Схема шим модулятора на цифровой микросхеме. ШИМ и PWM - что это такое? Выходной сигнал с генератор треугольных импульсов


в идеале метод, использующий широтно-импульсную модуляцию (ШИМ), является ответом на поиски практически совершенного стабилизированно­го источника питания. Мы уже говорили, что в импульсном источнике ключ либо включен, либо выключен и управление осуществляется с нулевым рас­сеянием мощности, в отличие от линейного стабилизатора, где стабилиза­ция происходит из-за рассеяния мощности в проходном элементе. В реаль­ных условиях, широтно-импульсная модуляция дает разумный подход к переключению без потерь за счет более низкой частоты переключения, на­пример, в диапазоне 20 – 40 кГц. Глядя на ситуацию с другой стороны, может сказать, почему этот частотный диапазон так долго был популярен.

От самого начала стабилизации с помощью ШИМ, конструкторы пы­тались продвигаться в сторону более высоких частот, поскольку при этом можно уменьшить размеры, вес и стоимость магнитного сердечника и конденсаторов фильтра. При высокой частоте переключения появляются и другие преимущества. Используя более высокие частоты можно ожи­дать уменьшение радиопомех и электромагнитных шумов; можно ожи­дать меньших проблем при экранировке, развязке, изоляции и ограниче-

НИИ в схеме. Можно также ожидать более быстрого срабатывания, а так­же снижения выходного сопротивления и величины пульсаций.

Главным препятствием на пути применения более высоких частот были практические трудности создания быстрых и достаточно мощных переключателей. Из-за того, что невозможно достичь мгновенного включения и выключения коммутатора, на нем во время переключения имеется напряжение и одновременно через него протекает ток. Другими словами, трапецеидальные, а не прямоугольные колебания характеризу­ют процесс переключения. Это, в свою очередь, приводит к потерям пе­реключения, которые сводят на нет теоретически высокий к.п.д. идеаль­ного коммутатора, который мгновенно включается, имеет нулевое сопротивление во включенном состоянии и мгновенно выключается. На рис. 18.2 сравнивается ШИМ и режим переключения в резонансном ре­жиме, который будет рассмотрен подробнее.

Рис. 18.2. Осциллограммы, показывающие разницу между ШИМ и резонансным режимом. При ШИМ потери переключения появляются из-за одновременного протекания тока через коммутатор и наличия напряжения на нем. Обратите внимание, что эта ситуация отсутствует при резонансном режиме работы, который для стабилизации напря­жения использует частотную модуляцию (ЧМ).

Из вышесказанного очевидно, что на идеальном переключателе не дол­жно быть никакого падения напряжения во время включенного состояния. Все эти рассуждения говорят о том, что высокий к.п.д. был трудно дости­жимой задачей, особенно при высоких частотах переключения до тех пор, пока не был достигнут прогресс в создании импульсных полупроводнико­вых приборов. Следует указать также, что одновременно был необходим прогресс в создании других устройств, таких как диоды, трансформаторы и конденсаторы. Надо отдать должное работникам всех областей техники за то, что частота переключения при использовании широтно-импульсной модуляции была повышена до 500 кГц. Тем не менее, на высоких часто­тах, скажем на частоте 150 кГц, лучше рассмотреть другой метод. Итак, мы приходим к резонансному режиму работы источника питания.

Стабилизированный источник питания, использующий резонансный режим, действительно представляет собой большой скачок вперед в раз­витии технологии. Хотя надо сказать, что использование резонансных яв­лений в инверторах, преобразователях и источниках питания предшеству­ет эре полупроводников. Оказалось, что при использовании резонансных явлений часто удавалось получить хорошие результаты. Например, в пер­вых телевизорах необходимые высокие напряжения для кинескопа полу­чали с помощью радиочастотного источника питания. Это был работаю­щий на частоте от 150 до 300 кГц генератор синусоидальных колебаний на электронной лампе, в котором повышение переменного напряжения достигалось в резонансном радиочастотном трансформаторе. По суще­ству подобные схемы все еще используются для создания напряжений, по крайней мере, несколько сотен тысяч вольт для различных промышлен­ных и научно-исследовательских целей. Более высокие напряжения часто достигаются благодаря совместному применению резонансного режима работы и диодного умножителя напряжения.

Также давно было известно, что резонансные выходные цепи инвер­тора стабилизируют работу электродвигателей и сварочного оборудова­ния. Обычно в разрыв провода, ведущего от источника постоянного на­пряжения к инвертору, включалась катушка с большой индуктивностью. При этом инвертор ведет себя по отношению к нагрузке как источник тока, что дает возможность легче удовлетворить условию существования резонансных явлений. В этом случае существующие тиристорные инвер­торы правильнее назвать квазирезонансными - колебательный контур периодически подвергается ударному возбуждению, но непрерывные ко­лебания отсутствуют. Между импульсами возбуждения, колебательный контур отдает запасенную энергию в нагрузку. Примеры упоминавшихся схем приведены на рис. 18.3, 18.4 и 18.5.

Из сказанного выше должно бьггь ясно, что широкое использование ре­зонансного режима работы началось после создания специализированных ИС управления. Эти ИС освободили конструкторов от проблем со сбоями, кото­рые неизбежно сопутствуют стремлению использовать резонансный режим на частотах несколько сот килогерц ити несколько МГц, где малые размеры компонент могут дать заметное сокращение габаритов, веса и стоимости.

Рис. 18.3. Пример резонансного высоковольтного источника, работа­ющего в радиочастотном диапазоне. Это восстановленная старая схема использует электронные лампы в генераторе Мейснера. Рабочая частота определяется повышающей обмоткой Z1 и ее собственной распределенной емкостью. Никакой стабилизации частоты не предусматривается.

Рис. 18.4. Пример запускаемого током инвертора с резонансным кон­туром на выходе. Обратите внимание на присутствие катушки с боль­шой индуктивностью L в цепи питания и конденсатора, входящего в состав резонансного контура на выходе. Подобный метод применим и к инверторам с самовозбуждением. Эти схемы обычно не имеют стаби­лизации.

Рис. 18.5. Пример квази-резонансного инвертора с одним тиристором. Выбирая соответствующий тиристор, можно получить выходную мощность нескольких киловатт и частоту переключения около 30 кГц. Если частота пульсаций немного ниже резонансной частоты последо­вательного XС-контура, то на нагрузке будет хорошее синусоидальное напряжение. Стабилизация в схеме отсутствует. General Electric Semiconductor Products Dept.

Интересно, что резонансный стабилизатор напряжения имеет много общего с давно популярной схемой широтно-импульсной модуляции (ШИМ). Действительно, согласно структурной схеме, источник импуль­сов постоянной длительности и переменной частоты вместе с резонанс­ным «контуром» используется вместо схемы ШИМ. В процессе работы из-за наличия ZС-контура через коммутатор или протекает ток, или к нему приложено напряжение, имеющие форму отрезков синусоиды. Фор­ма сигналов при переключении, в отличие от высокочастотных ШИМ схем, такова, что никогда не бывает одновременного присутствия напря­жения на коммутаторе и протекания через него тока. Поэтому потери коммутации пренебрежимо малы даже при высоких частотах.

Рис. 18.6 иллюстрирует резонансный режим работы. Сигнал ошибки получен также, как в источниках питания с ШИМ, то есть как разность между выходным и опорным напряжениями. Это напряжение рассогла­сования поступает на генератор, управляемый напряжением, выходной сигнал которого запускает ждущий мультивибратор. Схема модуляции, по существу, является преобразователем напряжение – частота. Им­пульсы ждущего мультивибратора, имеющие фиксированную длитель­ность и переменную частоту повторения, поступают на вход коммутато-ра(ов). Часто на выходе ждущего мультивибратора включают усилитель мощности, чтобы обеспечить более высокое мгновенное значение тока и низкое сопротивление. В качестве коммутаторов обычно применяется один или два мощных МОП-транзистора.

Выход коммутатора(ов) связан с резонансным Z С-контуром и выход­ным трансформатором. Видно, что амплитуда почти синусоидального напряжения, приложенного к первичной обмотке трансформатора, зави­сит от близости резонансной частоты ZС-контура к величине, обратной фиксированной длительности импульсов переменной частоты, поступа­ющих от коммутатора. Таким образом, стабилизацию постоянного вы­ходного напряжения можно реализовать с помощью частотной модуля­ции. Слишком высокая добротность Z С-контура будет препятствовать выделению мощности, а очень низкая вызовет чрезмерно большие пи­ковые значения тока в коммутаторе.

Рис. 18.6. Упрощенная схема резонансного стабилизированного источ­ника питания. В первом приближении можно считать, что здесь вместо широтно-импульсного модулятора в популярном ШИМ стабилизаторе применен преобразователь напряжение – частота.

Резонансный режим может быть получен разными путями: можно использовать или последовательный, или параллельный L С-контур. А номинальная рабочая частота может быть как ниже, так и выше соб­ственной резонансной частоты Z С-контура. В любом случае стабилиза­ция требует работы на падающем участке резонансной кривой. На рис. 18.6, индуктивность первичной обмотки выходного трансформатора дос­таточно высока, так что практически не влияет на резонансную частоту Z С-контура.

Для того, чтобы избежать недоразумений из-за неаккуратных выска­зываний в технической литературе, хорошо бы вспомнить следующие факты, относящиеся к резонансным стабилизаторам:

В резонансном Z С-контуре колебания всегда происходят на его ре­зонансной частоте независимо от частоты импульсов, с помощью кото­рых осуществляется ударное возбуждение. Однако в большинстве случаев условия для существования свободных колебаний отсутствуют. На схему выпрямителя поступают полупериоды синусоидального колебания.

Одна из наиболее популярных схем использует последовательный резонансный контур, в котором выходную мощность получают от кон­денсатора через высокоомную первичную обмотку выходного трансфор­матора. Такой источник соответственно называется преобразователем или стабилизатором с последовательным резонансом и параллельной нагрузкой. К сожалению, иногда об этих устройствах говорят как о схемах с парал­лельным резонансом (рис. 18.7В).

В идеале существует два способа получения почти нулевых потерь при коммутации. Один с переключением при нулевом токе, который яв­ляется наиболее популярным и допускает работу с частотами около 2 МГц, а другой с переключением при нулевом напряжении, позволяющий работать на частоте до 10-МГц. Переключение при нулевом токе использует для ударного возбуждения контура импульсы постоянной длительности и переменной частотой повторения. Фиксированный интервал времени между импульсами используются в режиме переключения с нулевым на­пряжением.

Чаще всего (особенно при переключении с нулевым током) диапа­зон изменения частоты распространяется от низких частот до 80 % от ре­зонансной частоты контура. Это обеспечивает время, достаточное для того, чтобы ток катушки индуктивности уменьшился до нуля или стал от­рицательным. Импульс, определяющий время включенного состояния.

заканчивается, когда ток принимает отрицательное значение; момент его окончания не очень критичен. Отрицательный ток катушки индуктивнос­ти подразумевает, что ток теперь течет не через мощный МОП-транзис­тор, а через фиксирующий диод. Длительность импульса определяется RC-цепью, подключенной к управляющей ИС. Величины R и С удобно определять по графикам, предоставляемым изготовителем ИС. Типичные данные, иллюстрирующие выбор величины RC для определения длитель­ности импульса, а также частоты генератора показаны на рис. 18.8.

Рис. 18.8. Примеры графиков для определения параметров резонанс­ного стабилизированного источника. Эти кривые соответствуют ИС GP605, но типичны для схем других изготовителей. (А) Допустимые комбинации емкости и сопротивления в зависимости от максимальной частоты генератора. (В) Допустимая емкость в зависимости от минимальной частоты генератора. (С) Комбинация резистора и емкости для выбранной длительности импульса. В зависимости от того, имеем дело со схемой А или В, ЛС-цепи будут разными. Gennum Соф.

Надо быть уверенным, что «частота переключения» соответствует частоте, с которой импульсы поступают на резонансный контур. Не обя­зательно это частота генератора в управляющей ИС. В двухтактном им­пульсном источнике питания частота генератора будет вдвое выше часто­ты переключений. Для однотактных ИИП эти частоты обычно совпадают.

К переключению без потерь приближается источник, работающий в прерывистом режиме. Это просто означает, что на каждый импульс дол­жен быть только один период колебаний в Z С-контуре. Практически это требует наличия «мертвого времени» между завершением одного цикла колебания и появлением следующего импульса. Вот почему частота по­вторения импульсов не должна приближаться к резонансной частоте

LC-контура. Удоалетворсние этого требования приводит к некоторому уменьшению выходной мощности.

Стабилизация основана на том, что энергия, запасенная в? С-кон­туре максимальна, когда частота повторения импульсов, осуществляющих ударное возбуждение ZC-контура, близка к его резонансной частоте. От­клонение частоты импульсов от этого оптимального условия, приводит к тому, что будет получена меньшая мощность. Поскольку резонансная ча­стота остается постоянной, то для осуществления стабилизации изменя­ется упомянутое выше «мертвое время».

В резонансные источники питания часто вводят защиту по току, что делает их похожими на источники с ШИМ, имеющими такую защи­ту. Действительно, можно найти ссылку на работу резонансного источ­ника S режиме ограничения тока. Однако имеется существенное отличие. В системе с ШИМ учитывается нарастание тока, и ограничение макси­мального тока источника происходит в любой момент в пределах всего цикла. В резонансном источнике, учитывается часть синусоидального ко­лебания; это допускает ограничение максимального тока ИИП, но не мгновенно. 8 обоих случаях доспигается защита, но в резонансных ис­точниках не так быстро или точно, как в источниках с ШИМ, имеющих токовую защиту. В источниках с ШИМ слежение за величиной тока реа­лизует стабилизацию с прямой связью; в резонансных источниках считы-ватше величины тока приводит к использованию метода выключения.

Последнее, но самое существенное, коммутаторы в резонансных ИИП не испытывают одновременного воздействия напряжения и тока во время процесса переключения. Это приводит к высокому к.п.д. со значи­тельным уменьшением р^ассеиваемой мощности в коммутаторах, что в свою О’щ^едь ©сдабляет температурные ароблемы, сптеобствуя высокой плотности компоновки элементов.

Метод широтно-импульсной модуляции (ШИМ) является одним из наиболее эффективных, с точки зрения улучшения качества выходного напряжения АИН. Основная идея метода заключается в том, что кривая выходного напряжения формируется в виде серии высокочастотных импульсов, длительность которых изменяется (модулируется) по определенному закону, в большинстве случаев – синусоидальному. Частота следования импульсов называется несущей (или тактовой) частотой, а частота, с которой осуществляется изменение длительности импульсов, – частотой модуляции. Поскольку несущая частота обычно существенно выше частоты модуляции, то гармоники кратные несущей частоте, присутствующие в спектре выходного напряжения, относительно легко подавляются с помощью соответствующего фильтра.

В настоящее время известно достаточно много видов ШИМ, классифицируемых по различным признакам . Так, например, по виду импульсов выходного напряжения различают модуляцию однополярную и двуполярную. Простейшим примером двуполярной модуляции могут служить процессы, реализуемые в однофазной полумостовой схеме инвертора (рис. 4.9). Импульсы управления, подаваемые на базы силовых транзисторов, как показано на рисунке 4.9(б), формируются в результате сравнения модулирующего, низкочастотного напряжения с опорным напряжением пилообразной формы, частота которого и является несущей частотой.

Предположим, что система управления организована так, что если мгновенное значение опорного напряжения больше, чем величина модулирующего напряжения, то включается транзистор VT2 и на нагрузке формируется импульс положительной полярности, как показано на рисунке 4.9(в). Соответственно, если опорное напряжение становится меньше модулирующего напряжения, то транзистор VT2 выключается и включается транзистор VT1, что приводит к изменению полярности напряжения на нагрузке. При активно-индуктивном характере нагрузки изменение полярности выходного напряжения происходит за счет включения обратного диода VD1, через который замыкается ток нагрузки, поддерживаемый за счет эдс индуктивности L.


При изменении модулирующего напряжения происходит изменение длительности положительного и отрицательного импульсов выходного напряжения, соответственно, изменяется среднее значение напряжения за период несущей частоты.

Совокупность этих средних значений выходного напряжения и формирует гладкую составляющую, форма которой определяется модулирующим сигналом. Основным недостатком двуполярной модуляции является большая амплитуда первой гармоники несущей частоты.

При однополярной модуляции, как показано на рисунке 4.10, в кривой выходного напряжения в течение одной полуволны модулирующего сигнала формируются импульсы только одной полярности, а вместо импульсов напряжения противоположной полярности формируется интервал с нулевым напряжением (нулевая полочка). При этом, при изменении длительности импульсов напряжения, соответственно, изменяется длительность нулевой полочки таким образом, чтобы период несущей частоты оставался постоянным.

Однополярная модуляция может быть реализована в однофазной мостовой схеме АИН при условии, что одна пара силовых транзисторов, например, VT1 и VT4 переключаются с частотой сигнала модуляции, в моменты и т.д., а вторая пара транзисторов переключается с несущей частотой. Длительность управляющих импульсов формируется таким же образом, как и в предыдущем случае, в результате сравнения опорного напряжения и модулирующего сигнала. Формирование импульса на выходе инвертора, например, положительной полярности, обеспечивается при одновременном включении транзисторов VT1 и VT2. Поскольку транзистор VT2 переключается с высокой частотой, то при его выключении транзистор VT1 остается включенным, что приводит к замыканию тока нагрузки, запасенного в индуктивности, через транзистор VT1 и диод VD3. При этом на выходе инвертора напряжение равно сумме падений напряжения на транзисторе и диоде, т.е. близко к нулю. Аналогично создается нулевая полочка и при формировании отрицательной полуволны гладкой составляющей: при выключении транзистора VT3 ток нагрузки замыкается через транзистор VT4 и диод VD2. Таким образом, полярность гладкой составляющей выходного напряжения определяется включением транзисторов VT1 или VT4, а высокочастотное заполнение и, соответственно, форма гладкой составляющей - переключением транзисторов VT2 или VT3.

Основным преимуществом однополярной модуляции, по сравнению с двуполярной, является уменьшение амплитуд высокочастотных гармоник.

Следует отметить, что однополярная модуляция в некоторых схемах, например, в однофазной полумостовой, невозможна. В этом случае для реализации однополярной модуляции приходится использовать более сложные схемы, например, схему, показанную на рисунке 4.7.

По способу формирования длительности высокочастотных импульсов различают несколько родов широтно-импулсной модуляции, наиболее распространенными из которых является ШИМ первого и второго рода. При широтно-импульсной модуляции первого рода (ШИМ-1) длительность формируемого импульса пропорциональна значениям модулирующего сигнала, выбираемым в определенные, наперед заданные моменты времени. Принцип формирования длительности импульсов при ШИМ-1 проиллюстрирован на рис. 4.11(а).

Принцип формирования длительности импульсов при ШИМ-2 показан на рис. 4.11(б). В этом случае длительность импульса определяется значением модулирующего сигнала в момент окончания импульса.

По способу изменения длительности различают одностороннюю и двустороннюю модуляцию. Например, на рис. 4.9 показана одно-

сторонняя модуляция, так как при изменении модулирующего сигнала изменяется момент выработки только заднего фронта импульса. Соответственно, на рис. 4.10 показан пример двусторонней модуляции.

Отношение величины несущей частоты к частоте модулирующего сигнала называется кратностью несущей частоты. Кратность может быть как целым числом, так и дробным, причем в общем случае кратность может быть и иррациональной дробью. Кратность существенно влияет на спектральный состав выходного напряжения, причем при дробно-рациональных кратностях в спектре выходного напряжения появляются гармоники с частотой ниже частоты модулирующего сигнала . Такие гармоники называются субгармониками, и их амплитуды растут при уменьшении кратности несущей частоты, что может приводить к нарушению нормальной работы инвертора. Для подавления субгармоник следует увеличивать кратность несущей частоты, однако при этом неизбежно увеличиваются коммутационные потери в силовых приборах инвертора.

Полезная составляющая выходного напряжения определяется формой гладкой составляющей, которая в свою очередь зависит от формы модулирующего сигнала или, как это принято называть, от закона модуляции. В настоящее время чаще всего используется модуляция по синусоидальному, трапецеидальному или прямоугольному закону. В частности, рассмотренный выше способ широтно-импульсного регулирования на несущей частоте является ничем иным, как применением ШИМ по прямоугольному закону.

  • Назад
  • Вперёд

Случайные новости

3.2. Алгебраические критерии стойкости

Один из первых критериев стойкости был выявленный профессором Й. А. Вишнеградским и приведенный им в роботах " О регуляторах прямой действия" и " О регуляторах косвенного действия". Критерий сформулирован для процессов, описываемых дифференциальными уравнениями третьего порядка, характеристическое уравнение которых приведено к виду: .

Рисунок 3.4 - Диаграмма, которая определяет область стойкости систем, описываемых уравнениями 3-го порядка. (Диаграмма Вишнеградского)

Если ввести обозначение и, то за Вишнеградским, для того чтобы система была стойкой необходимо, чтобы, или. На рисунке 3.4 в координатах X и Υ нанесенная гипербола ΧΥ =1, что дает границу стойкости системы. Линия между области стойкости обычно штрихуется, так что по штриховке без дополнительных объяснений можно увидеть области стойкости.

На диаграмме рисунку 3.4 нанесенная и линия границы аппериодичности, обусловленная условием с лицом точкой при значениях Х=Υ=3.

Изложенный выше критерий стойкости Вишнеградского является отдельным случаем критерия стойкости Рауса-Гурвица. Этот критерий может быть сформулирован так, в форме, предложенной Гурвицем: если система описывается линейным дифференциальным уравнением, характеристическое уравнение которого:

то для того, чтобы она была стойка, то есть чтобы все действительные корни и действительные части комплексных корней характеристического уравнения были бы отрицательные, необходимо и довольно, чтобы все коэффициенты уравнения имели бы один и тот же знак, а диагональный детерминант порядка n-1, составленный из коэффициентов уравнения, и все его диагональные миноры были бы положительными:

Диагональный детерминант составляется так:

Таким образом, для того чтобы система была стойка, нужно чтобы все коэффициенты имели одинаковый знак и все детерминанты были больше 0.

Порядок составления диагональных миноров можно разобрать на примере уравнения пятой степени:

Тогда получаем:

Для уравнения третьего порядка:

А также и.

Отметим, что при и имеем условий стойкости Вышеградского

Как критерий Вишнеградского, так и критерий Рауса-Гурвица определяют стойкость системы за коэффициентами характеристического уравнения и носят название алгебраические критерии стойкости. Рассмотрим некоторые примеры исследования стойкости с помощью критерия Рауса-Гурвица.

Пример 1. Характеристическое уравнение системы

Для этого:

Как и все коэффициенты этого уравнения больше нуля, так и детерминант есть также больше нуля – система стойкая.

Хорошее определение широтно-импульсной модуляции (ШИМ) заключается в самом его названии. Это означает модуляция (изменение) ширины импульса (не частоты). Чтобы лучше понять что такое ШИМ , давайте сначала посмотрим некоторые основные моменты.

Микроконтроллеры представляют собой интеллектуальные цифровые компоненты которые работают на основе бинарных сигналов. Лучшее представление бинарного сигнала – меандр (сигнал имеющий прямоугольную форму). Следующая схема объясняет основные термины, связанные с прямоугольным сигналом.

В ШИМ-сигнале время (период), и следовательно частота является всегда постоянной величиной. Изменяется только время включения и время выключения импульса (скважность). Используя данный метод модуляции, мы можем получить необходимое нам напряжение.

Единственное различие между меандром и ШИМ-сигналом заключается в том, что у меандра время включения и отключения равны и постоянны (50% скважность), в то время как ШИМ-сигнал имеет переменную скважность.

Меандр может рассматриваться как частный случай ШИМ сигнала, который имеет 50% рабочий цикл (период включения = период отключения).

Рассмотрим на примере использование ШИМ

Допустим, мы имеим напряжение питания 50 вольт и нам необходимо запитать какую-либо нагрузку, работающую от 40 вольт. В этом случае хороший способ получения 40В из 50В — это использовать так называемый понижающий чоппер (прерыватель).

ШИМ сигнал, генерируемый чеппером, поступает на силовой узел схемы (тиристор, полевой транзистор), который в свою очередь управляет нагрузкой. Этот ШИМ-сигнал может легко генерироваться микроконтроллером, имеющим таймер.

Требования к ШИМ-сигналу для получения с помощью тиристора 40В из 50В: подача питания, на время = 400мс и выключение на время = 100мс (с учетом периода ШИМ сигнала равного 500 мс).

В общих словах это можно легко объяснить следующим образом: в основном, тиристор работает как переключатель. Нагрузка получает напряжение питания от источника через тиристор. Когда тиристор находится в выключенном состоянии, нагрузка не подключена к источнику, а когда тиристор находится в открытом состоянии, нагрузка подключается к источнику.

Этот процесс включения и выключения тиристора осуществляется посредством ШИМ сигнала.

Соотношение периода ШИМ-сигнала к его длительности называется скважность сигнала, а обратная к скважности величина именуется коэффициентом заполнения.

Если коэффициент заполнения равен 100, то в этом случае у нас сигнал постоянный.

Таким образом, скважность импульсов (рабочий цикл) может быть вычислен с использованием следующей формулы:

Используя выше приведенные формулы, мы можем рассчитать время включения тиристора для получения необходимого нам напряжения.

Умножая скважность импульсов на 100, мы можем представить это в процентном соотношении. Таким образом, процент скважность импульсов прямо пропорционален величине напряжения от исходного. В приведенном выше примере, если мы хотим получить 40 вольт от 50 вольт источника питания, то это может быть достигнуто путем генерации сигнала со скважность 80%. Поскольку 80% из 50 вместо 40.

Для закрепления материала, решим следующую задачу:

  • рассчитаем длительность включения и выключения сигнала, имеющего частоту 50 Гц и скважность 60%.

Полученный ШИМ волны будет иметь следующий вид:

Один из лучших примеров применения широтно-импульсной модуляции является использование ШИМ для регулировки скорости двигателя или яркости свечения светодиода.

Этот прием изменения ширины импульса, чтобы получить необходимый рабочий цикл называется “широтно-импульсная модуляция”.

Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Система полумост с ШИМ

Блок схема показана ниже:

Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.

В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики , что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.

Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до I max .

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:

Данная схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5U пит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.

Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).

Полный мост с дросселем рассеивания

Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. , при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат - использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат - значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы - доступность и простота элементов. Недостатки - сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно - делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь - опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.







2024 © gtavrl.ru.