Сколько символов в таблице unicode. Использование Юникода с @font-face иконками


Unicode - это международный стандарт кодировки символов, позволяющий единообразно отображать тексты на любом компьютере в мире, независимо от используемого на нем системного языка.

Основы

Чтобы понять, для чего нужна таблица символов Юникода, давайте сначала разберемся в механизме отображения текста на экране монитора. Компьютер, как мы знаем, обрабатывает всю информацию в цифровом виде, а вывести ее для правильного восприятия человеком должен в графическом. Таким образом, для того чтобы мы могли читать этот текст, надо решить как минимум две задачи:

  • Закодировать печатные символы в цифровую форму.
  • Обеспечить операционной системе возможность сопоставления цифровой формы с векторными символами, иными словами, найти правильные буквы.

Первые кодировки

Родоначальницей всех кодировок принято считать американскую ASCII. В ней был описан применяемый в английском языке латинский алфавит со знаками препинания и арабские цифры. Именно использованные в ней 128 символов стали основой для последующих разработок - их использует даже современная таблица символов Юникода. Буквы латинского алфавита занимают с тех пор первые позиции в любой кодировке.

Всего ASCII позволяла сохранить 256 символов, но поскольку первые 128 были заняты латиницей, остальные 128 начали использовать во всем мире для создания национальных стандартов. К примеру, в России на ее основе были созданы CP866 и KOI8-R. Назывались такие вариации расширенными версиями ASCII.

Кодовые страницы и «кракозябры»

Дальнейшее развитие технологий и появление графического интерфейса привело к тому, что американским институтом стандартизации была создана кодировка ANSI. Российским пользователям, особенно со стажем, ее версия известна под названием Windows 1251. В ней впервые было применено понятие «кодовая страница». Именно с помощью кодовых страниц, которые содержали символы национальных алфавитов, отличных от латинского, было налажено «взаимопонимание» между компьютерами, используемыми в разных странах.

Вместе с тем наличие большого количества различных кодировок, используемых для одного языка, начало вызывать проблемы. Появились так называемые кракозябры. Возникали они от несовпадения исходной кодовой страницы, в которой создавалась какая-либо информация, и кодовой станицы, применяемой по умолчанию на компьютере конечного пользователя.

В качестве примера можно привести указанные выше кириллические кодировки CP866 и KOI8-R. Буквы в них отличались кодовыми позициями и принципами размещения. В первой они были расставлены в алфавитном порядке, а во второй - в произвольном. Можете представить, что творилось перед глазами пользователя, который пытался открыть такой текст, не имея нужной кодовой страницы или при ее неправильной интерпретации компьютером.

Создание Unicode

Распространение интернета и сопутствующих технологий, таких как электронная почта, привело к тому что в конце концов ситуация с искажением текстов перестала устраивать всех. Передовые компании в области IT образовали Unicode Consortium ("Консорциум Юникод"). Таблица символов, представленная им в 1991 году под названием UTF-32, позволяла хранить более миллиарда уникальных символов. Это был важнейший шаг на пути к расшифровке текстов.

Однако первая универсальная таблица кодов-символов Юникод UTF-32, не получила большого распространения. Основной причиной стала избыточность хранимой информации. Быстро было подсчитано, что для стран, в которых используется латинский алфавит, закодированный с помощью новой универсальной таблицы, текст будет занимать места в четыре раза больше, чем при использовании расширенной таблицы ASCII.

Развитие Unicode

Следующая таблица символов Юникода UTF-16 эту проблему устранила. Кодирование в ней осуществлялось в два раза меньшим количеством бит, но вместе с тем уменьшилось и количество возможных комбинаций. Вместо миллиардов символов она позволяет сохранить только 65 536. Тем не менее она оказалась настолько удачной, что это число, по решению Консорциума, было определено как базовое пространство хранения символов стандарта Unicode.

Несмотря на такой успех, UTF-16 не устраивала всех, поскольку объем хранимой и передаваемой информации по-прежнему завышался в два раза. Универсальным решением стала UTF-8, таблица символов Юникода с переменной длиной записи. Это можно назвать прорывом в данной области.

Таким образом, с введением двух последних стандартов таблица символов Юникода решила проблему единого кодового пространства для всех применяемых в настоящее время шрифтов.

Юникод для русского языка

Благодаря переменной длине кода, применяемого для отображения символов, латиница кодируется в Юникоде так же, как и в своей прародительнице ASCII, то есть одним битом. Для других алфавитов картина может выглядеть по-разному. К примеру, знаки грузинского алфавита используют для кодирования три байта, а знаки кириллического алфавита - два. Все это возможно в рамках использования стандарта UTF-8 Юникод (таблица символов). Русский язык или кириллический алфавит занимает в общем кодовом пространстве 448 позиций, разбитых на пять блоков.

В указанные пять блоков входят основной кириллический и церковнославянский алфавит, а также дополнительные буквы других языков, использующих кириллицу. Ряд позиций выделен для отображения старых форм представления букв кириллицы, а 22 позиции из общего количества пока остаются свободными.

Актуальная версия Юникода

С решением своей первоочередной задачи, которая заключалась в стандартизации шрифтов и создании для них единого кодового пространства, "Консорциум" не прекратил свою работу. Юникод постоянно развивается и пополняется. Последняя актуальная версия этого стандарта 9.0 увидела свет в 2016 году. В нее было включено шесть дополнительных алфавитов и расширен список стандартизованных эмодзи.

Надо сказать, что с целью упрощения исследований, в Юникод добавляются даже так называемые мертвые языки. Такое название они получили потому, что людей, для которых он бы являлся родным, не существует. К этой группе относят также языки, дошедшие до нашего времени только в виде письменных памятников.

В принципе, подать заявку на добавление символов в новую спецификацию Юникода может любой желающий. Правда, для этого придется заполнить приличное количество исходных документов и потратить много времени. Живым примером этому может служить история программиста Теренса Идена. В 2013 году он подал заявку на включение в спецификацию символов, относящихся к обозначению кнопок управления питанием компьютера. В технической документации они использовались с середины 70-х годов прошлого века, но до появления спецификации 9.0 не входили в состав Unicode.

Таблица символов

На каждом компьютере, независимо от применяемой операционной системы, используется Юникод-таблица символов. Как пользоваться этими таблицами, где их найти и для чего они могут пригодиться обычному пользователю?

В ОС Windows таблица символов располагается в разделе меню «Служебные». В семействе операционных систем Linux ее обычно можно найти в подразделе «Стандартные», а в MacOS - в настройках клавиатуры. Основное назначение этой таблицы - ввод в текстовые документы символов, которые не расположены на клавиатуре.

Применение для таких таблиц можно найти самое широкое: от ввода технических символов и значков национальных денежных систем до написания инструкции по практическому применению карт Таро.

В заключение

Юникод используется повсеместно и вошел в нашу жизнь вместе с развитием интернета и мобильных технологий. Благодаря его использованию существенно упростилась система межнациональных коммуникаций. Можно сказать, что внедрение Юникода является показательным, но совершенно незаметным со стороны примером использования технологий для общего блага всего человечества.

Сегодня мы поговорим с вами про то, откуда берутся кракозябры на сайте и в программах, какие кодировки текста существуют и какие из них следует использовать. Подробно рассмотрим историю их развития, начиная от базовой ASCII, а также ее расширенных версий CP866, KOI8-R, Windows 1251 и заканчивая современными кодировками консорциума Юникод UTF 16 и 8. Оглавление:

  • Расширенные версии Аски - кодировки CP866 и KOI8-R
  • Windows 1251 - вариация ASCII и почему вылезают кракозябры
Кому-то эти сведения могут показаться излишними, но знали бы вы, сколько мне приходит вопросов именно касаемо вылезших кракозябров (не читаемого набора символов). Теперь у меня будет возможность отсылать всех к тексту этой статьи и самостоятельно отыскивать свои косяки. Ну что же, приготовьтесь впитывать информацию и постарайтесь следить за ходом повествования.

ASCII - базовая кодировка текста для латиницы

Развитие кодировок текстов происходило одновременно с формированием отрасли IT, и они за это время успели претерпеть достаточно много изменений. Исторически все начиналось с довольно-таки не благозвучной в русском произношении EBCDIC, которая позволяла кодировать буквы латинского алфавита, арабские цифры и знаки пунктуации с управляющими символами. Но все же отправной точкой для развития современных кодировок текстов стоит считать знаменитую ASCII (American Standard Code for Information Interchange, которая по-русски обычно произносится как «аски»). Она описывает первые 128 символов из наиболее часто используемых англоязычными пользователями - латинские буквы, арабские цифры и знаки препинания. Еще в эти 128 знаков, описанных в ASCII, попадали некоторые служебные символы навроде скобок, решеток, звездочек и т.п. Собственно, вы сами можете увидеть их:
Именно эти 128 символов из первоначального вариант ASCII стали стандартом, и в любой другой кодировке вы их обязательно встретите и стоять они будут именно в таком порядке. Но дело в том, что с помощью одного байта информации можно закодировать не 128, а целых 256 различных значений (двойка в степени восемь равняется 256), поэтому вслед за базовой версией Аски появился целый ряд расширенных кодировок ASCII , в которых можно было кроме 128 основных знаков закодировать еще и символы национальной кодировки (например, русской). Тут, наверное, стоит еще немного сказать про системы счисления, которые используются при описании. Во-первых, как вы все знаете, компьютер работает только с числами в двоичной системе, а именно с нулями и единицами («булева алгебра», если кто проходил в институте или в школе). Один байт состоит из восьми бит, каждый из которых представляет из себя двойку в степени, начиная с нулевой, и до двойки в седьмой:
Не трудно понять, что всех возможных комбинаций нулей и единиц в такой конструкции может быть только 256. Переводить число из двоичной системы в десятичную довольно просто. Нужно просто сложить все степени двойки, над которыми стоят единички. В нашем примере это получается 1 (2 в степени ноль) плюс 8 (два в степени 3), плюс 32 (двойка в пятой степени), плюс 64 (в шестой), плюс 128 (в седьмой). Итого получает 233 в десятичной системе счисления. Как видите, все очень просто. Но если вы присмотритесь к таблице с символами ASCII, то увидите, что они представлены в шестнадцатеричной кодировке. Например, «звездочка» соответствует в Аски шестнадцатеричному числу 2A. Наверное, вам известно, что в шестнадцатеричной системе счисления используются кроме арабских цифр еще и латинские буквы от A (означает десять) до F (означает пятнадцать). Ну так вот, для перевода двоичного числа в шестнадцатеричное прибегают к следующему простому и наглядному способу. Каждый байт информации разбивают на две части по четыре бита, как показано на приведенном выше скриншоте. Т.о. в каждой половинке байта двоичным кодом можно закодировать только шестнадцать значений (два в четвертой степени), что можно легко представить шестнадцатеричным числом. Причем, в левой половине байта считать степени нужно будет опять начиная с нулевой, а не так, как показано на скриншоте. В результате, путем нехитрых вычислений, мы получим, что на скриншоте закодировано число E9. Надеюсь, что ход моих рассуждений и разгадка данного ребуса вам оказались понятны. Ну, а теперь продолжим, собственно, говорить про кодировки текста.

Расширенные версии Аски - кодировки CP866 и KOI8-R с псевдографикой

Итак, мы с вами начали говорить про ASCII, которая являлась как бы отправной точкой для развития всех современных кодировок (Windows 1251, юникод, UTF 8). Изначально в нее было заложено только 128 знаков латинского алфавита, арабских цифр и еще чего-то там, но в расширенной версии появилась возможность использовать все 256 значений, которые можно закодировать в одном байте информации. Т.е. появилась возможность добавить в Аски символы букв своего языка. Тут нужно будет еще раз отвлечься, чтобы пояснить - зачем вообще нужны кодировки текстов и почему это так важно. Символы на экране вашего компьютера формируются на основе двух вещей - наборов векторных форм (представлений) всевозможных знаков (они находятся в файлах со шрифтами, которые установлены на вашем компьютере) и кода, который позволяет выдернуть из этого набора векторных форм (файла шрифта) именно тот символ, который нужно будет вставить в нужное место. Понятно, что за сами векторные формы отвечают шрифты, а вот за кодирование отвечает операционная система и используемые в ней программы. Т.е. любой текст на вашем компьютере будет представлять собой набор байтов, в каждом из которых закодирован один единственный символ этого самого текста. Программа, отображающая этот текст на экране (текстовый редактор, браузер и т.п.), при разборе кода считывает кодировку очередного знака и ищет соответствующую ему векторную форму в нужном файле шрифта, который подключен для отображения данного текстового документа. Все просто и банально. Значит, чтобы закодировать любой нужный нам символ (например, из национального алфавита), должно быть выполнено два условия - векторная форма этого знака должна быть в используемом шрифте и этот символ можно было бы закодировать в расширенных кодировках ASCII в один байт. Поэтому таких вариантов существует целая куча. Только лишь для кодирования символов русского языка существует несколько разновидностей расширенной Аски. Например, изначально появилась CP866 , в которой была возможность использовать символы русского алфавита и она являлась расширенной версией ASCII. Т.е. ее верхняя часть полностью совпадала с базовой версией Аски (128 символов латиницы, цифр и еще всякой лабуды), которая представлена на приведенном чуть выше скриншоте, а вот уже нижняя часть таблицы с кодировкой CP866 имела указанный на скриншоте чуть ниже вид и позволяла закодировать еще 128 знаков (русские буквы и всякая там псевдографика):
Видите, в правом столбце цифры начинаются с 8, т.к. числа с 0 до 7 относятся к базовой части ASCII (см. первый скриншот). Т.о. русская буква «М» в CP866 будет иметь код 9С (она находится на пересечении соответствующих строки с 9 и столбца с цифрой С в шестнадцатеричной системе счисления), который можно записать в одном байте информации, и при наличии подходящего шрифта с русскими символами эта буква без проблем отобразится в тексте. Откуда взялось такое количество псевдографики в CP866 ? Тут все дело в том, что эта кодировка для русского текста разрабатывалась еще в те мохнатые года, когда не было такого распространения графических операционных систем как сейчас. А в Досе, и подобных ей текстовых операционках, псевдографика позволяла хоть как-то разнообразить оформление текстов и поэтому ею изобилует CP866 и все другие ее ровесницы из разряда расширенных версий Аски. CP866 распространяла компания IBM, но кроме этого для символов русского языка были разработаны еще ряд кодировок, например, к этому же типу (расширенных ASCII) можно отнести KOI8-R :
Принцип ее работы остался тот же самый, что и у описанной чуть ранее CP866 - каждый символ текста кодируется одним единственным байтом. На скриншоте показана вторая половина таблицы KOI8-R, т.к. первая половина полностью соответствует базовой Аски, которая показана на первом скриншоте в этой статье. Среди особенностей кодировки KOI8-R можно отметить то, что русские буквы в ее таблице идут не в алфавитном порядке, как это, например, сделали в CP866. Если посмотрите на самый первый скриншот (базовой части, которая входит во все расширенные кодировки), то заметите, что в KOI8-R русские буквы расположены в тех же ячейках таблицы, что и созвучные им буквы латинского алфавита из первой части таблицы. Это было сделано для удобства перехода с русских символов на латинские путем отбрасывания всего одного бита (два в седьмой степени или 128).

Windows 1251 - современная версия ASCII и почему вылезают кракозябры

Дальнейшее развитие кодировок текста было связано с тем, что набирали популярность графические операционные системы и необходимость использования псевдографики в них со временем пропала. В результате возникла целая группа, которая по своей сути по-прежнему являлись расширенными версиями Аски (один символ текста кодируется всего одним байтом информации), но уже без использования символов псевдографики. Они относились к так называемым ANSI кодировкам, которые были разработаны американским институтом стандартизации. В просторечии еще использовалось название кириллица для варианта с поддержкой русского языка. Примером такой может служить Windows 1251 . Она выгодно отличалась от используемых ранее CP866 и KOI8-R тем, что место символов псевдографики в ней заняли недостающие символы русской типографики (окромя знака ударения), а также символы, используемые в близких к русскому славянских языках (украинскому, белорусскому и т.д.):
Из-за такого обилия кодировок русского языка, у производителей шрифтов и производителей программного обеспечения постоянно возникала головная боль, а у нас с вам, уважаемые читатели, зачастую вылезали те самые пресловутые кракозябры , когда происходила путаница с используемой в тексте версией. Очень часто они вылезали при отправке и получении сообщений по электронной почте, что повлекло за собой создание очень сложных перекодировочных таблиц, которые, собственно, решить эту проблему в корне не смогли, и зачастую пользователи для переписки использовали транслит латинских букв, чтобы избежать пресловутых кракозябров при использовании русских кодировок подобных CP866, KOI8-R или Windows 1251. По сути, кракозябры, вылазящие вместо русского текста, были результатом некорректного использования кодировки данного языка, которая не соответствовала той, в которой было закодировано текстовое сообщение изначально. Допустим, если символы, закодированные с помощью CP866, попробовать отобразить, используя кодовую таблицу Windows 1251, то эти самые кракозябры (бессмысленный набор знаков) и вылезут, полностью заменив собой текст сообщения. Аналогичная ситуация очень часто возникает при создании и настройке сайтов, форумов или блогов, когда текст с русскими символами по ошибке сохраняется не в той кодировке, которая используется на сайте по умолчанию, или же не в том текстовом редакторе, который добавляет в код отсебятину не видимую невооруженным глазом. В конце концов такая ситуация с множеством кодировок и постоянно вылезающими кракозябрами многим надоела, появились предпосылки к созданию новой универсальной вариации, которая бы заменила собой все существующие и решила бы, наконец, на корню проблему с появлением не читаемых текстов. Кроме этого существовала проблема языков подобных китайскому, где символов языка было гораздо больше, чем 256.

Юникод (Unicode) - универсальные кодировки UTF 8, 16 и 32

Эти тысячи знаков языковой группы юго-восточной Азии никак невозможно было описать в одном байте информации, который выделялся для кодирования символов в расширенных версиях ASCII. В результате был создан консорциум под названием Юникод (Unicode - Unicode Consortium) при сотрудничестве многих лидеров IT индустрии (те, кто производит софт, кто кодирует железо, кто создает шрифты), которые были заинтересованы в появлении универсальной кодировки текста. Первой вариацией, вышедшей под эгидой консорциума Юникод, была UTF 32 . Цифра в названии кодировки означает количество бит, которое используется для кодирования одного символа. 32 бита составляют 4 байта информации, которые понадобятся для кодирования одного единственного знака в новой универсальной кодировке UTF. В результате чего, один и тот же файл с текстом, закодированный в расширенной версии ASCII и в UTF-32, в последнем случае будет иметь размер (весить) в четыре раза больше. Это плохо, но зато теперь у нас появилась возможность закодировать с помощью ЮТФ число знаков, равное двум в тридцать второй степени (миллиарды символов , которые покроют любое реально необходимое значение с колоссальным запасом). Но многим странам с языками европейской группы такое огромное количество знаков использовать в кодировке вовсе и не было необходимости, однако при задействовании UTF-32 они ни за что ни про что получали четырехкратное увеличение веса текстовых документов, а в результате и увеличение объема интернет трафика и объема хранимых данных. Это много, и такое расточительство себе никто не мог позволить. В результате развития Юникода появилась UTF-16 , которая получилась настолько удачной, что была принята по умолчанию как базовое пространство для всех символов, которые у нас используются. Она использует два байта для кодирования одного знака. Давайте посмотрим, как это дело выглядит. В операционной системе Windows вы можете пройти по пути «Пуск» - «Программы» - «Стандартные» - «Служебные» - «Таблица символов». В результате откроется таблица с векторными формами всех установленных у вас в системе шрифтов. Если вы выберете в «Дополнительных параметрах» набор знаков Юникод, то сможете увидеть для каждого шрифта в отдельности весь ассортимент входящих в него символов. Кстати, щелкнув по любому из них, вы сможете увидеть его двухбайтовый код в формате UTF-16 , состоящий из четырех шестнадцатеричных цифр: Сколько символов можно закодировать в UTF-16 с помощью 16 бит? 65 536 (два в степени шестнадцать), и именно это число было принято за базовое пространство в Юникоде. Помимо этого существуют способы закодировать с помощью нее и около двух миллионов знаков, но ограничились расширенным пространством в миллион символов текста. Но даже эта удачная версия кодировки Юникода не принесла особого удовлетворения тем, кто писал, допустим, программы только на английском языке, ибо у них, после перехода от расширенной версии ASCII к UTF-16, вес документов увеличивался в два раза (один байт на один символ в Аски и два байта на тот же самый символ в ЮТФ-16). Вот именно для удовлетворения всех и вся в консорциуме Unicode было решено придумать кодировку переменной длины. Ее назвали UTF-8. Несмотря на восьмерку в названии, она действительно имеет переменную длину, т.е. каждый символ текста может быть закодирован в последовательность длиной от одного до шести байт. На практике же в UTF-8 используется только диапазон от одного до четырех байт, потому что за четырьмя байтами кода ничего уже даже теоретически не возможно представить. Все латинские знаки в ней кодируются в один байт, так же как и в старой доброй ASCII. Что примечательно, в случае кодирования только латиницы, даже те программы, которые не понимают Юникод, все равно прочитают то, что закодировано в ЮТФ-8. Т.е. базовая часть Аски просто перешла в это детище консорциума Unicode. Кириллические же знаки в UTF-8 кодируются в два байта, а, например, грузинские - в три байта. Консорциум Юникод после создания UTF 16 и 8 решил основную проблему - теперь у нас в шрифтах существует единое кодовое пространство . И теперь их производителям остается только исходя из своих сил и возможностей заполнять его векторными формами символов текста. В приведенной чуть выше «Таблице символов» видно, что разные шрифты поддерживают разное количество знаков. Некоторые насыщенные символами Юникода шрифты могут весить очень прилично. Но зато теперь они отличаются не тем, что они созданы для разных кодировок, а тем, что производитель шрифта заполнил или не заполнил единое кодовое пространство теми или иными векторными формами до конца.

Кракозябры вместо русских букв - как исправить

Давайте теперь посмотрим, как появляются вместо текста кракозябры или, другими словами, как выбирается правильная кодировка для русского текста. Собственно, она задается в той программе, в которой вы создаете или редактируете этот самый текст, или же код с использованием текстовых фрагментов. Для редактирования и создания текстовых файлов лично я использую очень хороший, на мой взгляд, Html и PHP редактор Notepad++ . Впрочем, он может подсвечивать синтаксис еще доброй сотни языков программирования и разметки, а также имеет возможность расширения с помощью плагинов. Читайте подробный обзор этой замечательной программы по приведенной ссылке. В верхнем меню Notepad++ есть пункт «Кодировки», где у вас будет возможность преобразовать уже имеющийся вариант в тот, который используется на вашем сайте по умолчанию:
В случае сайта на Joomla 1.5 и выше, а также в случае блога на WordPress следует во избежании появления кракозябров выбирать вариант UTF 8 без BOM . А что такое приставка BOM? Дело в том, что когда разрабатывали кодировку ЮТФ-16, зачем-то решили прикрутить к ней такую вещь, как возможность записывать код символа, как в прямой последовательности (например, 0A15), так и в обратной (150A). А для того, чтобы программы понимали, в какой именно последовательности читать коды, и был придуман BOM (Byte Order Mark или, другими словами, сигнатура), которая выражалась в добавлении трех дополнительных байтов в самое начало документов. В кодировке UTF-8 никаких BOM предусмотрено в консорциуме Юникод не было и поэтому добавление сигнатуры (этих самых пресловутых дополнительных трех байтов в начало документа) некоторым программам просто-напросто мешает читать код. Поэтому мы всегда при сохранении файлов в ЮТФ должны выбирать вариант без BOM (без сигнатуры). Таким образом, вы заранее обезопасите себя от вылезания кракозябров . Что примечательно, некоторые программы в Windows не умеют этого делать (не умеют сохранять текст в ЮТФ-8 без BOM), например, все тот же пресловутый Блокнот Windows. Он сохраняет документ в UTF-8, но все равно добавляет в его начало сигнатуру (три дополнительных байта). Причем эти байты будут всегда одни и те же - читать код в прямой последовательности. Но на серверах из-за этой мелочи может возникнуть проблема - вылезут кракозябры. Поэтому ни в коем случае не пользуйтесь обычным блокнотом Windows для редактирования документов вашего сайта, если не хотите появления кракозябров. Лучшим и наиболее простым вариантом я считаю уже упомянутый редактор Notepad++, который практически не имеет недостатков и состоит из одних лишь достоинств. В Notepad ++ при выборе кодировки у вас будет возможность преобразовать текст в кодировку UCS-2, которая по своей сути очень близка к стандарту Юникод. Также в Нотепаде можно будет закодировать текст в ANSI, т.е. применительно к русскому языку это будет уже описанная нами чуть выше Windows 1251. Откуда берется эта информация? Она прописана в реестре вашей операционной системы Windows - какую кодировку выбирать в случае ANSI, какую выбирать в случае OEM (для русского языка это будет CP866). Если вы установите на своем компьютере другой язык по умолчанию, то и эти кодировки будут заменены на аналогичные из разряда ANSI или OEM для того самого языка. После того, как вы в Notepad++ сохраните документ в нужной вам кодировке или же откроете документ с сайта для редактирования, то в правом нижнем углу редактора сможете увидеть ее название: Чтобы избежать кракозябров , кроме описанных выше действий, будет полезным прописать в его шапке исходного кода всех страниц сайта информацию об этой самой кодировке, чтобы на сервере или локальном хосте не возникло путаницы. Вообще, во всех языках гипертекстовой разметки кроме Html используется специальное объявление xml, в котором указывается кодировка текста. < ? xml version= "1.0" encoding= "windows-1251" ? > Прежде, чем начать разбирать код, браузер узнает, какая версия используется и как именно нужно интерпретировать коды символов этого языка. Но что примечательно, в случае, если вы сохраняете документ в принятом по умолчанию юникоде, то это объявление xml можно будет опустить (кодировка будет считаться UTF-8, если нет BOM или ЮТФ-16, если BOM есть). В случае же документа языка Html для указания кодировки используется элемент Meta , который прописывается между открывающим и закрывающим тегом Head: < head> . . . < meta charset= "utf-8" > . . . < / head> Эта запись довольно сильно отличается от принятой в стандарте в Html 4.01, но полностью соответствует новому внедряемому потихоньку стандарту Html 5, и она будет стопроцентно правильно понята любыми используемыми на текущий момент браузерами. По идее, элемент Meta с указание кодировки Html документа лучше будет ставить как можно выше в шапке документа , чтобы на момент встречи в тексте первого знака не из базовой ANSI (которые правильно прочитаются всегда и в любой вариации) браузер уже должен иметь информацию о том, как интерпретировать коды этих символов. Ссылка на перво

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442

записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер сократится всего на 11Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:

  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

Unicode : UTF-8 , UTF-16, UTF-32.

Юникод представляет собой набор графических символов и способ их кодирования для компьютерной обработки текстовых данных.

Юникод не только приписывает каждому символу уникальный код, но и определяет различные характеристики этого символа, например:

    тип символа (прописная буква, строчная буква, цифра, знак препинания и т. д.);

    атрибуты символа (отображение слева направо или справа налево, пробел, разрыв строки и т. д.);

    соответствующая прописная или строчная буква (для строчных и прописных букв соответственно);

    соответствующее числовое значение (для цифровых символов).

    Стандарты UTF (аббревиатура Unicode Transformation Format) для представления символов:

UTF-16 : В Windows настройка, ускорение, частые вопросы Vista для представления всех Unicode- символов используется кодировка UTF-16. В UTF-16 символы представлены двумя байтами (16 битами). Эта кодировка используется в Windows, поскольку 16-битными значениями можно представить символы, составляющие алфавиты большинства языков мира, это позволяет программам быстрее обрабатывать строки и вычислять их длину. Однако для представления символов алфавита некоторых языков 16 бит недостаточно. Для таких случаев UTE-16 поддерживает «суррогатные» кодировки, позволяющие кодировать символы 32 битами (4 байтами). Впрочем, приложений, которым приходится иметь дело с символами таких языков, мало, поэтому UTF-16 - хороший компромисс между экономией памяти и простотой программирования. Заметьте, что в.NET Framework все символы кодируются с использованием UTF-16, поэтому применение UTF-16 в Windows- приложениях повышает производительность и снижает потребление памяти при передаче строк между «родным» и управляемым кодом.

UTF-8 : В кодировке UTF-8 разные символы могут быть представлены 1,2,3 или 4 байтами. Символы с значениями меньше 0x0080 сжимаются до 1 байта, что очень удобно для символов, применяемых в США. Символы, которым соответствуют значения из диапазона 0x0080-0x07FF, преобразуются в 2-байтовые значения, что хорошо работает с алфавитами европейских и ближневосточных языков. Символы с бо́льшими значениями преобразуются в 3-байтовые значения, удобные при работе со среднеазиатскими языками. Наконец, «суррогатные» пары записываются в 4-байтовом формате. UTF-8- чрезвычайно популярная кодировка. Однако ее эффективность меньше по сравнению с UTF-16, если часто используются символы с значениями 0x0800 и выше.

UTF-32 : В UTF-32 все символы представлены 4 байтами. Эта кодировка удобна для написания простых алгоритмов для перебора символов любого языка, не требующих обработки символов, представленных разным числом байтов. Например, при использовании UTF-32 можно забыть о «суррогатах», поскольку любой символ в этой кодировке представлен 4 байтами. Ясно, что с точки зрения использования памяти эффективность UTF-32 далека от идеала. Поэтому данную кодировку редко применяют для передачи строк по сети и сохранения их в файлы. Как правило, UTF-32 используется как внутренний формат представления данных в программе.

UTF-8

В ближайшее время все более важную роль будет играть особый формат Unicode (и ISO 10646) под названием UTF-8 . Эта «производная» кодировка пользуется для записи символов цепочками байтов различной длины (от одного до шести), которые с помощью несложного алгоритма преобразуются в Unicode- коды, причем более употребительным символам соответствуют более короткие цепочки. Главное достоинство этого формата - совместимость с ASCII не только по значениям кодов, но и по количеству бит на символ, так как для кодирования любого из первых 128 символов в UTF-8 достаточно одного байта (хотя, например, для букв кириллицы нужно уже по два байта).

Формат UTF-8 был изобретён 2 сентября 1992 года Кеном Томпсоном и Робом Пайком и реализован в Plan 9. Сейчас стандарт UTF-8 официально закреплён в документах RFC 3629 и ISO /IEC 10646 Annex D.

Для Web- дизайнера эта кодировка имеет особое значение, так как именно она объявлена «стандартной кодировкой документа» в HTML начиная с версии 4.

Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII . И наоборот, в тексте UTF-8 любой байт со значением меньше 128 изображает символ ASCII с тем же кодом. Остальные символы Юникода изображаются последовательностями длиной от 2 до 6 байтов (реально только до 4 байт, поскольку использование кодов больше 221 не планируется), в которых первый байт всегда имеет вид 11xxxxxx, а остальные - 10xxxxxx.

Проще говоря, в формате UTF-8 символы латинского алфавита, знаки препинания и управляющие символы ASCII записываются кодами US- ASCII , a все остальные символы кодируются при помощи нескольких октетов со старшим битом 1. Это приводит к двум эффектам.

    Даже если программа не распознаёт Юникод, то латинские буквы, арабские цифры и знаки препинания будут отображаться правильно.

    В случае, если латинские буквы и простейшие знаки препинания (включая пробел) занимают существенный объём текста, UTF-8 даёт выигрыш по объёму по сравнению с UTF-16.

    На первый взгляд может показаться, что UTF-16 удобнее, так как в ней большинство символов кодируется ровно двумя байтами. Однако это сводится на нет необходимостью поддержки суррогатных пар, о которых часто забывают при использовании UTF-16, реализовывая лишь поддержку символов UCS-2.

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442
записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Хотя юникод-символы и называются символами, они далеко не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу. (Подробнее смотри под спойлером.)

Примеры различных юникод-символов

Существуют чисто технические юникод-символы, например:

  • U+0000: нулевой символ;
  • U+D800–U+DFFF: младшие и старшие суррогаты для технического представления кодовых позиций в диапазоне от 10000 до 10FFFF (читай: за пределами БМЯП/BMP) в семействе кодировок UTF-16;
  • и т.д.
Существуют пунктуационные маркеры, например U+200F: маркер смены направления письма справа-налево.

Существует целая когорта пробелов различной ширины и назначения (см. отличную хабра-статью: ):

  • U+0020 (пробел);
  • U+00A0 (неразрывный пробел, в HTML);
  • U+2002 (полукруглая шпация или En Space);
  • U+2003 (круглая шпация или Em Space);
  • и т.д.
Существуют комбинируемые диакритические знаки (сombining diacritical marks) - всевозможные штрихи, точки, тильды и т.д., которые меняют/уточняют значение предыдущего знака и его начертание. Например:
  • U+0300 и U+0301: знаки основного (острого) и второстепенного (слабого) ударений;
  • U+0306: кратка (надстрочная дуга), как в й;
  • U+0303: надстрочная тильда;
  • и т.д.
Существует даже такая экзотика, как языковые тэги (U+E0001, U+E0020–U+E007E, и U+E007F), которые сейчас находятся в подвешенном состоянии. Они задумывались как возможность маркировать определённые участки текста как относящиеся к тому или иному варианту языку (скажем американский и британский вариант английского), что могло влиять на детали отображения текста.

Что такое символ, чем отличается графемный кластер (читай: воспринимаемое как единое целое изображение символа) от юникод-символа и от кодового кванта мы расскажем в следующий раз.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер, по сравнению с UTF-8, сократится всего на 11Кб до 128Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:
  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Юникод-символы не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.






2024 © gtavrl.ru.