказала не величина ожидания передачи ячейки, а задержка пакетизации.

Задержка пакетизации - это время, в течение которого первый замер голоса ждет момента окончательного формирования пакета и отправки его по сети.

Заказ пропускной способности и качества обслуживания , реализован в технологии АТМ на выделение 4 основных класса трафика, для которых разработали различные механизмы резервирования и поддержания требуемого качества обслуживания.

Класс трафика (называемый также классом услуг - service class) качественно характеризует требуемые услуги по передаче данных через сеть АТМ. Требования к синхронности передаваемых данных стало первым критерием для деления трафика на классы.

Другим важным параметром трафика, является величина его пульсаций. В технологии АТМ выделено два различных типа трафика, трафик с постоянной битовой скоростью (Constant Bit Rate, CBR) и трафик с переменной битовой скоростью (Variable Bit Rate, VBR).

В результате было определено пять классов трафика, отличающихся следующими качественными характеристиками:

Наличием или отсутствием пульсации трафика, то есть трафики CBR или VBR;

Требованием к синхронизации данных между передающей и принимающей сторонами;

Типом протокола, передающего свои данные через сеть АТМ, - с установлением соединения или без установления соединения (только для случая передачи компьютерных данных).

В технологии АТМ для каждого класса трафика определен набор количественных параметров, которые приложение должно задать. Например, для голосового трафика можно не только указать на важность синхронизации между передатчиком и приемником, но и количественно задать верхние границы задержки и вариации задержки ячеек.

В АТМ характеристики пропускной способности называют параметрами трафика и не включают их в число параметров качества обслуживания QoS. Сеть старается обеспечить такой уровень услуг, чтобы поддерживались требуемые значения и параметров трафика, и задержек ячеек, и доли потерянных ячеек.

Соглашение между приложением и сетью АТМ называется трафик – контрактом - выбор одного из нескольких определенных классов трафика, для которого наряду с параметрами пропускной способности трафика могут указываться параметры задержек ячеек, а также параметр надежности доставки ячеек.

Если для приложения не критично поддержание параметров пропускной способности и QoS, то оно может отказаться от задания этих параметров, указав признак «Best Effort» в запросе на установление соединения. Такой тип трафика получил название трафика с неопределенной битовой скоростью - Unspecified Bit Rate, UBR.

После заключения трафик - контракта, который относится к определенному виртуальному соединению, в сети АТМ работает несколько протоколов и служб, обеспечивающих нужное качество обслуживания.

Стек протоколов АТМ соответствует нижним уровням семиуровневой модели ISO/OSI и включает уровень адаптации АТМ, собственно уровень АТМ и физический уровень.

Протокол АТМ занимается передачей ячеек через коммутаторы при установленном и настроенном виртуальном соединении, то есть на основании готовых таблиц коммутации портов. Протокол АТМ выполняет коммутацию по номеру виртуального соединения, который в технологии АТМ разбит на две части - идентификатор виртуального пути (Virtual Path Identifier, VPI) и идентификатор виртуального канала (Virtual Channel Identifier, VCI). Кроме этой основной задачи протокол АТМ выполняет ряд функций по контролю за соблюдением трафик - контракта со стороны пользователя сети, маркировке ячеек-нарушителей, отбрасыванию ячеек-нарушителей при перегрузке сети, а также управлению потоком ячеек для повышения производительности сети (естественно, при соблюдении условий трафик - контракта для всех виртуальных соединений).

Перспективными технологиями передачи информации в вычислительных сетях являются технологии, обеспечивающие высокие скорости передачи разнородной информации (данных, речевых и видеосигналов) на значительные расстояния. Действительно, передача голосовой и видеоинформации обычно требуется в режиме реального времени, и, следовательно, задержки должны быть только малыми (так, для голосовой связи — около 6 мс).

Технология ATM кратко формулируется, как быстрая коммутация коротких пакетов фиксированной длины (53 байт), называемых ячейками. По этой причине и саму технологию ATM иногда называют коммутацией ячеек.

Сети ATM относят к сетям с установлением соединения . Соединения могут быть постоянными и коммутируемыми (динамическими). Первые устанавливаются и разрываются администратором сети, их действие продолжительно, для каждого нового обмена данными между абонентами постоянного соединения не нужно тратить время на его установление. Вторые устанавливаются и ликвидируются автоматически для каждого нового сеанса связи.

Каждое соединение получает свой идентификатор, который указывается в заголовке ячеек. При установлении соединения каждому коммутатору на выбранном пути следования данных передаются данные о соответствии идентификаторов и портов коммутаторов. Коммутатор, распознав идентификатор, направляет ячейку в нужный порт. Непосредственное указание в заголовке адресов получателя и отправителя не требуется, заголовок короткий — всего 5 байтов.

Высокие скорости в ATM обеспечиваются рядом технических решений.

Во-первых, физической основой для ATM служат высокоскоростные каналы передачи данных . Так, при применении технологии SONET в ATM предусматриваются каналы ОС-1, ОС-3, ОС-12 и ОС-48 на ВОЛС со скоростями соответственно 52, 155, 622 и 2488 Мбит/с.

Кроме того, большое число каналов с временным мультиплексированием (TDM) можно использовать для параллельной передачи частей одного и того же "объемного" сообщения, что соответствует понятию "статистическое мультиплексирование". В технологиях E1/E4 статистическое мультиплексирование затруднено, так как для него требуется адресация слотов. В ATM ячейки адресуются, цикл синхронизации состоит из отдельных участков, длины участка и ячейки совпадают. Под конкретное сообщение можно выделить интервалов, совокупность которых называют виртуальным каналом . Скорость передачи можно регулировать, изменяя .

Во-вторых, отрицательные квитанции при искажениях собственно сообщений (но не заголовков) возможны только от конечного пункта. Это исключает потери времени в промежуточных пунктах на ожидание подтверждений. Такой способ иногда называют коммутацией кадров (в отличие от коммутации пакетов). Контрольный код (четырехбайтный циклический) по информационной части сообщения имеется только в конце последнего пакета сообщения, что характерно для использования разновидности ATM, называемой AAL5. В других разновидностях ATM, ориентированных на передачу мультимедийного трафика, потери отдельных ячеек вообще некритичны. Для контроля правильности заголовков используется один байт в заголовке ячейки, в котором размещается контрольный код Хемминга для заголовка. Искаженные и не восстановленные по Хеммингу ячейки отбрасываются.

В-третьих, упрощена маршрутизация . Собственно установление соединения выполняется аналогично этой процедуре в TCP/IP . Однако далее номер рассчитанного маршрута помещается в заголовок каждого пакета, и для них не нужно заново определять маршрут по таблицам маршрутизаторов при прохождении через сеть. Другими словами, осуществляется передача с установлением соединения (в отличие, например, от ). При этом клиент направляет серверу запрос в виде специального управляющего кадра . Кадр проходит через промежуточные маршрутизаторы и/или коммутаторы, в которых соединению (каналу) присваивается идентификаторы виртуальных пути и канала VPI/VCI. Если передача адресована нескольким узлам, то соответствующие идентификаторы в коммутаторах присваиваются нескольким каналам.

В-четвертых, фиксированная длина пакетов (кадров) упрощает алгоритмы управления и буферизации данных, исключает необходимость инкапсуляции или конвертирования пакетов при смене форматов в промежуточных сетях (если они соответствуют формату ячейки ATM).

Малый размер ячейки (53 байт) обусловлен требованиями передачи телефонного (голосового) трафика. Действительно, если допустить, наряду с передачей голоса, также традиционных цифровых данных, упакованных в длинные пакеты, то возможны задержки передачи "голосовых" ячеек на время, заметно превышающее несколько миллисекунд, что для телефонного разговора недопустимо. В то же время слишком короткие ячейки приводят к нерациональному использованию пропускной способности каналов из-за значительной доли длины заголовка в размере ячейки. Поэтому длина 53 байт при длине заголовка в 5 байт — компромиссное решение.

При этом задержки в передаче голоса, обусловленные размером ячейки, составляют 6 мс. Действительно, каждый из 48 байт является одним замером аналоговой величины при импульсно-кодовой модуляции , которые выполняются с интервалом в 125 мкс (при частоте замеров 8 кГц). Следовательно, между моментом первого замера и отправкой ячейки в сеть проходит время (время пакетизации), равное 0,125·48 = 6 мс.

В ATM введены три уровня протоколов (рис. 1).

Адаптационный уровень (AAL — ATM Adaptations Level) аналогичен транспортному уровню в ЭМВОС , на нем происходит разделение сообщения на пакеты с контрольной и управляющей информацией, которые, в свою очередь, делятся на 48-байтные ячейки. Происходит также преобразование битовых входных потоков в один поток с соблюдением пропорций между числом ячеек для данных, голосовой и видеоинформации. Программное обеспечение, реализующее функции AAL, требуется только в конечных узлах ATM-сети.

Рис. 1. Уровни протокола ATM

Введено несколько разновидностей протокола AAL, ориентированных на разные классы трафика. Протокол AAL1 предназначен для обслуживания мультимедийного трафика, характеризующегося стабильной скоростью и синхронизацией голоса и видео, и телефонного трафика, чувствительного к временным задержкам. В то же время потеря отдельных ячеек несущественно сказывается на качестве принимаемой информации. Протокол AAL3/4 предназначен для передачи нестабильной (пульсирующей) нагрузки, присущей связям между локальными вычислительными сетями . Задержки здесь не критичны, но потери ячеек не допускаются. Протокол AAL5 приспособлен для передачи данных вычислительного характера.

На следующем уровне, называемом ATM, к каждой ячейке добавляется пятибайтовый заголовок с маршрутной информацией. Этот уровень служит также для установления соединений. В структуре пятибайтового заголовка ATM-ячейки имеются следующие поля (в скобках указано число битов):

  • управление (4);
  • VPI/VCI (24);
  • тип данных (3);
  • приоритет потери пакетов (1);
  • контроль заголовка (8).

Поля идентификаторов VPI (Virtual Path Identifier) и VCI (Virtual Channel Identifier) используются для указания маршрута движения ячеек. Очевидно, что в пределах всей сети при передаче ячеек использовать уникальные номера узлов нельзя, так как для этого потребовалась бы значительно большая длина заголовка, чем 5 байт. Поэтому идентификация маршрута выполняется с помощью сочетаний VPI/VCI. При установлении соединения назначаются VPI/VCI и в каждом маршрутизаторе для каждого соединения сочетание этих идентификаторов будет уникальное. В то же время в процессе установления соединения размеры запросов и ответов не ограничены столь существенно, здесь используются иерархические 20-байтные адреса, специальные таблицы маршрутизации и протокол PNNI. Идентификатор VPI можно рассматривать, как старшую часть указателя маршрута, этот идентификатор оказывается одинаковым для совокупности каналов, проходящих через одинаковые фрагменты сети.

Поле "тип данных" используется для указания типа пакета (запрос на установление соединения или передача) и индикации перегрузки сети. Бит "приоритет потери пакетов" служит для отметки тех пакетов, которые нарушают соглашение о качестве обслуживания.

Следует отметить, что для сборки сообщения из ячеек нужно нумеровать ячейки одного и того же сообщения. Этот номер относится к заголовку адаптационного уровня, занимающего один или два байта в поле данных (т.е. в 48-битном поле).

Поле "контроль заголовка" содержит код Хемминга и, помимо функций контроля и исправления ошибок в заголовке ячейки, служит для разграничения ячеек ATM при их выделении из потока данных, передаваемых по каналам SDH. Граница определяется по сравнению подсчитываемого кода Хемминга для каждой очередной последовательности из 5 байт с содержимым последнего из этих 5 байт (положительный результат сравнения означает, что эта последовательность и есть заголовок).

Поле "управление" предназначено для индикации перегрузок, отказов узлов, важности ячеек (маловажные могут отбрасываться при перегрузках). Сигналы управления обычно передаются в обратном направлении по тому же пути с определенными интервалами.

Скорости передачи, реализуемые системами АТМ, покрывают в настоящее время (2003 г.) диапазон от 64 Кбит/с до 40 Гбит/с и, как правило, соответствуют ряду n×64 Кбит/с: 1,5/2, 6/8, 13, 26, 32, 34/45, 52, 98, 100, 140, 155, 622 Мбит/с, 2,5, 10 и 40 Гбит/c.

Третий уровень — физический (physical) — служит для преобразования данных в электрические или оптические сигналы. Как отмечено выше, средой для ATM часто служат каналы технологий SDH или SONET , возможно использование технологий PDH . Если сеть не может обеспечить требуемую полосу, то происходит отказ от соединения. При перегрузках часть передаваемых ячеек отбрасывается с соответствующим уведомлением пользователя. Потеря ячеек вызывает необходимость повторной передачи всех ячеек сегмента (в AAL5), поскольку контроль правильности передачи ведется по отношению ко всему сообщению (в данном случае — сегменту). Существенно сократить число повторно передаваемых ячеек позволяет применение специальных алгоритмов.

Качество передачи характеризуется такими параметрами, как пропускная способность, процент потерянных ячеек, задержка передачи ячеек и ее вариации. Заказ услуг выполняется в процессе установления соединения. Для поддержания заказанного уровня услуг в сетях ATM имеются специальные службы, реализуемые в программном обеспечении коммутаторов. Наряду с соединениями, не требующими определенного качества передачи, используются соединения со следующими уровнями услуг:

  • поддержка постоянной скорости при заданных ограничениях на максимальную скорость, задержку и процент потерянных ячеек;
  • поддержка переменной скорости с ограничениями на среднюю скорость и максимальный размер пульсаций скорости, в том числе поддержка требований синхронизации потоков от передатчика и приемника;
  • обеспечение переменной скорости с ограничением на минимальную скорость без требований синхронизации потоков от передатчика и приемника.

Если сеть ATM оказывается перегруженной, то во избежание потери информации и в отличие от коммутации каналов возможна буферизация данных для выравнивания загрузки каналов. Регулирование загрузки (управление потоком) осуществляется периодическим включением (обычно через 32 кадра) RM-ячейки в информационный поток. В эту ячейку конечный узел и/или промежуточные коммутаторы могут вставлять значения управляющих битов, сигнализирующие о перегрузке или недогрузке канала. RM-ячейка от конечного узла передается в обратном направлении источнику сообщения, который может соответственно изменить режим передачи. В частности, применяется режим занятия всех свободных ресурсов при перегрузке. Таким образом, происходит динамическое перераспределение нагрузки.

СЕРГЕЙ РОПЧАН

Абсолютно все о ATM

Технология асинхронного режима передачи (Asynchronous Transfer Mode, ATM) разработана как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN (Broadband-ISDN, B-ISDN).

По планам разработчиков единообразие, обеспечиваемое ATM, будет состоять в том, что одна транспортная технология сможет обеспечить несколько перечисленных ниже возможностей, то есть подразумевалось сделать эту технологию насколько возможно универсальной:

  • Передачу в рамках одной транспортной системы компьютерного и мультимедийного (голос, видео) трафика, чувствительного к задержкам, причем для каждого вида трафика качество обслуживания будет соответствовать его потребностям.
  • Иерархию скоростей передачи данных, от десятков мегабит до нескольких гигабит в секунду с гарантированной пропускной способностью для ответственных приложений.
  • Общие транспортные протоколы для локальных и глобальных сетей.
  • Сохранение имеющейся инфраструктуры физических каналов или физических протоколов: Т1/Е1, ТЗ/ЕЗ, SDH STM-n, FDDI.
  • Взаимодействие с унаследованными протоколами локальных и глобальных сетей: IP, SNA, Ethernet, ISDN.

Главная идея технологии асинхронного режима передачи была высказана достаточно давно – этот термин ввела лаборатория Bell Labs еще в далеком 1968 году. Основной разрабатываемой технологией тогда была технология TDM с синхронными методами коммутации, основанными на порядковом номере байта в объединенном кадре. Главный недостаток технологии TDM, которую также называют технологией синхронной передачи STM (Synchronous Transfer Mode), заключается в невозможности перераспределять пропускную способность объединенного канала между подканалами. В те периоды времени, когда по подканалу не передаются пользовательские данные, объединенный канал все равно передает байты этого подканала, заполненные нулями.

Попытки загрузить периоды простоя подканалов приводят к необходимости введения заголовка для данных каждого подканала. В промежуточной технологии STDM (Statistical TDM), которая позволяет заполнять периоды простоя передачей пульсаций трафика других подканалов, действительно вводятся заголовки, содержащие номер подканала. Данные при этом оформляются в пакеты, похожие по структуре на пакеты компьютерных сетей. Наличие адреса у каждого пакета позволяет передавать его асинхронно, так как местоположение его относительно данных других подканалов уже не является его адресом. Асинхронные пакеты одного подканала вставляются в свободные таймслоты другого подканала, но не смешиваются с данными этого подканала, так как имеют собственный адрес.

Технология ATM совмещает в себе подходы двух технологий – коммутации пакетов и коммутации каналов. От первой она взяла на вооружение передачу данных в виде адресуемых пакетов, а от второй – использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми, в связи с чем облегчается анализ и мониторинг. С помощью техники виртуальных каналов, предварительного заказа параметров качества обслуживания канала и приоритетного обслуживания виртуальных каналов с разным качеством обслуживания удается добиться передачи в одной сети разных типов трафика без дискриминации. Технология ATM с самого начала разрабатывалась как технология, способная обслуживать все виды трафика в соответствии с их требованиями.

Службы верхних уровней сети B-ISDN должны быть примерно такими же, что и у сети ISDN – это передача факсов, распространение телевизионного изображения, голосовая почта, электронная почта, различные интерактивные службы, например проведение видеоконференций. Высокие скорости технологии ATM создают гораздо больше возможностей для служб верхнего уровня, которые не могли быть реализованы сетями ISDN – например, для передачи цветного телевизионного изображения необходима полоса пропускания в районе 30 Мбит/с. Технология ISDN такую скорость поддержать не может, а для ATM она не составляет больших проблем.

Разработку стандартов ATM осуществляет группа организаций под названием ATM Forum под эгидой специального комитета IEEE, а также комитеты ITU-T и ANSI. ATM – это очень сложная технология, требующая стандартизации в самых различных аспектах, поэтому, хотя основное ядро стандартов было принято в 1993 году, работа по стандартизации активно продолжается. Оптимизм внушает тот факт, что в ATM Forum принимают участие практически все заинтересованные стороны – производители телекоммуникационного оборудования, производители оборудования локальных сетей, операторы телекоммуникационных сетей и сетевые интеграторы.

Основные концепции технологии ATM

Сеть ATM имеет классическую структуру крупной территориальной сети – конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые, в свою очередь, соединяются с коммутаторами более высоких уровней. Коммутаторы ATM пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей ATM определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически. В публичных сетях ATM таблицы маршрутизации могут строиться администраторами вручную, как и в сетях Х.25, или могут поддерживаться протоколом PNNI.

Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла ATM, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т. п., что упрощает маршрутизацию запросов установления соединения, как и при использовании агрегированных IP-адресов в соответствии с техникой CIDR (техника захвата среды).

Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC), Для ускорения коммутации в больших сетях используется понятие виртуального пути – Virtual Path, который объединяет виртуальные каналы, имеющие в сети ATM общий маршрут между исходным и конечным узлами или общую часть маршрута между двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии ATM применена на двух уровнях – на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).

Соединения конечной станции ATM с коммутатором нижнего уровня определяются стандартом UNI (User Network Interface). Спецификация UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола ATM, способы установления виртуального канала и способы управления трафиком. В настоящее время принята версия UNI 4.0, но наиболее распространенной версией, поддерживаемой производителями оборудования, является версия UNI 3.1.

Стандарт ATM не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети – это скорость ОС-3 155 Мбит/с. Организация ATM Forum определила для ATM не все иерархии скоростей SDH, а только скорости ОС-3 и ОС-12 (622 Мбит/с). На скорости 155 Мбит/с можно использовать не только волоконно-оптический кабель, но и неэкранированную витую пару категории 5. На скорости 622 Мбит/с допустим только волоконно-оптический кабель, причем как SMF, так и MMF.

Имеются и другие физические интерфейсы к сетям ATM, отличные от SDH/SONET. К ним относятся интерфейсы Т1/Е1 и ТЗ/ЕЗ, распространенные в глобальных сетях, и интерфейсы локальных сетей – интерфейс с кодировкой 4В/5В со скоростью 100 Мбит/с (FDDI) и интерфейс со скоростью 25 Мбит/с, предложенный компанией IBM и утвержденный ATM Forum. Кроме того, для скорости 155,52 Мбит/с определен так называемый «cell-based» физический уровень, то есть уровень, основанный на ячейках, а не на кадрах SDH/SONET. Этот вариант физического уровня не использует кадры SDH/SONET, а отправляет по каналу связи непосредственно ячейки формата ATM, что сокращает накладные расходы на служебные данные, но несколько усложняет задачу синхронизации приемника с передатчиком на уровне ячеек.

Все перечисленные выше характеристики технологии ATM не свидетельствуют о том, что это некая «особенная» технология, а скорее представляют ее как типичную технологию глобальных сетей, основанную на технике виртуальных каналов. Особенности же технологии ATM лежат в области качественного обслуживания разнородного трафика и объясняются стремлением решить задачу совмещения в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как «второстепенный».

Подход, реализованный в технологии ATM, состоит в передаче любого вида трафика – компьютерного, телефонного или видео – пакетами фиксированной и очень маленькой длины в 53 байта. Пакеты ATM называют ячейками – cell. Поле данных ячейки занимает 48 байт, а заголовок – 5 байт.

Чтобы пакеты содержали адрес узла назначения и в то же время процент служебной информации не превышал размер поля данных пакета, в технологии ATM применен стандартный для глобальных вычислительных сетей прием – передача ячеек в соответствии с техникой виртуальных каналов с длиной номера виртуального канала в 24 бита, что вполне достаточно для обслуживания большого количества виртуальных соединений каждым портом коммутатора глобальной (может быть всемирной) сети ATM.

Размер ячейки ATM является результатом компромисса между телефонистами и компьютерщиками – первые настаивали на размере поля данных в 32 байта, а вторые – в 64 байта.

Чем меньше пакет, тем легче имитировать услуги каналов с постоянной битовой скоростью, которая характерна для телефонных сетей. Ясно, что при отказе от жестко синхронизированных временных слотов для каждого канала идеальной синхронности добиться будет невозможно, однако чем меньше размер пакета, тем легче этого достичь.

Для пакета, состоящего из 53 байт, при скорости в 155 Мбит/с время передачи кадра на выходной порт составляет менее 3 мкс. Так что эта задержка не очень существенна для трафика, пакеты которого должны передаваться каждые 125 мкс.

Однако на выбор размера ячейки большее влияние оказала не величина ожидания передачи ячейки, а задержка пакетизации. Задержка пакетизации – это время, в течение которого первый замер голоса ждет момента окончательного формирования пакета и отправки его по сети. При размере поля данных в 48 байт одна ячейка ATM обычно переносит 48 замеров голоса, которые делаются с интервалом в 125 мкс. Поэтому первый замер должен ждать примерно 6 мс, прежде чем ячейка будет отправлена по сети. Именно по этой причине телефонисты боролись за уменьшения размера ячейки, так как 6 мс – это задержка, близкая к пределу, за которым начинаются нарушения качества передачи голоса. При выборе размера ячейки в 32 байта задержка пакетизации составила бы 4 мс, что гарантировало бы более качественную передачу голоса. А стремление компьютерных специалистов увеличить поле данных до 64 байт вполне понятно – при этом повышается полезная скорость передачи данных. Избыточность служебных данных при использовании 48-байтного поля данных составляет 10 %, а при использовании 32-байтного поля данных она сразу повышается до 16 %.

Выбор для передачи данных любого типа небольшой ячейки фиксированного размера еще не решает задачу совмещения разнородного трафика в одной сети, а только создает предпосылки для ее решения. Для полного решения этой задачи технология ATM привлекает и развивает идеи заказа пропускной способности и качества обслуживания, реализованные в технологии frame relay. Но если сеть frame relay изначально была предназначена для передачи только пульсирующего компьютерного трафика (в связи с этим для сетей frame relay так трудно дается стандартизация передачи голоса), то разработчики технологии ATM проанализировали всевозможные образцы трафика, создаваемые различными приложениями, и выделили 4 основных класса трафика, для которых разработали различные механизмы резервирования и поддержания требуемого качества обслуживания.

Класс трафика (называемый также классом услуг – service class) качественно характеризует требуемые услуги по передаче данных через сеть ATM. Если приложение указывает сети, что требуется, например, передача голосового трафика, то из этого становится ясно, что особенно важными для пользователя будут такие показатели качества обслуживания, как задержки и вариации задержек ячеек, существенно влияющие на качество переданной информации – голоса или изображения, а потеря отдельной ячейки с несколькими замерами не так уж важна, как, например, воспроизводящее голос устройство может аппроксимировать недостающие замеры и качество пострадает не слишком. Требования к синхронности передаваемых данных очень важны для многих приложений – не только голоса, но и видеоизображения, и наличие этих требований стало первым критерием для деления трафика на классы.

Другим важным параметром трафика, существенно влияющим на способ его передачи через сеть, является величина его пульсаций. Разработчики технологии ATM решили выделить два различных типа трафика в отношении этого параметра – трафик с постоянной битовой скоростью (Constant Bit Rate, CBR) и трафик с переменной битовой скоростью (Variable Bit Rate, VBR).

К разным классам были отнесены трафики, порождаемые приложениями, использующими для обмена сообщениями протоколы с установлением соединений и без установления соединений. В первом случае данные передаются самим приложением достаточно надежно, как это обычно делают протоколы с установлением соединения, поэтому от сети ATM высокой надежности передачи не требуется. А во втором случае приложение работает без установления соединения и восстановлением потерянных и искаженных данных не занимается, что предъявляет повышенные требования к надежности передачи ячеек сетью ATM.

В результате было определено пять классов трафика, отличающихся следующими качественными характеристиками:

  • наличием или отсутствием пульсации трафика, то есть трафики CBR или VBR;
  • требованием к синхронизации данных между передающей и принимающей сторонами;
  • типом протокола, передающего свои данные через сеть ATM, с установлением соединения или без установления соединения (только для случая передачи компьютерных данных).

Очевидно, что только качественных характеристик, задаваемых классом трафика, для описания требуемых услуг оказывается недостаточно. В технологии ATM для каждого класса трафика определен набор количественных параметров, которые приложение должно задать. Например, для трафика класса А необходимо указать постоянную скорость, с которой приложение будет посылать данные в сеть, а для трафика класса В – максимально возможную скорость, среднюю скорость и максимально возможную пульсацию. Для голосового трафика можно не только указать на важность синхронизации между передатчиком и приемником, но и количественно задать верхние границы задержки и вариации задержки ячеек.

В технологии ATM поддерживается следующий набор основных количественных параметров:

  • Peak Cell Rate (PCR) – максимальная скорость передачи данных;
  • Sustained Cell Rate (SCR) – средняя скорость передачи данных;
  • Minimum Cell Rate (MCR) – минимальная скорость передачи данных;
  • Maximum Burst Size (MBS) – максимальный размер пульсации;
  • Cell Loss Ratio (CLR) – доля потерянных ячеек;
  • Cell Transfer Delay (CTD) – задержка передачи ячеек;
  • Cell Delay Variation (CDV) – вариация задержки ячеек.

Параметры скорости измеряются в ячейках в секунду, максимальный размер пульсации – в ячейках, а временные параметры – в секундах. Максимальный размер пульсации задает количество ячеек, которое приложение может передать с максимальной скоростью PCR, если задана средняя скорость. Доля потерянных ячеек является отношением потерянных ячеек к общему количеству отправленных ячеек по данному виртуальному соединению. Так как виртуальные соединения являются дуплексными, то для каждого направления соединения могут быть заданы разные значения параметров.

В технологии ATM принят не совсем традиционный подход к трактовке термина «качество обслуживания» – QoS. Обычно качество обслуживания трафика характеризуется параметрами пропускной способности (здесь это RCR, SCR, MCR, MBS), параметрами задержек пакетов (СТО и CDV), а также параметрами надежности передачи пакетов (CLR). В ATM характеристики пропускной способности называют параметрами трафика и не включают их в число параметров качества обслуживания QoS, хотя по существу они таковыми являются. Параметрами QoS в ATM являются только параметры CTD, CDV и CLR. Сеть старается обеспечить такой уровень услуг, чтобы поддерживались требуемые значения и параметров трафика, и задержек ячеек, и доли потерянных ячеек.

Соглашение между приложением и сетью ATM называется трафик-контрактом. Основным его отличием от соглашений, применяемых в сетях frame relay, является выбор одного из нескольких определенных классов трафика, для которого наряду с параметрами пропускной способности трафика могут указываться параметры задержек ячеек, а также параметр надежности доставки ячеек. В сети frame relay класс трафика один, и он характеризуется только параметрами пропускной способности.

Необходимо подчеркнуть, что задание только параметров трафика (вместе с параметрами QoS) часто не полностью характеризует требуемую услугу, поэтому задание класса трафика полезно для уточнения нужного характера обслуживания данного соединения сетью.

Если для приложения не критично поддержание параметров пропускной способности и QoS, то оно может отказаться от задания этих параметров, указав признак «Best Effort» в запросе на установление соединения. Такой тип трафика получил название трафика с неопределенной битовой скоростью – Unspecified Bit Rate, UBR.

После заключения трафик-контракта, который относится к определенному виртуальному соединению, в сети ATM работает несколько протоколов и служб, обеспечивающих нужное качество обслуживания. Для трафика UBR сеть выделяет ресурсы «по возможности», то есть те, которые в данный момент свободны от использования виртуальными соединениями, заказавшими определенные параметры качества обслуживания.

Технология ATM изначально разрабатывалась для поддержки как постоянных, так и коммутируемых виртуальных каналов (в отличие от технологии frame relay, долгое время не поддерживающей коммутируемые виртуальные каналы). Автоматическое заключение трафик-контракта при установлении коммутируемого виртуального соединения представляет собой весьма непростую задачу, так как коммутаторам ATM необходимо определить, смогут ли они в дальнейшем обеспечить передачу трафика данного виртуального канала наряду с трафиком других виртуальных каналов таким образом, чтобы выполнялись требования качества обслуживания каждого канала.

Стек протоколов ATM показан в таблице:

Уровни адаптации АТМ (ААL1-5)

Подуровень конвергенции (CS)

Общая часть подуровни конвергенции

Специфическая для сервиса часть

Подуровень сегментации и реассемблирования (SAR )

Уровень ATM (маршрутизация пакет, мультиплексирование, управление потом, обработка приоритеты)

Физический уровень

Подуровень согласования передачи

Подуровень, зависящий от физической среды

Стек протоколов ATM соответствует нижним уровням семиуровневой модели ISO/OSI и включает уровень адаптации ATM, собственно уровень ATM и физический уровень. Прямого соответствия между уровнями протоколов технологии ATM и уровнями модели OSI нет.

Уровень адаптации (ATM Adaptation Layer, AAL) представляет собой набор протоколов AAL1-AAL5, которые преобразуют сообщения протоколов верхних уровней сети ATM в ячейки ATM нужного формата. Функции этих уровней достаточно условно соответствуют функциям транспортного уровня модели OSI, например функциям протоколов TCP или UDP. Протоколы AAL при передаче пользовательского трафика работают только в конечных узлах сети, как и транспортные протоколы большинства технологий.

Каждый протокол уровня AAL обрабатывает пользовательский трафик определенного класса. На начальных этапах стандартизации каждому классу трафика соответствовал свой протокол AAL, который принимал в конечном узле пакеты от протокола верхнего уровня и заказывал с помощью соответствующего протокола нужные параметры трафика и качества обслуживания для данного виртуального канала. При развитии стандартов ATM такое однозначное соответствие между классами трафика и протоколами уровня AAL исчезло, и сегодня разрешается использовать для одного и того же класса трафика различные протоколы уровня AAL.

Уровень адаптации состоит из нескольких подуровней. Нижний подуровень AAL называется подуровнем сегментации и реассемблирования (Segmentation And Reassembly, SAR). Эта часть не зависит от типа протокола AAL (и, соответственно, от класса передаваемого трафика) и занимается разбиением (сегментацией) сообщения, принимаемого AAL от протокола верхнего уровня, на ячейки ATM, снабжением их соответствующим заголовком и передачей уровню ATM для отправки в сеть.

Верхний подуровень AAL называется подуровнем конвергенции – Convergence Sublayer, CS. Этот подуровень зависит от класса передаваемого трафика. Протокол подуровня конвергенции решает такие задачи, как, например, обеспечение временной синхронизации между передающим и принимающим узлами (для трафика, требующего такой синхронизации), контролем и возможным восстановлением битовых ошибок в пользовательской информации, контролем целостности передаваемого пакета компьютерного протокола (Х.25, frame relay).

Протоколы AAL для выполнения своей работы используют служебную информацию, размещаемую в заголовках уровня AAL. После приема ячеек, пришедших по виртуальному каналу, подуровень SAR протокола AAL собирает посланное по сети исходное сообщение (которое в общем случае было разбито на несколько ячеек ATM) с помощью заголовков AAL, которые для коммутаторов ATM являются прозрачными, так как помещаются в 48-битном поле данных ячейки, как и полагается протоколу более высокого уровня. После сборки исходного сообщения протокол AAL проверяет служебные поля заголовка и концевика кадра AAL и на их основании принимает решение о корректности полученной информации.

Ни один из протоколов AAL при передаче пользовательских данных конечных узлов не занимается восстановлением потерянных или искаженных данных. Максимум, что делает протокол AAL, – это уведомляет конечный узел о таком событии. Так сделано для ускорения работы коммутаторов сети ATM в расчете на то, что случаи потерь или искажения данных будут редкими. Восстановление потерянных данных (или игнорирование этого события) отводится протоколам верхних уровней, не входящим в стек протоколов технологии ATM.

Существует определенный интерфейс между приложением, которому требуется передать трафик через сеть ATM, и уровнем адаптации AAL. С помощью этого интерфейса приложение (протокол компьютерной сети, модуль оцифровывания голоса) заказывает требуемую услугу, определяя тип трафика, его параметры, а также параметры QoS. Технология ATM допускает два варианта определения параметров QoS: первый – непосредственное задание их каждым приложением, второй – назначение их по умолчанию в зависимости от типа трафика. Последний способ упрощает задачу разработчика приложения, так как в этом случае выбор максимальных значений задержки доставки ячеек и вариации задержек перекладывается на плечи администратора сети.

Самостоятельно обеспечить требуемые параметры трафика и QoS протоколы AAL не могут. Для выполнения соглашений трафик-контракта требуется согласованная работа коммутаторов сети вдоль всего виртуального соединения. Эта работа выполняется протоколом ATM, обеспечивающим передачу ячеек различных виртуальных соединений с заданным уровнем качества обслуживания.

Протокол ATM

Протокол ATM занимает в стеке протоколов ATM примерно то же место, что протокол IP в стеке TCP/IP или протокол LAP-F в стеке протоколов технологии frame relay. Протокол ATM занимается передачей ячеек через коммутаторы при установленном и настроенном виртуальном соединении, то есть на основании готовых таблиц коммутации портов. Протокол ATM выполняет коммутацию по номеру виртуального соединения, который в технологии ATM разбит на две части – идентификатор виртуального пути (Virtual Path Identifier, VPI) и идентификатор виртуального канала (Virtual Channel Identifier, VCI). Кроме этой основной задачи протокол ATM выполняет ряд функций по контролю за соблюдением трафик-контракта со стороны пользователя сети, маркировке ячеек-нарушителей, отбрасыванию ячеек-нарушителей при перегрузке сети, а также управлению потоком ячеек для повышения производительности сети (естественно, при соблюдении условий трафик-контракта для всех виртуальных соединений).

Протокол ATM работает с ячейками следующего формата.

Поле Управление потоком (Generic Flow Control) используется только при взаимодействии конечного узла и первого коммутатора сети. В настоящее время его точные функции не определены.

Поля Идентификатор виртуального пути (VitualPath Identifier, VPI) и Идентификатор виртуального канала (Vitual Channel Identifier, VCI) занимают соответственно 1 и 2 байта. Эти поля задают номер виртуального соединения, разделенный на старшую (VPI) и младшую (VCI) части.

Поле Идентификатор типа данных (Payload Type Identifier, PTI) состоит из трех бит и задает тип данных, переносимых ячейкой, – пользовательские или управляющие (например, управляющие установлением виртуального соединения). Кроме того, один бит этого поля используется для указания перегрузки в сети – он называется Explicit Congestion Forward Identifier, EFCI – и играет ту же роль, что бит FECN в технологии frame relay, то есть передает информацию о перегрузке по направлению потока данных.

Поле Приоритет потери кадра (Cell Loss Priority, CLP) играет в данной технологии ту же роль, что и поле DE в технологии frame relay – в нем коммутаторы ATM отмечают ячейки, которые нарушают соглашения о параметрах качества обслуживания, чтобы удалить их при перегрузках сети. Таким образом, ячейки с CLP=0 являются для сети высокоприоритетными, а ячейки с CLP=1 – низкоприоритетными.

Поле Управление ошибками в заголовке (Header Error Control, НЕС) содержит контрольную сумму, вычисленную для заголовка ячейки. Контрольная сумма вычисляется с помощью техники корректирующих кодов Хэмминга, поэтому она позволяет не только обнаруживать ошибки, но и исправлять все одиночные ошибки, а также некоторые двойные. Поле НЕС обеспечивает не только обнаружение и исправление ошибок в заголовке, но и нахождение границы начала кадра в потоке байтов кадров SDH, которые являются предпочтительным физическим уровнем технологии ATM, или же в потоке бит физического уровня, основанного на ячейках. Указателей, позволяющих в поле данных кадра STS-n (STM-n) технологии SONET/SDH обнаруживать границы ячеек ATM (подобных тем указателям, которые используются для определения, например, границ виртуальных контейнеров подканалов Т1/Е1), не существует. Поэтому коммутатор ATM вычисляет контрольную сумму для последовательности из 5 байт, находящихся в поле данных кадра STM-n, и если вычисленная контрольная сумма говорит о корректности заголовка ячейки ATM, первый байт становится границей ячейки. Если же это не так, то происходит сдвиг на один байт и операция продолжается. Таким образом, технология ATM выделяет асинхронный поток ячеек ATM в синхронных кадрах SDH или потоке бит физического уровня, основанного на ячейках.

Формат ячейки ATM

Рассмотрим методы коммутации ячеек ATM на основе пары чисел VPI/VCI. Коммутаторы ATM могут работать в двух режимах – коммутации виртуального пути и коммутации виртуального канала. В первом режиме коммутатор выполняет продвижение ячейки только на основании значения поля VPI, а значение поля VCI он игнорирует. Обычно так работают магистральные коммутаторы территориальных сетей. Они доставляют ячейки из одной сети пользователя в другую на основании только старшей части номера виртуального канала, что соответствует идее агрегирования адресов. В результате один виртуальный путь соответствует целому набору виртуальных каналов, коммутируемых как единое целое.

После доставки ячейки в локальную сеть ATM ее коммутаторы начинают коммутировать ячейки с учетом как VPI, так и VCI, но при этом им хватает для коммутации только младшей части номера виртуального соединения, так что фактически они работают с VCI, оставляя VPI без изменения. Последний режим называется режимом коммутации виртуального канала.

Подход здесь аналогичен подходу в сети ISDN – для установления соединения разработан отдельный протокол Q.2931, который весьма условно можно отнести к сетевому уровню. Этот протокол во многом похож на протоколы Q.931 и Q.933 (даже номером), но в него внесены, естественно, изменения, связанные с наличием нескольких классов трафика и дополнительных параметров качества обслуживания. Протокол Q.2931 опирается на достаточно сложный протокол канального уровня SSCOP, который обеспечивает надежную передачу пакетов Q.2931 в своих кадрах. В свою очередь, протокол SSCOP работает поверх протокола AAL5, который необходим для разбиения кадров SSCOP на ячейки ATM и сборки этих ячеек в кадры при доставке кадра SSCOP в коммутатор назначения.

Виртуальные соединения, образованные с помощью протокола Q.2931, бывают симплексными (однонаправленными) и дуплексными.

Протокол Q.2931 позволяет также устанавливать виртуальные соединения типа «один к одному» (point-to-point) и “один-ко-многим” (point-to-multipoint). Первый случай поддерживается во всех технологиях, основанных на виртуальных каналах, а второй характерен для технологии ATM и является аналогом мультивещания, но с одним ведущим вещающим узлом. При установлении соединения “один-ко-многим” ведущим считается узел, который является инициатором этого соединения. Сначала этот узел устанавливает виртуальное соединение всего с одним узлом, а затем добавляет к соединению с помощью специального вызова по одному новому члену. Ведущий узел становится вершиной дерева соединения, а остальные узлы – листьями этого дерева. Сообщения, которые посылает ведущий узел, принимают все листья соединения, но сообщения, которые посылает какой-либо лист (если соединение дуплексное), принимает только ведущий узел.

Пакеты протокола Q.2931, предназначенные для установления коммутируемого виртуального канала, имеют те же названия и назначение, что и пакеты протокола Q.933, рассмотренные выше при изучении технологии frame relay, но структура их полей, естественно, другая.

Адресом конечного узла в коммутаторах ATM является 20-байтный адрес. Этот адрес может иметь различный формат, описываемый стандартом ISO 7498. При работе в публичных сетях используется адрес стандарта Е.164, при этом 1 байт составляет AFI, 8 байт занимает IDI – основная часть адреса Е.164 (15 цифр телефонного номера), а остальные 11 байт части DSP (Domain Specific Part).

При работе в частных сетях ATM обычно применяется формат адреса, соответствующий домену международных организаций, причем в качестве международной организации выступает ATM Forum. В этом случае поле IDI занимает 2 байта, которые содержат код ATM Forum, данный ISO, а структура остальной части DSP соответствует описанной выше за исключением того, что поле HO-DSP занимает не 4, а 10 байт.

Адрес ESI присваивается конечному узлу на предприятии-изготовителе в соответствии с правилами IEEE, то есть 3 первых байта содержат код предприятия, а остальные три байта – порядковый номер, за уникальность которого отвечает данное предприятие.

Конечный узел при подключении к коммутатору ATM выполняет так называемую процедуру регистрации. При этом конечный узел сообщает коммутатору свой ESI-адрес, а коммутатор сообщает конечному узлу старшую часть адреса, то есть номер сети, в которой работает узел.

Кроме адресной части пакет CALL SETUP протокола Q.2931, с помощью которого конечный узел запрашивает установление виртуального соединения, включает также части, описывающие параметры трафика и требования QoS. При поступлении такого пакета коммутатор должен проанализировать эти параметры и решить, достаточно ли у него свободных ресурсов производительности для обслуживания нового виртуального соединения. Если да, то новое виртуальное соединение принимается и коммутатор передает пакет CALL SETUP дальше в соответствии с адресом назначения и таблицей маршрутизации, а если нет, то запрос отвергается.

Услуги протокола ATM и управление трафиком

Для поддержания требуемого качества обслуживания различных виртуальных соединений и рационального использования ресурсов в сети на уровне протокола ATM реализовано несколько служб, предоставляющих услуги различных категорий (service categories) по обслуживанию пользовательского трафика. Эти службы являются внутренними службами сети ATM, они предназначены для поддержания пользовательского трафика различных классов совместно с протоколами AAL. Но в отличие от протоколов AAL, которые работают в конечных узлах сети, данные службы распределены по всем коммутаторам сети. Услуги этих служб разбиты на категории, которые в общем соответствуют классам трафика, поступающим на вход уровня AAL конечного узла. Услуги уровня ATM заказываются конечным узлом через интерфейс UNI с помощью протокола Q.2931 при установлении виртуального соединения. Как и при обращении к уровню AAL, при заказе услуги необходимо указать категорию услуги, а также параметры трафика и параметры QoS. Эти параметры берутся из аналогичных параметров уровня AAL или же определяются по умолчанию в зависимости от категории услуги.

Всего на уровне протокола ATM определено пять категорий услуг, которые поддерживаются одноименными службами:

  • CBR – услуги для трафика с постоянной битовой скоростью;
  • rtVBR – услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и синхронизации источника и приемника;
  • nrtVBR – услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и не требующего синхронизации источника и приемника;
  • ABR – услуги для трафика с переменной битовой скоростью, требующего соблюдения некоторой минимальной скорости передачи данных и не требующего синхронизации источника и приемника;
  • UBR – услуги для трафика, не предъявляющего требований к скорости передачи данных и синхронизации источника и приемника.

Названия большинства категорий услуг совпадают с названием типов пользовательского трафика, для обслуживания которого они разработаны, но необходимо понимать, что сами службы уровня ATM и их услуги – это внутренние механизмы сети ATM, которые экранируются от приложения уровнем AAL.

Услуги категории CBR предназначены для поддержания трафика синхронных приложений – голосового, эмуляции цифровых выделенных каналов и т. п. Когда приложение устанавливает соединение категории CBR, оно заказывает пиковую скорость трафика ячеек PCR, являющуюся максимальной скоростью, которую может поддерживать соединение без риска потерять ячейку, а также параметры QoS: величины максимальной задержки ячеек CTD, вариации задержки ячеек CDV и максимальной доли потерянных ячеек CLR.

Затем данные передаются по этому соединению с запрошенной скоростью – не с большей и, в большинстве случаев, не меньшей, хотя уменьшение скорости приложением возможно, например, при передаче компрессированного голоса с помощью услуги категории CBR. Любые ячейки, передаваемые станцией с большей скоростью, контролируются первым коммутатором сети и помечаются признаком CLP-1. При перегрузках сети они могут просто отбрасываться сетью. Ячейки, которые запаздывают и не укладываются в интервал, оговоренный параметром вариации задержки CDV, также считаются мало значащими для приложения и отмечаются признаком низкого приоритета CLP-1.

Для соединений CBR нет ограничений на некоторую дискретность заказа скорости PCR, как, например, в каналах Т1/Е1, где скорость должна быть кратна 64 Кбит/с.

По сравнению со службой CBR, службы VBR требуют более сложной процедуры заказа соединения между сетью и приложением. В дополнение к пиковой скорости PCR приложение VBR заказывает еще и два других параметра: длительно поддерживаемую скорость – SCR, которая представляет собой среднюю скорость передачи данных, разрешенную приложению, а также максимальный размер пульсации – MBS. Максимальный размер пульсации измеряется в количестве ячеек ATM. Пользователь может превышать скорость вплоть до величины PCR, но только на короткие периоды времени, в течение которых передается объем данных, не превышающий MBS. Этот период времени называется Burst Tolerance, ВТ – терпимость к пульсации. Сеть вычисляет этот период как производный от трех заданных значений PCR, SCR и MBS.

Если скорость PCR наблюдается в течение периода времени, большего чем ВТ, то ячейки помечаются как нарушители – устанавливается признак CLP-1.

Для услуг категории rtVBR задаются и контролируются те же параметры QoS, что и для услуг категории CBR, а услуги категории nrtVBR ограничиваются поддержанием параметров трафика. Сеть также поддерживает для обеих категорий услуг VBR определенный максимальный уровень доли потерянных ячеек CLR, который либо задается явно при установлении соединения, либо назначается по умолчанию в зависимости от класса трафика.

Для контроля параметров трафика и QoS в технологии ATM применяется так называемый обобщенный алгоритм контроля скорости ячеек – Generic Cell Rate Algorithm, который может проверять соблюдение пользователем и сетью таких параметров, как PCR, CDV, SCR, ВТ, CTD и CDV. Он работает по модифицированному алгоритму «дырявого ведра», применяемому в технологии frame relay.

Для многих приложений, которые могут быть чрезвычайно «взрывными» в отношении интенсивности трафика, невозможно точно предсказать параметры трафика, оговариваемые при установлении соединения.

В отличие от CBR и обеих служб VBR, служба UBR не поддерживает ни параметры трафика, ни параметры качества обслуживания. Служба UBR предлагает только доставку «по возможности» без каких-либо гарантий. Разработанная специально для обеспечения возможности превышения полосы пропускания, служба UBR представляет собой частичное решение для тех непредсказуемых «взрывных» приложений, которые не готовы согласиться с фиксацией параметров трафика.

Главными недостатками услуг UBR являются отсутствие управления потоком данных и неспособность принимать во внимание другие типы трафика. Несмотря на перегрузку сети, соединения UBR будут продолжать передачу данных. Коммутаторы сети могут буферизовать некоторые ячейки поступающего трафика, но в некоторый момент буферы переполняются, и ячейки теряются. А так как для соединений UBR не оговаривается никаких параметров трафика и QoS, то их ячейки отбрасываются в первую очередь.

Служба ABR подобно службе UBR предоставляет возможность превышения полосы пропускания, но благодаря технике управления трафиком при перегрузке сети она дает некоторые гарантии сохранности ячеек. ABR – это первый тип служб уровня ATM, который действительно обеспечивает надежный транспорт для пульсирующего трафика за счет того, что может находить неиспользуемые интервалы в общем трафике сети и заполнять их своими ячейками, если другим категориям служб эти интервалы не нужны.

Как и в службах CBR и VBR, при установлении соединения категории ABR оговаривается значение пиковой скорости PCR. Однако соглашение о пределах изменения задержки передачи ячеек или о параметрах пульсации не заключается.

Вместо этого «сеть и конечный узел заключают соглашение о требуемой минимальной скорости передачи MCR. Это гарантирует приложению, работающему в конечном узле, небольшую пропускную способность, обычно минимально необходимую для того, чтобы приложение работало. Конечный узел соглашается не передавать данные со скоростью выше пиковой, то есть PCR, а сеть соглашается всегда обеспечивать минимальную скорость передачи ячеек MCR.

Если при установлении соединения ABR не задаются значения максимальной и минимальной скорости, то по умолчанию считается, что PCR совпадает со скоростью линии доступа станции к сети, a MCR считается равной нулю.

Трафик соединения категории ABR получает гарантированное качество услуг в отношении доли потерянных ячеек и пропускной способности. Что касается задержек передачи ячеек, то хотя сеть и старается свести их к минимуму, но гарантий по этому параметру не дает. Следовательно, служба ABR не предназначена для приложений реального времени, а предназначена для приложений, в которых поток данных не очень чувствителен к задержкам в передаче.

При передаче трафика CBR, VBR и UBR явное управление перегрузками в сети отсутствует. Вместо этого используется механизм отбрасывания ячеек-нарушителей, а узлы, пользующиеся услугами CBR и VBR, стараются не нарушать условия контракта под угрозой потери ячеек, поэтому они обычно не пользуются дополнительной пропускной способностью, даже если она в данный момент доступна в сети.

Служба ABR позволяет воспользоваться резервами пропускной способности сети, так как сообщает конечному узлу о наличии в данный момент избыточной пропускной способности с помощью механизма обратной связи. Этот же механизм может помочь службе ABR снизить скорость передачи данных конечным узлом в сеть (вплоть до минимального значения MCR), если сеть испытывает перегрузку.

Узел, пользующийся услугами ABR, должен периодически посылать в сеть наряду с ячейками данных специальные служебные ячейки управления ресурсами – Resource Management, RM. Ячейки RM, которые узел отправляет вдоль потока данных, называются прямыми ячейками RM – Forward Recource Management (FRM), а ячейки, которые идут в обратном по отношению к потоку данных направлении, называются обратными ячейками RM – Backward Recource Management (BRM).

Существует несколько петель обратной связи. Самая простая петля обратной связи – между конечными станциями. При ее наличии коммутатор сети извещает конечную станцию о перегрузке с помощью специального флага в поле прямого управления перегрузками (флаг EFCI) ячейки данных, переносимой протоколом ATM. Затем конечная станция посылает через сеть сообщение, содержащееся в специальной ячейке управления BRM исходной станции, говоря ей о необходимости уменьшить скорость посылки ячеек в сеть.

В этом способе конечная станция несет основную ответственность за управление потоком, а коммутаторы играют пассивную роль в петле обратной связи, только уведомляя станцию-отправитель о перегрузке.

Такой простой способ имеет несколько очевидных недостатков. Конечная станция не узнает из сообщения BRM, на какую величину нужно уменьшить скорость передачи данных в сеть. Поэтому она просто понизит скорость до минимальной величины MCR, хотя, возможно, это и необязательно. Кроме того, при большой протяженности сети коммутаторы должны продолжать буферизовать данные все время, пока уведомление о перегрузке будет путешествовать по сети, а для глобальных сетей это время может быть достаточно большим, и буферы могут переполниться, так что требуемый эффект достигнут не будет.

Разработаны и более сложные схемы управления потоком, в которых коммутаторы играют более активную роль, а узел-отправитель узнает более точно о возможной в данный момент скорости отправки данных в сеть.

В первой схеме узел-источник посылает в ячейке FRM явное значение скорости передачи данных в сеть, которую он хотел бы поддерживать в данное время. Каждый коммутатор, через который проходит по виртуальному пути это сообщение, может уменьшить запрашиваемую скорость до некоторой величины, которую он может поддерживать в соответствии с имеющимися у него свободными ресурсами (или оставить запрашиваемую скорость без изменения). Узел назначения, получив ячейку FRM, превращает ее в ячейку BRM и отправляет в обратном направлении, причем он тоже может уменьшить запрашиваемую скорость. Получив ответ в ячейке BRM, узел-источник точно узнает, какая скорость отправки ячеек в сеть для него в данный момент доступна.

Во второй схеме каждый коммутатор сети может работать как узел-источник и узел назначения. Как узел-источник он может сам генерировать ячейки FRM и отправлять их по имеющимся виртуальным каналам. Как узел назначения он может отправлять на основе получаемых ячеек FRM ячейки BRM в обратном направлении. Такая схема является более быстродействующей и полезной в протяженных территориальных сетях.

Как видно из описания, служба ABR предназначена не только для прямого поддержания требований к обслуживанию конкретного виртуального соединения, но и для более рационального распределения ресурсов сети между ее абонентами, что в конечном итоге также приводит к повышению качества обслуживания всех абонентов сети.

Коммутаторы сети ATM используют различные механизмы для поддержания требуемого качества услуг. Кроме описанных в стандартах ITU-T и ATM Forum механизмов заключения соглашения на основе параметров трафика и параметров QpS, а затем отбрасывания ячеек, не удовлетворяющих условиям соглашения, практически все производители оборудования ATM реализуют в своих коммутаторах несколько очередей ячеек, обслуживаемых с различными приоритетами.

Стратегия приоритетного обслуживания трафика основана на категориях услуг каждого виртуального соединения. До принятия спецификации ABR в большинстве коммутаторов ATM была реализована простая одноуровневая схема обслуживания, которая давала трафику CBR первый приоритет, трафику VBR второй, а трафику UBR – третий. При такой схеме комбинация CBR и VBR может потенциально заморозить трафик, обслуживаемый другим классом служб. Такая схема не будет правильно работать с трафиком ABR, так как не обеспечит его требования к минимальной скорости передачи ячеек. Для обеспечения этого требования должна быть выделена некоторая гарантированная полоса пропускания.

Чтобы поддерживать службу ABR, коммутаторы ATM должны реализовать двухуровневую схему обслуживания, которая бы удовлетворяла требованиям CBR, VBR и ABR. По этой схеме коммутатор предоставляет некоторую часть своей пропускной способности каждому классу служб. Трафик CBR получает часть пропускной способности, необходимую для поддержания пиковой скорости PCR, трафик VBR получает часть пропускной способности, необходимую для поддержания средней скорости SCR, а трафик ABR получает часть пропускной способности, достаточную для обеспечения требования минимальной скорости ячеек MCR. Это гарантирует, что каждое соединение может работать без потерь ячеек и не будет доставлять ячейки ABR за счет трафика CBR или VBR. На втором уровне этого алгоритма трафик CBR и VBR может забрать всю оставшуюся пропускную способность сети, если это необходимо, так как соединения ABR уже получили свою минимальную пропускную способность, которая им гарантировалась.

Передача трафика IP через сети ATM

Технология ATM привлекает к себе общее внимание, так как претендует на роль всеобщего и очень гибкого транспорта, на основе которого строятся другие сети. И хотя технология ATM может использоваться непосредственно для транспортировки сообщений протоколов прикладного уровня, пока она чаще переносит пакеты других протоколов канального и сетевого уровней (Ethernet, IP, IPX, frame relay, X.25), сосуществуя с ними, а не полностью заменяя. Поэтому протоколы и спецификации, которые определяют способы взаимодействия технологии ATM с другими технологиями, очень важны для современных сетей. А так как протокол IP является на сегодня основным протоколом построения составных сетей, то стандарты работы IP через сети ATM являются стандартами, определяющими взаимодействие двух наиболее популярных технологий сегодняшнего дня.

Протокол Classical IP (RFC 1577) является первым (по времени появления) протоколом, определившим способ работы интерсети IP в том случае, когда одна из промежуточных сетей работает по технологии ATM. Из-за классической концепции подсетей протокол и получил свое название – Classical.

Одной из основных задач, решаемых протоколом Classical IP, является традиционная для IP-сетей задача – поиск локального адреса следующего маршрутизатора или конечного узла по его IP-адресу, то есть задача, возлагаемая в локальных сетях на протокол ARP. Поскольку сеть ATM не поддерживает широковещательность, традиционный для локальных сетей способ широковещательных ARP-запросов здесь не работает. Технология ATM, конечно, не единственная технология, в которой возникает такая проблема, – для обозначения таких технологий даже ввели специальный термин – «нешироковещательные сети с множественным доступом» (Non-Broadcast networks with Multiple Access, NBMA). К сетям NBMA относятся, в частности, сети Х.25 и frame relay.

В общем случае для нешироковещательных сетей стандарты TCP/IP определяют только ручной способ построения ARP-таблиц, однако для технологии ATM делается исключение – для нее разработана процедура автоматического отображения IP-адресов на локальные адреса. Такой особый подход к технологии ATM объясняется следующими причинами. Сети NBMA (в том числе Х.25 и frame relay) используются, как правило, как транзитные глобальные сети, к которым подключается ограниченное число маршрутизаторов, а для небольшого числа маршрутизаторов можно задать ARP-таблицу вручную. Технология ATM отличается тем, что она применяется для построения не только глобальных, но и локальных сетей. В последнем случае размерность ARP-таблицы, которая должна содержать записи и о пограничных маршрутизаторах, и о множестве конечных узлов, может быть очень большой. К тому же, для крупной локальной сети характерно постоянное изменение состава узлов, а значит, часто возникает необходимость в корректировке таблиц. Все это делает ручной вариант решения задачи отображения адресов для сетей ATM мало пригодным.

В соответствии со спецификацией Classical IP одна сеть ATM может быть представлена в виде нескольких IP-подсетей, так называемых логических подсетей (Logical IP Subnet, LIS). Все узлы одной LIS имеют общий адрес сети. Как и в классической IP-сети, весь трафик между подсетями обязательно проходит через маршрутизатор, хотя и существует принципиальная возможность передавать его непосредственно через коммутаторы ATM, на которых построена сеть ATM. Маршрутизатор имеет интерфейсы во всех LIS, на которые разбита сеть ATM.

В отличие от классических подсетей маршрутизатор может быть подключен к сети ATM одним физическим интерфейсом, которому присваивается несколько IP-адресов в соответствии с количеством LIS в сети.

Решение о введении логических подсетей связано с необходимостью обеспечения традиционного разделения большой сети ATM на независимые части, связность которых контролируется маршрутизаторами, как к этому привыкли сетевые интеграторы и администраторы. Решение имеет и очевидный недостаток – маршрутизатор должен быть достаточно производительным для передачи высокоскоростного трафика ATM между логическими подсетями, в противном случае он станет узким местом сети. В связи с повышенными требованиями по производительности, предъявляемыми сетями ATM к маршрутизаторам, многие ведущие производители разрабатывают или уже разработали модели маршрутизаторов с общей производительностью в несколько десятков миллионов пакетов в секунду.

Все конечные узлы конфигурируются традиционным образом – для них задается их собственный IP-адрес, маска и IP-адрес маршрутизатора по умолчанию. Кроме того, задается еще один дополнительный параметр – адрес ATM (или номер VPI/VCI для случая использования постоянного виртуального канала, то есть PVC) так называемого сервера ATMARP. Введение центрального сервера, который поддерживает общую базу данных для всех узлов сети, – это типичный прием для работы через нешироковещательную сеть. Этот прием используется во многих протоколах, в частности в протоколе LAN Emulation, рассматриваемом далее.

Каждый узел использует адрес ATM сервера ATMARP, чтобы выполнить обычный запрос ARP. Этот запрос имеет формат, очень близкий к формату запроса протокола ARP из стека TCP/IP. Длина аппаратного адреса в нем определена в 20 байт, что соответствует длине адреса ATM. В каждой логической подсети имеется свой сервер ATMARP, так как узел может обращаться без посредничества маршрутизатора только к узлам своей подсети. Обычно роль сервера ATMARP выполняет маршрутизатор, имеющий интерфейсы во всех логических подсетях.

При поступлении первого запроса ARP от конечного узла сервер сначала направляет ему встречный инверсный запрос ATMARP, чтобы выяснить IP- и ATM-адреса этого узла. Этим способом выполняется регистрация каждого узла в сервере ATMARP, и сервер получает возможность автоматически строить базу данных соответствия IP- и ATM-адресов. Затем сервер пытается выполнить запрос ATMARP-узла путем просмотра своей базы. Если искомый узел уже зарегистрировался в ней и он принадлежит той же логической подсети, что и запрашивающий узел, то сервер отправляет в качестве ответа запрашиваемый адрес. В противном случае дается негативный ответ (такой тип ответа в обычном широковещательном варианте протокола ARP не предусматривается).

Конечный узел, получив ответ ARP, узнает ATM-адрес своего соседа по логической подсети и устанавливает с ним коммутируемое виртуальное соединение. Если же он запрашивал ATM-адрес маршрутизатора по умолчанию, то он устанавливает с ним соединение, чтобы передать IP-пакет в другую сеть.

Для передачи IP-пакетов через сеть ATM спецификация Classical IP определяет использование протокола уровня адаптации AAL5, при этом спецификация ничего не говорит ни о параметрах трафика и качества обслуживания, ни о требуемой категории услуг CBR, rtVBR, nrtVBR или UBR.

ATM + LAN

Технология ATM разрабатывалась сначала как «вещь в себе», без учета того факта, что в существующие технологии сделаны большие вложения и поэтому никто не станет сразу отказываться от установленного и работающего оборудования, даже если появляется новое, более совершенное. Это обстоятельство оказалось не столь важным для территориальных сетей, которые в случае необходимости могли предоставить свои оптоволоконные каналы для построения сетей ATM. Учитывая, что стоимость высокоскоростных оптоволоконных каналов, проложенных на большие расстояния, часто превышает стоимость остального сетевого оборудования, переход на новую технологию ATM, связанный с заменой коммутаторов, во многих случаях оказывался экономически оправданным.

Для локальных сетей, в которых замена коммутаторов и сетевых адаптеров равнозначна созданию новой сети, переход на технологию ATM мог быть вызван только весьма серьезными причинами. Гораздо привлекательнее полной замены существующей локальной сети новой сетью ATM выглядела возможность «постепенного» внедрения технологии ATM в существующую на предприятии сеть. При таком подходе фрагменты сети, работающие по новой технологии ATM, могли бы мирно сосуществовать с другими частями сети, построенными на основе традиционных технологий, таких как Ethernet или FDDI, улучшая характеристики сети там, где это нужно, и оставляя сети рабочих групп или отделов в прежнем виде. Применение маршрутизаторов IP, реализующих протокол Classical IP, решает эту проблему, но такое решение не всегда устраивает предприятия, пользующиеся услугами локальных сетей, так как, во-первых, требуется обязательная поддержка протокола IP во всех узлах локальных сетей, а во-вторых, требуется установка некоторого количества маршрутизаторов, что также не всегда приемлемо. Отчетливо ощущалась необходимость способа согласования технологии ATM с технологиями локальных сетей без привлечения сетевого уровня.

В ответ на такую потребность ATM Forum разработал спецификацию, называемую LAN emulation, LANE (то есть эмуляция локальных сетей), которая призвана обеспечить совместимость традиционных протоколов и оборудования локальных сетей с технологией ATM. Эта спецификация обеспечивает совместную работу этих технологий на канальном уровне. При таком подходе коммутаторы ATM работают в качестве высокоскоростных коммутаторов магистрали локальной сети, обеспечивая не только скорость, но и гибкость соединений коммутаторов ATM между собой, поддерживающих произвольную топологию связей, а не только древовидные структуры.

Спецификация LANE определяет способ преобразования кадров и адресов МАС-уровня традиционных технологий локальных сетей в ячейки и коммутируемые виртуальные соединения SVC технологии ATM, а также способ обратного преобразования. Всю работу по преобразованию протоколов выполняют специальные компоненты, встраиваемые в обычные коммутаторы локальных сетей, поэтому ни коммутаторы ATM, ни рабочие станции локальных сетей не замечают того, что они работают с чуждыми им технологиями. Такая прозрачность была одной из главных целей разработчиков спецификации LANE.

Так как эта спецификация определяет только канальный уровень взаимодействия, то с помощью коммутаторов ATM и компонентов эмуляции LAN можно образовать только виртуальные сети, называемые здесь эмулируемыми сетями, а для их соединения нужно использовать обычные маршрутизаторы.

Использование технологии ATM

Технология ATM расширяет свое присутствие в локальных и глобальных сетях не очень быстро, но неуклонно. Число сетей, выполненных по этой технологии, ежегодно увеличивается на 20-30 %.

В локальных сетях технология ATM применяется обычно на магистралях, где востребованы такие ее качества, как масштабируемая скорость (выпускаемые сегодня корпоративные коммутаторы ATM поддерживают на своих портах скорости 155 и 622 Мбит/с), качество обслуживания (для этого нужны приложения, которые умеют запрашивать нужный класс обслуживания), петлевидные связи (которые позволяют повысить пропускную способность и обеспечить резервирование каналов связи). Петлевидные связи поддерживаются в силу того, что ATM – это технология с маршрутизацией пакетов, запрашивающих установление соединений, а значит, таблица маршрутизации может эти связи учесть – либо за счет ручного труда администратора, либо за счет протокола маршрутизации PNNI.

Основной соперник технологии ATM в локальных сетях – технология Gigabit Ethernet. Она превосходит ATM в скорости передачи данных – 1000 Мбит/с по сравнению с 622 Мбит/с, а также в затратах на единицу скорости. Там, где коммутаторы ATM используются только как высокоскоростные устройства, а возможности поддержки разных типов трафика игнорируются, технологию ATM, очевидно, заменит технология Gigabit Ethernet. Там же, где качество обслуживания действительно важно (видеоконференции, трансляция телевизионных передач и т. п.), технология ATM останется. Для объединения настольных компьютеров технология ATM, вероятно, еще долго не будет использоваться, так как здесь очень серьезную конкуренцию ей составляет технология Fast Ethernet.

В глобальных сетях ATM применяется там, где сеть frame relay не справляется с большими объемами трафика, и там, где нужно обеспечить низкий уровень задержек, необходимый для передачи информации реального времени.

Сегодня основной потребитель территориальных коммутаторов ATM – это Internet. Коммутаторы ATM используются как гибкая среда коммутации виртуальных каналов между IP-маршрутизаторами, которые передают свой трафик в ячейках ATM. Сети ATM оказались более выгодной средой соединения IP-маршрутизаторов, чем выделенные каналы SDH, так как виртуальный канал ATM может динамически перераспределять свою пропускную способность между пульсирующим трафиком клиентов IP-сетей. Примером магистральной сети ATM крупного поставщика услуг является сеть компании UUNET – одного из ведущих поставщиков услуг Internet Северной Америки.

И напоследок хотелось бы сделать некоторые выводы, касающиеся рассматириваемого нами материала на протяжении цикла «АБСОЛЮТНО ВСЕ О.....», итак.

Хотя технология ATM разрабатывалась для одновременной передачи данных компьютерных и телефонных сетей, передача голоса по каналам CBR для сетей ATM составляет всего 5 % от общего трафика, а передача видеоинформации – 10 %. Телефонные компании пока предпочитают передавать свой трафик непосредственно по каналам SDH, не довольствуясь гарантиями качества обслуживания ATM. Кроме того, технология ATM пока имеет недостаточно стандартов для плавного включения в существующие телефонные сети, хотя работы в этом направлении идут.

Что же касается совместимости ATM с технологиями компьютерных сетей, то разработанные в этой области стандарты вполне работоспособны и удовлетворяют пользователей и сетевых интеграторов.

К технологиям глобальных сетей с коммутацией пакетов относятся сети Х.25, frame relay, SMDS, ATM и TCP/IP. Все эти сети, кроме сетей TCP/IP, используют маршрутизацию пакетов, основанную на виртуальных каналах между конечными узлами сети.

Сети TCP/IP занимают особое положение среди технологий глобальных сетей, так как они выполняют роль технологии объединения сетей любых типов, в том числе и сетей всех остальных глобальных технологий. Таким образом, сети TCP/IP относятся к более высокоуровневым технологиям, чем технологии собственно глобальных сетей.

Техника виртуальных каналов заключается в разделении операций маршрутизации и коммутации пакетов. Первый пакет таких сетей содержит адрес вызываемого абонента и прокладывает виртуальный путь в сети, настраивая промежуточные коммутаторы. Остальные пакеты проходят по виртуальному каналу в режиме коммутации на основании номера виртуального канала, который является локальным адресом для каждого порта каждого коммутатора.

Техника виртуальных каналов имеет преимущества и недостатки по сравнению с техникой маршрутизации каждого пакета, характерной для сетей IP или IPX. Преимуществами являются: ускоренная коммутация пакетов по номеру виртуального канала, а также сокращение адресной части пакета, а значит, и избыточности заголовка. К недостаткам следует отнести невозможность распараллеливания потока данных между двумя абонентами по параллельным путям, а также неэффективность установления виртуального пути для кратковременных потоков данных

Сети Х.25 относятся к одной из наиболее старых и отработанных технологий глобальных сетей. Трехуровневый стек протоколов сетей Х.25 хорошо работает на ненадежных зашумленных каналах связи, исправляя ошибки и управляя потоком данных на канальном и пакетном уровнях.

Сети Х.25 поддерживают групповое подключение к сети простых алфавитно-цифровых терминалов за счет включения в сеть специальных устройств PAD, каждое из которых представляет собой особый вид терминального сервера.

На надежных волоконно-оптических каналах технология Х.25 становится избыточной и неэффективной, так как значительная часть работы ее протоколов ведется «вхолостую».

Сети frame relay работают на основе весьма упрощенной, по сравнению с сетями Х.25, технологией, которая передает кадры только по протоколу канального уровня – протоколу LAP-F. Кадры при передаче через коммутатор не подвергаются преобразованиям, из-за чего технология и получила свое название.

Важной особенностью технологии frame relay является концепция резервирования пропускной способности при прокладке в сети виртуального канала. Сети frame relay создавались специально для передачи пульсирующего компьютерного трафика, поэтому при резервировании пропускной способности указывается средняя скорость трафика CIR и согласованный объем пульсаций Вс.

Сеть frame relay гарантирует поддержку заказанных параметров качества обслуживания за счет предварительного расчета возможностей каждого коммутатора, а также отбрасывания кадров, которые нарушают соглашение о трафике, то есть посылаются в сеть слишком интенсивно.

Большинство первых сетей frame relay поддерживали только службу постоянных виртуальных каналов, а служба коммутируемых виртуальных каналов стала применяться на практике только недавно.

Технология ATM является дальнейшим развитием идей предварительного резервирования пропускной способности виртуального канала, реализованных в технологии frame relay.

Технология ATM поддерживает основные типы трафика, существующие у абонентов разного типа: трафик с постоянной битовой скоростью CBR, характерный для телефонных сетей и сетей передачи изображения, трафик с переменной битовой скоростью VBR, характерный для компьютерных сетей, а также для передачи компрессированного голоса и изображения.

Для каждого типа трафика пользователь может заказать у сети значения нескольких параметров качества обслуживания – максимальной битовой скорости PCR, средней битовой скорости SCR, максимальной пульсации MBS, а также контроля временных соотношений между передатчиком и приемником, важных для трафика, чувствительного к задержкам.

Технология ATM сама не определяет новые стандарты для физического уровня, а пользуется существующими. Основным стандартом для ATM является физический уровень каналов технологий SONET/SDH и PDH.

Ввиду того что ATM поддерживает все основные существующие типы трафика, она выбрана в качестве транспортной основы широкополосных цифровых сетей с интеграцией услуг – сетей B-ISDN, которые должны заменить сети ISDN.

Рост и увеличение загруженности корпоративных сетей приводят к необходимости их модернизации с учетом самых современных тенденций развития систем связи. И здесь следует стремиться к тому, чтобы не только свести к минимуму затрачиваемые средства, но и наиболее эффективно их вложить. Необходимо помнить, что появляющиеся новые приложения влекут за собой увеличение скорости передачи данных в сети, поэтому она должна строиться с учетом постоянного роста трафика.

Чтобы справиться с ростом трафика и значительными изменениями в его структуре, организациям приходится пересматривать принятую ими стратегию развития сети. Магистрали корпоративных сетей, реализованные, например, на основе технологии временного мультиплексирования (TDM), уже не могут «угнаться» за новыми требованиями, особенно за теми, которые возникают при использовании приложений TCP/IP, генерирующих неравномерный трафик с пиковыми нагрузками. При планировании развития сети надо учитывать перспективные и рентабельные решения, которые смогут в ближайшем будущем предложить поставщики услуг связи, стремиться обеспечить безболезненный переход к новым сетевым архитектурам. И в этом смысле технология АТМ (режим асинхронной передачи) обладает всеми необходимыми характеристиками, чтобы стать основой для создания новой сетевой инфраструктуры.

Технология АТМ представляет собой дальнейшее развитие принципов, которые были положены в основу технологий ISDN и Frame Relay. Технологии N-ISDN, X.25 и Frame Relay не могли обеспечить возможность построения достаточно качественной и гибкой цифровой сети с интегрированными услугами Технология N-ISDN обеспечивала гарантированное качество обслуживания, однако, не обладала необходимой гибкостью и не обеспечивала высокие (более 2 Мбит/сек) скорости передачи данных. Технология Frame Relay обеспечивала большие, чем технология N-ISDN скорости передачи данных и достаточную эффективность использования ресурсов физического канала, однако, она не обеспечивала выделения гарантированной полосы пропускания для передачи трафика, который чувствителен к задержкам (оцифрованный голос), то есть необходимого качества обслуживания. Аббревиатура ATM означает Asynchronous Transfer Mode (в дословном переводе - технология асинхронной передачи). Термин "асинхронный" в названии технологии указывает на её отличие от синхронных технологий с фиксированным распределением пропускной способности канала между информационными потоками (TDM, ISDN). Существенные отличия технологии АТМ от ISDN и Frame Relay заключается в том, что блок данных АТМ, ячейка, имеет фиксированную длину - 53 байта. Фиксированная длина ячейки АТМ обеспечивает гарантированное постоянное время её обработки на коммутирующем оборудовании, и следовательно - возможность обеспечения гарантированного качества обслуживания информационных потоков пользователя.

История Создание

Корневые технологии ATM были разработаны независимо во Франции и США в 1970-х двумя учеными: Jean-Pierre Coudreuse, который работал в исследовательской лаборатории France Telecom, и Sandy Fraser, инженер Bell Labs. Они оба хотели создать такую архитектуру, которая бы осуществляла транспортировку как данных, так и голоса на высоких скоростях, и использовала сетевые ресурсы наиболее эффективно.

Компьютерные технологии создали возможность для более быстрой обработки информации и более скоростной передачи данных между системами. В 80-х годах ХХ века операторы телефонной связи обнаружили, что неголосовой трафик более важен и начинает доминировать над голосовым. Был предложен дизайн ISDN , который описывал цифровую сеть с коммутацией пакетов, предоставляющую услуги телефонной связи и передачи данных. Оптоволокно позволяло обеспечить передачу данных на высокой скорости с малыми потерями. Но технология коммутации пакетов не обеспечивала надежную передачу голоса, и многие сомневались, что когда-либо обеспечит. В противоположность сетям пакетной передачи данных в общественных телефонных сетях применяли технологию коммутации каналов. Эта технология идеальна для передачи голоса, но для передачи данных она неэффективна. И тогда телекоммуникационная индустрия обратилась к ITU для разработки нового стандарта для передачи данных и голосового трафика в сетях с широкой полосой пропускания. В конце 80-х Международным телефонным и телеграфным консультативным комитетом CCITT (который затем был переименован в ITU-T) был разработан набор рекомендаций по ISDN второго поколения, так называемого B-ISDN (широкополосный ISDN), расширения ISDN. В качестве режима передачи нижнего уровня для B-ISDN был выбран ATM. В 1988 г. на собрании ITU в Женеве была выбрана длина ячейки ATM - 53 байт. Это был компромисс между американцами, которые хотели размер данных в ячейке 64 байта и европейцами, которые склонялись к размеру данных 32 байта. Ни одна сторона не смогла выиграть в этом споре и в итоге был выбран средний размер 48 байт. Для поля заголовка был выбран размер 5 байт, минимальный размер, на который согласилась ITU. В 1990 г. был одобрен базовый набор рекомендаций ATM. Базовые принципы ATM положены рекомендацией I150. Это решение было очень похоже на системы разработанные Coudreuse и Fraser. Отсюда начинается дальнейшее развитие ATM.

90-е годы: приход ATM на рынок

В начале 90-х начинается ажиотаж вокруг технологии ATM. Корпорация Sun Microsystems еще в 1990 г. одна из первых объявляет о поддержке ATM. В 1991 году создан ATM Forum, консорциум для разработки новых стандартов и технических спецификаций по технологии ATM, и сайт с одноименным названием, где все спецификации выкладывались в открытый доступ. CCITT, уже будучи ITU-T, выдаёт всё новые ревизии своих рекомендаций, полируя и совершенствуя теоретическую базу ATM. Представители сферы IT в журналах и газетах пророчат великое будущее ATM. В 1995 г. компания IBM объявила о своей новой стратегии в области корпоративных сетей, основанной на технологии ATM. Считалось, что ATM будет спасителем Интернета, уничтожив нехватку ширины полосы пропускания и внеся в сети надежность. Dan Minoli, автор многих книг по компьютерным сетям, убежденно утверждал, что ATM будет внедрен в публичных сетях, и корпоративные сети будут соединены с ними таким же образом, каким в то время они использовали frame relay или X.25. Но к тому времени протокол IP уже получил широкое распространение и сложно было совершить резкий переход на ATM. Поэтому в существующих IP-сетях технологию ATM предполагалось внедрять как нижележащий протокол, то есть под IP, а не вместо IP. Для постепенного перехода традиционных сетей Ethernet и Token Ring на оборудование ATM был разработан протокол LANE, эмулирующий пакеты данных сетей.

В 1997 г. в индустрии маршрутизаторов и коммутаторов примерно одинаковое количество компаний было выстроено на обеих сторонах, то есть использовало или не использовало технологию ATM в производимых устройствах. Будущее этого рынка было еще неопределенно. В 1997 г. доход от продажи оборудования и услуг ATM составил 2,4 млрд долларов США, в следующем году - 3,5 млрд, и ожидалось, что он достигнет 9,5 млрд долларов в 2001 году. Многие компании (например Ipsilon Networks) для достижения успеха использовали ATM не полностью, а в урезанном варианте. Многие сложные спецификации и протоколы верхнего уровня ATM, включая разные типы качества обслуживания, выкидывались. Оставлялся только базовый функционал по переключению байтов с одних линий на другие.

Первый удар по ATM

И тем не менее, было также много специалистов IT, скептически относящихся к жизнеспособности технологии ATM. Как правило, защитниками ATM были представители телекоммуникационных, телефонных компаний, а противниками - представители компаний, занимающимися компьютерными сетями и сетевым оборудованием. Steve Steinberg (в журнале Wired) посвятил целую статью скрытой войне между ними. Первым ударом по ATM были результаты исследований Bellcore о характере трафика LAN, опубликованных в 1994 г. Эта публикация показала, что трафик в локальных сетях не подчиняется ни одной существующей модели. Трафик LAN на временной диаграмме ведет себя как фрактал. На любом временном диапазоне от нескольких миллисекунд до нескольких часов он имеет самоподобный взрывной характер. ATM в своей работе все внеурочные пакеты должен хранить в буфере. В случае резкого увеличения трафика, коммутатор ATM просто вынужден отбрасывать невмещающиеся пакеты, а это означает ухудшение качества обслуживания. По этой причине PacBell потерпела неудачу при первой попытке использовать оборудование ATM.

Появление главного конкурента ATM - Gigabit Ethernet

В конце 90-х появляется технология Gigabit Ethernet, которая начинает конкурировать с ATM. Главными достоинствами первой является значительно более низкая стоимость, простота, легкость в настройке и эксплуатации. Также, переход с Ethernet или Fast Ethernet на Gigabit Ethernet можно было осуществить значительно легче и дешевле. Проблему качества обслуживания Gigabit Ethernet мог решить за счет покупки более дешевой полосы пропускания с запасом, нежели за счет умного оборудования. К окончанию 90-х гг. стало ясно что ATM будет продолжать доминировать только в сетях WAN, то есть корпоративных сетях. Продажи свитчей ATM для WAN продолжали расти, в то время как продажи свитчей ATM для LAN стремительно падали.

2000-е годы

В 2000-е гг. рынок оборудования ATM еще был значительным. ATM широко использовался в WAN-сетях, в оборудовании для передачи аудио/видео потоков, как промежуточный слой между физическим и вышележащим уровнем в устройствах ADSL для каналов не более 2 Мбит/с. Но в конце десятилетия ATM начинает вытесняться новой технологией IP-VPN. Свитчи ATM стали вытесняться маршрутизаторами IP/MPLS . По прогнозу компании Uvum от 2009г., к 2014г. ATM и Frame relay должны почти полностью исчезнуть, в то время как рынки Ethernet и IP-VPN будут продолжать расти с хорошим темпом. По докладу Broadband Forum за октябрь 2010 г, переход на глобальном рынке от сетей с коммутацией каналов (TDM, ATM и др.) к IP-сетям уже начался в стационарных сетях и уже затрагивает и мобильные сети. В докладе сказано, что Ethernet позволяет мобильным операторам удовлетворить растущие потребности в мобильном трафике более экономически эффективно, чем системы, основанные на TDM или ATM.

Еще в апреле 2005г. произошло слияние ATM Forum с Frame Relay Forum и MPLS Forum в общий MFA Forum (MPLS-Frame Relay-ATM). В 2007г. последний был переименован в IP/MPLS Forum. В апреле 2009г. IP/MPLS Forum был объединен с Broadband Forum (BBF), и новый форум принял название Broadband Forum. Фактически IP/MPLS Forum был поглощен BBF. Спецификации ATM доступны в их исходном виде на сайте Broadband Forum, но их дальнейшая разработка полностью остановлена.

Компоненты сетей АТМ

Технология АТМ обеспечивает информационное взаимодействие на двух уровнях, которые соответствуют канальному и физическому уровням модели OSI. АТМ - коммутаторы представляют собой быстродействующие специализированные вычислительные устройства, которые аппаратно реализуют функцию коммутации ячеек ATM между несколькими своими портами. Устройства CPE (Customer Premises Equipment) обеспечивают адаптацию информационных потоков пользователя для передачи с использованием технологии ATM. Для передачи данных в сети ATM организуется виртуальное соединение - virtual circuit (VC).

Идентификаторы виртуального соединения ATM

В пределах интерфейса NNI виртуальное соединение определяется уникальным сочетанием идентификатора виртуального пути (virtual path identifier) и идентификатора виртуального канала (virtual circuit identifier).

Виртуальный канал представляет собой фрагмент логического соединения, по которому производится передача данных одного пользовательского процесса.

Виртуальный путь представляет собой группу виртуальных каналов, которые в пределах данного интерфейса имеют одинаковое направление передачи данных.

Коммутатор АТМ состоит из двух коммутаторов - коммутатора виртуальных путей и коммутатора виртуальных каналов. Эта особенность организации АТМ обеспечивает дополнительное увеличение скорости обработки ячеек.

ATM коммутатор анализирует значения, которые имеют идентификаторы виртуального пути и виртуального канала у ячеек, которые поступают на его входной порт и направляет эти ячейки на один из выходных портов. Для определения номера выходного порта коммутатор использует динамически создаваемую таблицу коммутации.

Формат ячейки АТМ

Ячейка состоит из двух частей: поле заголовка занимает 5 байт и ещё 48 байт занимает поле полезной нагрузки.

Поле заголовка

В заголовке ячейки содержатся следующие поля:

  • Virtual Path Identifier (VPI)
  • Virtual Ccircuit Identifier (VCI)
  • Payload Type (PT)
  • Congestion Loss Priority (CLP)
  • Header Error Control (HEC)

Поля идентификаторов VPI и VCI

Идентификаторы VPI и VCI используются для обозначения виртуальных соединений ATM.

Поле типа нагрузки PT

В этом поле располагается информация, которая определяет тип даных, которые находятся в поле полезной нагрузки ячейки АТМ.

Бит понижения приоритета CLP

Бит CLP в ячейке АТМ имеет такое - же значение, как бит DE в кадре Frame Relay.

Поле контрольной суммы заголовка HEC

В поле HEC размещается проверочная контрольная сумма 4-х предыдущих байтов заголовка.

Поле Generic Flow Control (GFC)

LAN ) и высококачественного телевидения, которые требовали более высоких скоростей, чем те, что предоставляли службы ISDN .

Однако разработка широкополосной цифровой сети интегрального обслуживания ( Broadband ISDN - BISDN) привела к созданию метода передачи, который резко отличался от узкополосной ISDN ( Narrow ISDN - NISDN), известной как асинхронный режим передачи ( Asynchronous Transfer Mode ).

ATM объединяет возможности двух технологий - коммутации пакетов и коммутации каналов. ATM преобразует все виды нагрузки в поток ячеек ( cell ) длиной 53 байта. Как показано на рис. 10.1 , ячейка состоит из 48 байтов полезной нагрузки и 5 байтов заголовка , который позволяет передавать эту ячейку по сети.

Метод ATM ориентирован на соединение с пакетным способом коммутации, который обеспечивает заданное качество обслуживания (QoS - Quality of Service ). ATM рассчитана на высокие скорости передачи, а также на различные виды нагрузки: равномерный поток нагрузки, пульсирующая (пачечная) нагрузка и другие промежуточные типы.


Рис. 10.1.

Эталонная модель протоколов BISDN показана на рис. 10.2 . Модель содержит три плоскости: плоскость пользователя (Uplane), плоскость управления (C-plane) и плоскость менеджмента - административного управления (M-plane). Плоскость пользователя (U-plane), включает в себя передачу и прием всех видов данных, обеспечение управления потоком и защиту от ошибок. Она имеет уровневую структуру.

Плоскость управления (C-plane) содержит совокупность протоколов,используемых для сигнализации при установлении, контроле и разъеди- нении соединения. Она имеет уровневую структуру.

Плоскость менеджмента (M-plane) включает в себя две плоскости: административное управление уровнями плоскостей и управление плоскостями.

Функции управления уровнями содержат совокупность протоколов, координирующих:


Рассмотрим более подробно уровни плоскости пользователя и управления.

Плоскость пользователя имеет три основных уровня для поддержки пользовательских приложений: физический, адаптации ATM , уровень ATM . Уровень адаптации ATM ( ATM Adaptation Layer - AAL ) имеет несколько типов, функции которых определяются различными классами нагрузки пользователя. Уровень адаптации преобразует блоки данных пользователя ( SDU - Service Data Unite) в 48-байтовые блоки, которые переносятся ATM -ячейками. На рис.10.3 показана информация , генерируемая различными приложениями: передача речи, передача данных , передача видео.


Рис. 10.3.
  • регулярный поток, который поступает от преобразователя аналоговой информации в цифровые отсчеты(A/D);
  • кадры изображения, которые после сжатия представляют собой пакеты различной длины;
  • поток данных, который представляет собой поток пакетов с пульсирующей длиной.

Задача устройства уровня AAL : преобразовать информацию, разбить на блоки и предоставить для передачи через уровень ATM , который позволяет системе передать все характерные особенности данного приложения (например, тактовые последовательности). Можно отметить, что функции AAL могут размещаться в оконечном оборудовании, а другие функции - выполняться сетью, как это показано на рис. 10.4 .


Рис. 10.4.

ATM-уровень занимается только последовательной передачей ATM -ячеек, полученных от уровня AAL , в установленном по сети соединении (установлением соединения занимается плоскость управления). ATM -уровень принимает 48-байтовые блоки информации от AAL и дополняет их 5-байтовым заголовком, формируя ячейку ( ATM ). Заголовок содержит метку, которая определяет свойства устанавливаемого соединения и используется коммутатором для определения следующего участка пути, а также типа приоритета.

ATM может обеспечить различное качество обслуживания разным соединениям. Это оговаривается до предоставления услуги специальным соглашением между пользователем и поставщиком услуг, которое называется контрактом на услуги ( service contract ). Пользователь вырабатывает требования, которые определяются предоставляемой им нагрузкой и коэффициентом качества (QoS) при установлении связи. Если сеть может предоставить требуемое качество, то контракт устанавливает гарантированный QoS, пока пользователь выполняет все характеристики установленного трафика. Механизм ведения очереди и расписания в ATM -коммутаторах обеспечивает возможность поставки информации с заданным QoS. Для того чтобы доставить информацию с предписанным QoS, ATM -сети используют механизм наблюдения. Он будет рассмотрен далее.

В соответствии с числом подключаемых пользователей режим ATM поддерживает два типа соединений: " точка-точка " и "точка - много - точек". Связь " точка-точка " может быть однонаправленной или двунап-равленной. В последнем случае для каждого направления может быть установлено свое QoS. Связь " точка - много точек" всегда однонаправ-ленная и устанавливается от одного пользователя ко многим. По времени удержания соединения ATM обеспечивает постоянное виртуальное соединение ( Permanent Virtual Connection - PVC ) и коммутируемые виртуальные соединения ( Switch Virtual Connection - SVC ). PVC работает как постоянная, арендованная между сторонами пользователей линия. Точки соединения устанавливаются сетевым менеджером.При SVC оконечные точки задаются в момент инициализации вызова по запросу пользователей.

SVC устанавливается посредством процедур обмена сигналами. Исходящий пользователь должен взаимодействовать с сетью с помощью интерфейса " пользователь - сеть " (User-Network Interface - UNI), как это показано на рис. 10.7.

Запрос на установление соединения распространяется по сети и в конечном итоге включает в себя обмен по протоколу UNI между сетью и терминалом пункта назначения.

В пределах одной сети станции взаимодействуют согласно интерфейсу " сеть - сеть " (network-network interface NNI ). Станции, которые принадлежат разным сетям, взаимодействуют по интерфейсу широкополосной межсетевой связи (Broad Band Intercarrier Interface - B-ICI). Исходящий







2024 © gtavrl.ru.