Простой аудио передатчик. Схемы мощных радиопередатчиков Радиопередатчик из радиоприёмника


Радиопередающие устройства (рис. 13.1 — 13.5) могут быть получены путем простого объединения усилителя (или генератора) низкой частоты (УНЧ, ГНЧ) и генератора высокой частоты (ГВЧ).

Блок-схема передатчика с амплитудной модуляцией (AM), которую используют преимущественно в диапазонах длинных, средних и коротких волн, приведена на рис. 13.1. Выходной сигнал звуковой частоты, вырабатываемый УНЧ или ГНЧ, выделяется на сопротивлении нагрузки Rh, которое включено в цепь питания схемы ГВЧ . Поскольку напряжение питания генератора ВЧ изменяется пропорционально сигналу звуковой частоты, амплитуда высокочастотного сигнала модулируется. В качестве ГВЧ может быть использован генератор, показанный на рис. 13.6. Точки А, В, С, D на схеме генератора соответствуют точкам его подключения на блок-схемах (рис. 13.1 — 13.5).

Один из способов получения амплитудной модуляции сигнала с использованием низкочастотного дросселя или обмотки выходного низкочастотного трансформатора показан на рис. 13.2. Использование индуктивностей, сопротивление которых переменному току возрастает с ростом частоты, позволяет увеличить глубину модуляции. Кроме того, повышается амплитуда высших частот звукового диапазона, что заметно повышает разборчивость сигнала при приеме.

При частотной модуляции (ЧМ), используемой обычно в диапазоне ультракоротких волн, осуществляется изменение частоты высокочастотного сигнала. Для получения частотно-мо-дулированного сигнала могут быть использованы схемы, представленные на рис. 13.3 и 13.4. В схеме передатчика (рис. 13.3) частотная модуляция высокочастотного сигнала происходит путем подачи сигнала звуковой частоты через конденсатор относительно небольшой емкости на базу или эмиттер транзистора ГВЧ. При этом изменяются межэлектродные емкости активного элемента (транзистора), и, следовательно, модулируется резонансная частота колебательного контура, определяющая частоту генерации. Строго говоря, при таком виде подачи модулирующего напряжения одновременно осуществляется и неглубокая амплитудная модуляция, поскольку напряжение на базе (или эмиттере) также изменяется пропорционально модулирующему сигналу.

Частотную модуляцию «в чистом виде» можно получить, используя свойство варикапа, либо его аналога, изменять свою емкость от величины приложенного напряжения (рис. 13.4). В этой схеме включение/выключение модуляции осуществляется переключателем SA1. Потенциометр RA предназначен для проверки частотных границ перестройки генератора.

Амплитудную модуляцию высокочастотного сигнала можно получить, если включить ГВЧ вместо сопротивления нагрузки УНЧ (ГНЧ) (рис. 13.5). Конденсатор С предназначен для заземления по высокой частоте цепи питания ГВЧ.

Помимо амплитудной и частотной модуляции сигнала для передачи данных, организации радиосвязи, довольно часто используют однополосную, реже фазовую и другие виды модуляции.

На рис. 13.7 — 13.16 приведены практические схемы микро-передающихустройств, работающих в УКВ-ЧМдиапазоне (66...74 или 88... 108 МГц). Мощность этих передатчиков невелика (от долей до единиц мВт), поэтому их излучение не мешает радио- и телевизионному приему. Расстояние, на котором можно обнаружить сигналы таких устройств (рис. 13.7 — 13.16), обычно не превышает нескольких метров. Заметим, что мощность гетеродинов — генераторов высокой частоты, используемых в любом радиоприемнике или телевизоре, зачастую превышает единицы мВт.

В конструкциях по рис. 13.7 — 13.10 и 13.12 использованы электретные микрофоны типа МКЭ-333 либо МКЭ-332, а также МКЭ-3, которые содержат встроенный предусилитель на полевом транзисторе. Вместо электретного микрофона может быть использован электромагнитный телефонный капсюль, подключаемый между точкой А и общим проводом (рис. 13.7, 13.9, 13.10 и 13.12) или шиной питания (рис. 13.8). В этом случае резистор R1 не обязателен. При замене микрофона амплитуда сигнала может снизиться, поэтому для увеличения усиления по НЧ желательно использовать составной транзистор, либо применять более чувствительный УНЧ (см. главы 4 и 5). В большинстве случаев (рис. 13.7 — 13.10 и 13.12) электретный микрофон можно заменить миниатюрным угольным (с подбором резистора R1).

Схема радиомикрофона конструкции Д. Волонцевича показана на рис. 13.7 [Рл 10/99-40]. При напряжении питания 3 В устройство потребляет ток 7 мА. Катушки индуктивности намотаны на оправке диаметром 6 мм проводом /73/7-0,5. L1 имеет 6 витков, a L2 — 4 витка. В качестве антенны использован отрезок монтажного провода длиной 70 см.

УКВ-радиомикрофон А. Иванова, как две капли воды напоминает предыдущую конструкцию (рис. 13.7) [Рл 10/99-40]. Отличие заключается в том, что схема (рис. 13.8) как бы «перевернута» вверх ногами. Такое непривычное расположение рядом почти аналогичных схем позволяет приучить взгляд на «опознание» подобных друг другу конструкций. Схемы рис. 13.7 и 13.8 различаются в «электрическом» отношении способом подачи модулирующего напряжения: в первом случае оно подается на базу транзистора генератора; во втором — на эмиттер. Катушка индуктивности содержит 7 витков провода ПЭВ 0,7...0,8 мм и имеет внутренний диаметр 5 мм. Потребляемый устройством ток составляет 15...20 мА.

На рис. 13.9 дана схема радиомикрофона диапазона 66...74 МГц, в базовую цепь смещения которого в качестве управляемого резистора включен электретный микрофон [Рл 2/97-13]. Антенной является отрезок гибкого многожильного провода длиной 20...40 см. Потребляемый устройством ток около 1 мА.

Каскодное включение транзисторов использовано в схеме на рис. 13.10 [Рл 2/97-13]. При этом для сигналов низкой частоты нагрузкой транзистора VT2 является ВЧ генератор, выполненный на транзисторе VT1. В свою очередь, ток высокой частоты в эмит-терной цепи транзистора VT1 модулируется сигналом с каскада усиления низкочастотных сигналов, снимаемых с микрофона.

На рис. 13.11 приведена схема микропередатчика УКВ-ЧМ диапазона конструкции В. Иванова [Р 10/96-19]. Передатчик способен транслировать сигнал, снимаемый с УНЧ электропроигрывателя, магнитофона и других устройств. Амплитуда НЧ сигнала на входе в пределах 10...500 мВ. Катушка И без каркаса, имеет внутренний диаметр 4 мм и содержит 15 витков провода ПЭВ 0,5. Катушка L2 намотана поверх резистора R3 (МЛТ-0,5) и содержит 50... 100 витков тонкого изолированного провода.

На рис. 13.12 и 13.14 приведены практические схемы микропередатчиков на аналоге лямбда-диода. В качестве управляемого элемента использован прямосмещенный переход полупроводникового диода (светодиода). Частотная модуляция осуществляется за счет изменения его динамического сопротивления. Для высокочастотной составляющей емкостное сопротивление светодиода много ниже его омического сопротивления. Одновременно с выполнением функции управления частотой генерации, светодиод индицирует включенное состояние устройства и стабилизирует его рабочую точку.

Для осуществления частотной модуляции в схеме (рис. 13.14) использован самодельный конденсаторный микрофон. Он выполнен в виде развернутого конденсатора с двумя плоскими неподвижными электродами, параллельно которым закреплена мембрана (тонкая фольга, металлизированная диэлектрическая пленка и т.п.), электрически изолированная от неподвижных электродов. Микрофон может быть собран в рамке фотослайда; его емкость составляет несколько пикофарад.

Для сравнения на рис. 13.13 приведена схема наипростейшего микропередающего устройства, выполненного на туннельном диоде со стабилизатором рабочей точки на германиевом диоде VD1 [Рл 9/91-22, 10/97-17]. Конструкция микрофона, аналогичная описанной выше, может быть использована в схеме на рис. 13.15. Параметры катушек индуктивности (колебательных контуров) могут быть перенесены с одной конструкции на другую.

В схемах (рис. 13.9, 13.10, 13.13, 13.15) для УКВ диапазона (66...74 МГц) использованы бескаркасные катушки индуктивности, имеющие внутренний диаметр 4 мм и содержащие 5...6 витков провода ПЭВ-2 диаметром 0,56 мм. Шаг намотки 1,5 мм. Рабочая частота генерации устанавливается сближением/раз-движением витков катушки, подбором числа и диаметра ее витков, а также емкости конденсатора колебательного контура. Корпус электретного микрофона соединен с общим проводом. Прием высокочастотных сигналов возможен на портативный ЧМ-приемник.

Для создания видеопередатчика (беспроводной передачи видеосигнала с видеомагнитофона на телевизор) может быть использована схема Г. Романа [Рл 3/99-8]. Колебательный контур L1C2 (рис. 13.16) настраивают на частоту одного из свободных от телевизионного вещания каналов.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

ФМ ПЕРЕДАТЧИК

Всего за пару дней собрал себе очередное интересное устройство "Fm transmitter". Идея ФМ передатчика висела очень давно, но как то всё руки не доходили до изготовления. Задача стояла слушать Московские ФМ станции, которые транслируются со спутника. При этом не гонять телевизор, а принимать либо музыкальным центром, либо мобильным телефоном.

Над корпусом особо долго не думал - готовая пластиковая коробочка, да и цена копеечная. Всю конструкцию закрыл экраном из луженной латуни толщиной 0,3 мм. Экран просто припаян к плате.

Плата двух сторонняя, монтаж полностью с одной стороны, вторая экран, Дополнительно минусовые дорожки припаяны к экрану

Схема ФМ передатчика представляет обычную емкостную трехточку, звуковой сигнал модулируется варикапом КВ109, и далее с генератора идёт на усилитель мощности. Всё на распространённых высокочастотных транзисторах 9018. Дросселя мотаем на резисторах МЛТ-0.25 по 30-60 витков провода 0,1 мм.

Размер платы ФМ передатчика получился 30х50мм. Здесь можно скачать рисунки плат с оригинальной в архиве.

Сложностей в настройке не было, схема трансмиттера запустилась сразу. Единственно что подбиралось - это две ёмкости для поднятия звукового частотного диапазона и шунтирующая емкость в генераторе, с целью подавить гармоники.

При испытании передатчика ФМ был приятно удивлен работой - звук кристально чистый, особо порадовали глубокие низа. Прямо скажу бархатные получились басы. При этом никаких намеков на фон, короче как обычная ФМ станция, но только в монорежиме. Питается ФМ передатчик от самого ресивера - у него сзади есть выход 12 вольт под разъём типа тюльпан, а в меню есть пункт вкл/выкл 12 В. Ток потребления схемы примерно 25 мА. Схему предоставил -igRoman-

Схема питается от батарейки типа крона на 9 вольт. Катушка L1 содержит семь витк. медного провода на оправке 4 миллиметра. Витки чуть растягивают и сжимают, для настройки частоты передатчика. Фактический диапазон этой конструкции от 80 МГц до 120 МГц. Антенна просто кусок проволоки 50-100 см. На аудиовход поступает аналоговый сигнал с микрофона, далее он следует УНЧ на базе транзистора. Выход с коллектора подключен к второму транзистору. Схема настраивается легко, поэтому и рекомендована для начинающих.

Схема этого радио жучка настолько простая, что начинает работать сразу, если вы конечно ничего не попутали. Катушка изготавливается на оправке диаметром 0,5 сантиметра и сотоит из пяти витк. обмоточного провода диаметром 0.5 миллим. Наcройка радиопередатчика заключается в растяжение или сжатии катушки индуктивности. Работает жучек в стандартном FM диапазоне 88-108 мГц.

Антенной является отрезок многожильного монтажного провода длинною 50 сантиметров. Радимикрофон подойдет практически любой. Транзистор КТ368, но можно использовать КТ3102, КТ315 и многие другие смотри .

С помощью этой схемы можно транслировать музыку с телефона или МП3 плеера на радиоприемник соседей, для этого исключаем микрофон и подключаем через подстроечный резистор аудиовыход плеера, превращая эту схему в FM-модулятор.

Радиопередатчик на FM диапазон

Работа схемы радиопередатчика основана на модуляции генератора FM диапазона сигналом звукового диапазона.

Генератор FM диапазона выполнен на третьем транзисторе. Его рабочая точка задается при помощи делителя на сопротивлениях R10 и R11. В коллекторной цепи этого транзистора имеется контур катушки L1. На емкостях C4 и C5 выполнен емкостный делитель, который задает амплитуду и форму модулируемого сигнала. Собственно модуляция частоты осуществляется варикапом BB105B. Сопротивления R7 и R8 делитель напряжения, сигнал с них подается на варикап.

Антенна радиопередатчика сделана из посеребренного провода диаметром 0,6 миллим., который намотан на бумажную гильзу диаметром 0,7 см. Количество витк. - 38. Катушка L1 состоит из пяти вит. медного провода диаметром 0,8 миллим. Катушка изготавливается на бумажной гильзе диаметром 0,7 миллим. с шагом 1,25. Отводы от первого и второго витка.

Следующей к рассмотрению предлагаю схему миниатюрного радиопередатчика на туннельном диоде

Основа этой схемы - высокочастотный,генератора выполненный на туннельном диоде. Туннельный диод подбирается с током потребления не более 10-15 мА (например можно использовать АИ201А). Генератор стабильно работает при напряжении источника питания от 1 В и выше при правильном выборе рабочей точки с помощью переменного резистора R2. Дроссель Др1 наматывается непосредственно на резисторе МЛТ 0.25 и содержит приблизительно 200-300 витк. проводом ПЭВ 0.1. Для профилактики наматываемый провод лучше смазать клеем. Индуктивность дросселя должна получится около 100-200 мкГн. Катушка колебательного контура бескаркасная диаметром 0,8 см и содержит семь витк. провода ПЗВ-1,0 длиной намотки 1,3 сантиметра. Катушка связи L2 тоже бескаркасная, но намотана проводом ПЭВ 0,35 миллим, 3 витка, диаметр катушки 2,5 миллим., длина намотки - 0,4 см. Катушку L2 засовывают внутрь катушки колебательного контура L1. Настройка радиопередатчика сводится к установке рабочей точки туннельного диода путем подстройки подстроечного резистора R2 до появления устойчивой генерации и подстройке частоты колебаний конденсатором С4.

В качестве антенны можно использовать кусок провода длиной примерно в четверть длины волны. Глубину модуляции меняют изменением сопротивления резистора R1. Сигнал от этого радио передатчика принимают на обычный телевизор. Для минимизации конструкции радиомикрофон лучше взять малогабаритный, и подключить его непосредственно в высокочастотного генератора.

Возможный вариант схема такого радиопередатчика представлена на втором рисунке. В ней используется конденсаторный микрофон который представляет из себя развернутый конденсатор с двумя плоскими неподвижными электродами, параллельно которым крепится мембрана, она может быть сделана из тонкой фольги или металлизированной диэлектрической пленки.

Мембрана должна быть электрически изолированная от неподвижных электродов. Выступая элементом контура, конденсаторный микрофон осуществляет частотную модуляцию. Мощность излучения самодельных радиомикрофонов составляет доли единиц мВт. И поэтому радиус действия их максимум десятки метров.

Работа схемы: модулирующее напряжение снимается с микрофона МКЭ-3 или анологичного и через конденсатор С1 подается на базу транзистора. На VT1 построен задающий генератор. Изменяющее напряжение смешения на эмиттерном переходе, меняет емкость цепи база-эмиттер, которая является частью колебательного контура задающего генератора. Вот так проста в этой схеме происходит частотная модуляция радиопередатчика.

Конденсатор С4 включен в цель обратной связи емкостной трехточки, являясь одним из плеч делителя С6а-С4, с которого и снимается напряжение обратной связи. Емкость конденсатора С4 дает возможность регулировать уровень возбуждения. Чтоб избежать влияния шунтирующего резистора R2 в цепи эмиттерной цепи транзистора на колебательный контур, последовательно с резистором R2 включен дроссель Др1, который препятствует прохождение токов высокой частоты. Индуктивность его 20 мкГн.

Катушка индуктивности L1 содержит 7 витков провода ПЭВ 0,35, бескаркасная, диаметром 0,3 см. VT1- КТ368, хотя можно использовать КТ3102

Радиопередатчик с питанием от миниатюрной батареи схема


Задающий генератор выполнен на транзисторе VT1 типа КТ368, резистором R1 устанавливается режим его работы. Частота колебаний задаем колебательным контуром L1- С3 и емкость эмиттерного перехода транзистора, в коллекторной цепи транзистора нагрузкой является другой колебательный контур L2 - С6, С7. Конденсатором С5 можно задавать уровень возбуждения генератора. Изменение емкости эмиттерного перехода от колебаний микрофона меняет резонансную частоту колебательного контура, и появляется частотная модуляция.

Конденсатор С1 предназначен для фильтрации колебаний высокой частоты, а С7 можно изменять значение несущей частоты. С8 - уменьшает влияние возмущающих факторов на частоту колебаний генератора

Антенну можно сделать из отрезка медного провода длиной 60 см. Длину антенны можно уменьшить, если между ней и конденсатором С8, подключить дополнительную удлинительную катушку L3. Все катушки в этой схеме миниатюрного радиопередатчика бескаркасные, диаметром 2,5 и намотаны виток к витку. Катушка L1 имеет 8 витк., катушка L2 - 6 витк., катушка L3 - 15 витк. провода ПЭВ 0,3.

При наладке конструкции нужно получить максимальный сигнал высокой частоты, изменяя индуктивность катушек L1 и L2. Подбором конденсатора С7 можно немного изменять величину несущей частоты.

Эта схема всего лишь однокаскадного УКВ ЧМ передатчика, работающего в стандартном диапазоне ФМ1. Выходная мощность этой схемы примерно 20 мВт, что позволяет ретранслировать сигнал на 150 м. Устройство способно уверенно работать при напряжения питания 4-5 В, но при этом падает дальность передачи.

Усиленное напряжение низкой частоты с транзистора VT1 проходит на варикап VD2 - КВ409А. Варикап VD1 включен последовательно с подстроечным конденсатором С8 в эмиттерную цепь транзистора VТ2. Частота колебаний задающего генератора на VT2 типа КТ368, задается колебательным контуром L1, С6, С7 и емкостью С8 и VD1.

Катушка L1 бескаркасная, диаметром 8 миллиметра, содержит 6 витк. провода ПЭВ 0,8. Радиопередатчик настраивают сжатием или растяжением витков L1 или подстройкой конденсатора С8.

Схема обеспечивает дальность передачи на растояние около 100 м. Радио передающее устройство состоит из генератора ВЧ на транзисторе VТ2 типа КТ315, и однокаскадного УНЧ на транзисторе VT1 типа КТ315. Вместо устаревших транзисторов КТ315 лучше применять КТ3102. Катушка L1 намотана на каркас диаметром 0,7 сантиметра и имеет подстроенный сердечник из феррита 600НН длиной 12 миллиметра и содержит 8 витк. ПЭВ 0.15. Намотка - виток к витку.

Дроссель Др1 намотан на резисторе МТЛ-0,5 сопротивлением от 100 кОм. Обмотка дросселя содержит 80 витков ПЭВ 0,1. После регулировки передатчика подстроечный сердечник катушки заливается парафином.

Радиопередатчик состоит из однокаскадного усилителя УНЧ и однокаскадного генератора ВЧ. Частота несущей определяется параметрами С4, L1, С5 и емкостью перехода VT2. Модулирующий усилитель собран на VT1 типа КТ315.

Сигнал с генератора поступает в антенну, которая сделана из отрезка монтажного провода длиной 10 см. Катушка L1 бескаркасная, намотана на оправке диаметром 3 мм и содержит 4 витка провода ПЭВ 0,6 мм, шаг намотки 2 миллиметра. Дальность передачи около 50-70 метров на диапазон ФМ 2.

Радиопередатчик ЧМ на диапазон FM1 и FM2

Работа схемы : Низкочастотные колебания с микрофона M1 через конденсатор С1 поступают на УНЧ на транзисторе VT1 типа КТ315. Усиленный сигнал через дроссель Др1 воздействует на варикап VD1 типа КВ109А, осуществляющий частотную модуляцию радиосигнала. Генератор ВЧ собран на транзисторе VT2 - КТ315. Частота его зависит от колебательного контура L1, С3, С4, С5, С6, VD1.

Сигнал ВЧ усиливается усилителем мощности на транзисторе VT3 типа КТ361. Он о гальванически связан с задающим генератором. Усиленный ВЧ сигнал поступает на П-образный контур, на элементах С11, L2, С10.

Вместо варикапа VD1 типа КВ109А можно использовать КВ102. Транзисторы могут иметь любой буквенный индекс. Транзисторы VT1 и VT2 можно заменить на КТ3102, КТ368, а транзистор VT3 - на КТ326, КТ3107, КТ363.

Дроссели Др1 и Др2 намотаны на резисторах МЛТ 0,25 сопротивлением более 100 кОм проводом ПЭВ 0,1 по 60 витков каждый. Катушки L1 и L2 бескаркасные, диаметром 5 мм. Катушка L1 - 3 витка, катушка L2 - 13 витков провода ПЭВ 0.3.

Настройка заключается в установке частоты задающего генератора, изменением емкости подстроечного конденсатора. Растяжением или сжатием витков катушки L2 настраиваем радиомикрофон на максимальную мощность. Дальность передачи может достигать 150-200 метров.

Радиопередатчик с компактной рамочной антенной

Эта самодельная радиопередающая конструкция расчитана на первый ФМ диапазон 65-73 МГц с частотной модуляцией. Частотная модуляция происходит за счет изменения емкости диодов VD1, VD2 под воздействием модулирующего напряжения

Усиленный сигнал попадает в рамочную антенну, которая сделана в виде спирали с длиной медного провода составляла 100 см, диаметр провода не менее 1 мм.

Радиопередатчик используемые компоненты в схеме: Дроссели Др1, Др2 - любые, с индуктивностью около 30 мкГн. Катушки L1, L2, L3, L4, L5 - бескаркасные, диаметром 10 мм. Катушка L1 имеет 7 витков. L2 и L4 - по 4 витка. L3 и L5 - по 9 витков. Все катушки намотаны проводом ПЭВ 0.8 мм

При этих параметрах, и благодаря рамочной антенне дальность действия схемы подслушивающего устройства достигает 150 метров.

Для питания этого передатчика подойдет любой блок питания с напряжением от 5 до 15 вольт. В этой схеме задающий генератор собран на полевом транзисторе VT2 типа КП303. с частотой определяемой элементами L1, С5, С3, VD2. ЧМ происходит, во время подачи модулирующего напряжения ЗЧ на варикап VD2 типа КВ109. Рабочая точка варикапа задается резистором R2. Режим работы схемы усилителя определяет резистор R4.

Дроссели Др1 и Др2 - любые с индуктивностью 10-150 мГн. L1 и L2 наматываются на каркасы диаметром 5 мм с подстроенными сердечниками. Количество витков - 3.5 с отводом от середины, шаг намотки 1 мм, провод ПЭВ 0.5 мм.

Наладка радиомикрофона осуществляется установкой требуемой частоты генератора конденсатором С5 и получения максимальной мощности с помощью резистора R4 и конденсатора С10

Мощный радиопередатчик с ЧМ на стандартный ФМ диапазон при использовании штыревой антенны радиус действия возрастает до километра. Сигнал от микрофона М1 идет на двухкаскадный УНЧ выполненный на транзисторах VT1, VT2 типа КТ315. Рабочая точка УНЧ устанавливается через R5, R6, С3. Усиленный низкочастотный сигнал с коллекторного перехода транзистора VT2 проходит на варикап VD1 типа KB109, включенный в эмиттерную цепь транзистора VT3 типа КТ904. На котором собран однокаскадный ВЧ генератор. К его коллектору подключен контур С8, С9, L1. Частота настройки генератора регулируется индуктивностью катушки L1 и емкостями С8, С5, VB1. Конденсатор С9 в схеме задает глубину обратной связи, а С10 согласует контур с внешней антенной.

Дроссель Др1 типа ДПМ 0.1 на 60 мкГн. Катушка L1 бескаркасная, с внутренним диаметром 8 мм, имеет 7 витков провода ПЭВ 0.8 мм.

Сигнал с подслушивающего устройства можно поймать на любой УКВ приемник. Напряжение питания 9 В (батарейка типа КРОНА). Схема состоит из широко доступных и недорогих радио элементов.

Схема подслушки состоит из трех частей, первая часть микрофонный усилитель на транзисторе VT1, вторая - генератор ВЧ построена на VT2 и третья часть усилитель ВЧ на третьем транзисторе сигнал с которого идет на антенну.


Индуктивность L1 состоит из 4 витков медного провода диаметром 0,8 мм, катушка имеет длину около 15 мм и диаметр 4. Катушка L2 состоит из 6 витков медного провода - 0,8 мм, диаметр катушки 4 мм. Антенна выполнена из медного проводника D=0,8 мм, длиной не менее 75 см. Колебательный контур С6L1 устанавливается на рабочую частоту подслушивающего устройства, а контур С9L2 на максимальный диапазон.


РАДИОПЕРЕДАТЧИК НА 600 МЕТРОВ

При использовании компактной антенны это устройство обеспечивает дальность связи около 100 метров, а при использовании полноразмерной штыревой антенны - более 600 метров. Схема передатчика приведена на рис.

Сигнал от микрофона поступает на усилитель низкой частоты (транзисторы VT1, VT2) c непосредственными связями. Усиленный сигнал через фильтр R9, C4, R10 подается на варикап VD1 типа КВ109, включенный в эмиттерную цепь транзистора VT3 типа КТ904. Напряжение смещения варикапа задается коллекторным напряжением транзистора VT2. Генератор ВЧ выполнен по схеме общей базы. В коллекторной цепи транзистора VT3 включен контур C8, C9, L1. Частота настройки определяется индуктивностью катушки и емкостями C8, C5, VD1. Конденсатор С9 устанавливает глубину обратной связи, а С10 - согласование с антенной. Дроссель любого типа индуктивностью около 60 мкГн. Катушка L1 - бескаркасная, с внутренним диаметром 8 мм, имеет 7 витков провода ПЭВ 0,8 мм. Длина полной антенны 0,75...1 метр. Мощность передатчика около 200 мВт. Если такая мощность не нужна, можно понизить ее, применив резистор R2 сопротивлением 50..100 кОм и заменив дроссель резистором сопротивлением около 300 Ом. Транзистор при этом можно заменить на КТ368. Стабильность частоты маломощного передатчика выше, и увеличивается срок службы батарей.

Радиопередатчик повышенной мощности без дополнительного усилителя мощности

От предыдущих устройств предлагаемый радиопередатчик отличается конструкцией задающего генератора, позволяющей получить по¬вышенную мощность излучения без использования дополнительного усилителя мощности. Радиопередатчик (рис.1) работает на частоте 27-28 МГц с амплитудной модуляцией. Частота несущей стабилизирована кварцем, что позволяет увеличить дальность связи при использовании приемника с кварцевой стабилизацией частоты. Питается устройство от источника питания напряжением 3-4,5 В. Усилитель звуковой частоты выполнен на транзисторе VT1 типа КТ315. Для питания микрофона и задания режимов по постоянному току транзисторов VT1, VT2, VT3 используется параметрический ста¬билизатор напряжения на резисторе R2, светодиоде VD1 и конденса¬торе С1. Напряжение 1,2 В поступает на электретный микрофон с усилителем Ml типа МКЭ-3, "Сосна" и др. Напряжение звуковой час¬тоты с микрофона Ml через конденсатор С2 поступает на базу тран¬зистора VT1. Режим работы этого транзистора по постоянному току задается резистором R1. Усиленный сигнал звуковой частоты, снимае¬мый с коллекторной нагрузки транзистора VT1 - резистора R3, через конденсатор СЗ поступает на задающий генератор, осуществляя тем самым амплитудную модуляцию передатчика. Задающий генератор передатчика собран на двух транзисторах VT2 и VT3 типа КТ315 и представляет собой двухтактный автогенератор с кварцевой стабили¬зацией в цепи обратной связи. Контур, состоящий из катушки L1 и конденсатора С5, настроен на частоту кварцевого резонатора ZQ1. Контур, состоящий из катушки L2 и конденсатора С7, предназначен для согласования антенны и передатчика. В устройстве применены резисторы МЛТ-0,125. Конденсаторы ис¬пользованы на напряжение более 6,3 В. Транзистор VT1 можно заме¬нить на любой п-р-п транзистор, например, на КТ3102, КТ312. Тран¬зисторы VT2, VT3 можно заменить на КТ3102, КТ368 с одинаковым коэффициентом передачи по току. Хороший результат можно полу¬чить при использовании микросхемы КР159НТ1, представляющей со¬бой пару идентичных транзисторов. Контурные катушки намотаны на каркасе диаметром 5 мм, имею¬щем подстроечный сердечник из карбонильного железа диаметром 3,5 мм. Намотка катушек ведется с шагом 1 мм. Катушка L1 имеет 4+4 в качестве опорного элемента параметрического стабилизатора напряжения схемы рис. 1 витка, катушка L2 - 4 витка. Обе катушки намотаны проводом ПЭВ 0,5. Дроссель Др1 имеет индуктивность 20-50 мкГн. В качестве антенны используется провод длиной около 1 м. В качестве источника питания можно использовать одну плоскую батарею КБС-4,5 В или четыре элемента типа А316, А336, А343. Светодиод VD1 типа АЛ307 можно заменить любым другим или использовать аналог низковольтного стабилитрона с малым током ста¬билизации (рис. 2.). Настройку передатчика начинают с установки режимов транзисто¬ров VT2 и VT3 по постоянному току. Для этого подключают миллиам¬перметр в разрыв цепи питания в точке А и подбирают величину со¬противления резистора R4 такой, чтобы ток был равен 40 мА. Настройку контуров L1, L2, С5, С7 проводят по максимуму ВЧ излучения. Причем грубо на рабочую частоту настраивают конденса¬торами, а точнее - сердечником катушки. Подстроечник катушек L1, L2 должен находиться на расстоянии не более чем 3 мм от центра катушек, т. к. в крайних его положениях генерация может срываться из-за нарушения симметрии плеч транзисторов VT2, VT3.

Передатчик на 5 километров:

Усилитель мощности на 20 ватт

Передатчики с аналоговой стабилизацией частоты. -> 4 Watt FM Transmitter

Это небольшой но довольно мощный FM передатчик, имеющий три радиочастотных каскада, соединяющихся с аудио предусилителем для лучшей модуляции. Его выходная мощность 4 Ватта а питается он от 12-18 вольт постоянного тока, что делает его портативным. Это идеальный проект для новичков, которые хотят погрузится в восхитительный мир FM радиовещания и хотят схему, которая составит основу для экспериментов с этим..
Технические спецификации - Характеристики
Тип модуляции:........ FM
Диапазон частот: ...... 88-108 MHz
Рабочее напряжение: ..... 12-18 VDC
Максимальный ток: ....... 450 мА
Мощность на выходе: ....... 4 Вт

Как это работает Как уже говорилось, передаваемый сигнал - частотно модулированный (FM) это означает, что амплитуда несущей остается постоянной, а ее частота изменяется в соответствии с изменением амплитуды аудио сигнала. Когда амплитуда сигнала на входе увеличивается (т.е. в течении положительных полупериодов) частота несущей увеличивается тоже, с другой стороны когда амплитуда сигнала на входе уменьшается (отрицательные полупериоды или отсутствие сигнала) соответственно уменьшается частота несущей. На рисунке 1 вы можете увидеть графическое представление частотной модуляции, такой как она появляется на экране осциллографа, вместе с модулирующим звуковым сигналом. Исходящая частота передатчика изменяется от 88 до 108 МГц, т.е. полоса FM используемая для радиовещания. Схема, как мы уже говорили, состоит из четырех каскадов. Три радиочастотных каскада и аудио предусилитель для модуляции. Первый РЧ каскад - это генератор, он построен на основе TR1. Частота генератора контролируется LC цепочкой L1-C15. C7 находится там для обеспечения продолжения генерации а C8 регулирует емкостную связь между генератором и следующим РЧ каскадом, который является усилителем. Усилитель собран на основе TR2, который работает в классе C, вход которого настраивается изменением значений C10 L4. С выхода этого последнего каскада, который настраивается изменением значений L3-C12 снимается выходной сигнал, который через настроенную цепочку L5-C11 приходит на антенну. Схема предусилителя очень проста, она построена на TR4. Входная чувствительность регулируется, чтобы сделать возможным использование передатчика с различными входными сигналами и зависит от значения VR1. Передатчик может модулироваться напрямую с пьезоэлектрического микрофона, небольшого кассетного магнитофона и т.д. И конечно можно использовать аудио микшер для более профессиональных результатов.

Конструкция. Прежде всего позвольте нам рассмотреть некоторые основы сборки электронных схем на печатной плате. Плата сделана из тонкого изоляционного армированного материала с тонким слоем проводящей меди, проводящему слою придается такая форма, чтобы создать необходимые соединения между различными компонентами на плате. Очень желательно использование правильно спроектированной печатной платы, так как это значительно ускоряет сборку и уменьшает вероятность совершения ошибки. К тому же, комплект плат приходит с просверленными отверстиями и очертаниями компонентов с их обозначением на стороне компонентов, чтобы сделать сборку проще. Чтобы во время хранения защитить плату от окисления и гарантировать что вы получите ее в прекрасной форме, она залужена во время производства и покрыта специальным лаком, который защищает ее от окисления и делает пайку проще. Припаивание компонентов это единственный путь, чтобы собрать схему, и кстати от этого во многом зависит ваш успех или неудача. Это не слишком сложно, и если вы придерживаетесь некоторых правил, у вас не должно возникнуть проблем. Используемый вами паяльник должен быть легким и его мощность не должна превышать 25 Ватт. Жало должно быть тонким и все время чистым. Для этой цели есть очень удобные, специально сделанные губки, которые держат влажными, и время от времени вы можете вытирать о них горячее жало, чтобы убрать все остатки которые имеют тенденцию скапливаться на нем. НЕ ШЛИФУЙТЕ напильником или наждачной бумагой грязное или изношенное жало. Если жало нельзя отчистить, замените его. В магазинах есть множество различных типов припоя, и вам следует выбрать припой хорошего качества, содержащий флюс, чтобы каждый раз обеспечивать превосходное соединение. НЕ ИСПОЛЬЗУЙТЕ флюс для пайки, кроме того, что уже содержится в припое. Слишком большое количество флюса может явиться причиной многих проблем и одной из главных причин неправильной работы схемы. Если все - таки вам приходится использовать дополнительный флюс, как в случае, когда необходимо залудить медные провода, тщательно очистите его, по окончанию работы. Чтобы правильно и надлежащим образом спаять компоненты, вам следует сделать следующее: - Очистите ножки компонентов при помощи небольшого кусочка наждачной бумаги. Согните их на соответствующем расстоянии от корпуса компонента и вставьте его в плату на его место. - Иногда вам могут встретиться компоненты, с ножками большими чем обычно, они слишком толстые, чтобы войти в отверстия на печатной плате. В этом случае используйте мини дрель чтобы расширить отверстия. - Не делайте отверстия слишком большими, так как впоследствии это создаст трудности при пайке. - Возьмите горячий паяльник и поместите его жало на ножку компонента, пока держите кончик проволочного припоя в точке, где ножка выходит из платы. Жало должно касаться ножки немного выше платы.- Когда припой начнет плавится и течь, подождите пока он равномерно покроет всю область вокруг отверстия, а флюс закипит и выйдет под припоем. Вся операция не должна занимать более 5 секунд. Уберите паяльник и позвольте припою остыть самому не дуя на него или перемещая компонент. Если все сделано правильно, поверхность соединения должна иметь блестящий металлически кончик, а границы должны равномерно заканчиваться на ножке компонента и дорожке платы. Если припой смотрится неуклюже, ненормально, или имеет форму кляксы, тогда вы сделали плохое соединение, и следует убрать припой (С помощью насоса или паяльного фитиля) и повторить все действия. - Следите за тем чтобы не перегреть дорожки, так как их очень просто отделить от платы и порвать. - Во время пайки чувствительных компонентов, хорошей практикой будет держать пинцетом ножку со стороны компонентов, для отвода тепла, которое может повредить компонент. - Убедитесь что вы не используете припоя больше чем необходимо, так как можете сделать короткое замыкание дорожек, расположенных рядом, особенно если они очень близко друг к другу. - По окончанию работы, отрежьте все выступающие ножки компонентов и тщательно отчистите плату соответствующим растворителем, чтобы убрать все остатки флюса, оставшегося на плате. Это РЧ проект, а это требует даже бОльшей осторожности во время пайки, поскольку небрежность во время сборки может привести к низкой выходной мощности, или к ее отсутствию вообще, низкой стабильности и другим проблемам. Убедитесь в том, что вы следуете основным правилам сборки электронных схем, описанных выше, и проверяйте все дважды, прежде чем перейти к следующему шагу. Все компоненты понятно маркированы на стороне элементов платы, и вас не должно возникнуть проблем в определении их места и установки. Сначала припаяйте все выводы, а затем катушки, смотря за тем чтобы не деформировать их, затем дроссели, резисторы, конденсаторы, а в конце электролиты и подстроечники. Проверти установлены ли электролиты правильно, в соответствии с их полярностью, и не перегреты ли подстроечники во время пайки. На этом месте нужно остановиться для проверки сделанной работы, и если все в порядке припаивайте транзисторы на их места, следя за тем чтобы не перегреть их, поскольку они наиболее чувствительные из всех компонентов, использованных в этом проекте. Аудио сигнал подается на точки 1 (ground) и 2 (signal), питание на точки 3 (-) и 4 (+) антенна соединена с точками 5 (ground) и 6 (signal). Как мы уже говорили сигнал, который вы будете использовать для модуляции, может подаваться от предусилителя или микшера, а в случае когда вы хотите модулировать несущую голосом, можете использовать пьезоэлектрический микрофон, поставляемый с набором. (Качество этого микрофона не столь высоко, но он подойдет если вас интересует только речь.) В качестве антенны можно использовать открытый диполь или Ground Plane (схему этой антенны см. на рисунке прим. перев.) Перед началом использования или смены рабочей частоты, следует проделать процедуру, называемую настройкой и описанную ниже.

Список деталей

R1 = 220K
R2 = 4,7K
R3 = R4 = 10K
R5 = 82 Ohm
R = 150Ohm 1/2W x2 *
VR1 = 22K подстроечный

C1 = C2 = 4,7uF 25V электролит
C3 = C13 = 4,7nF керамический
C4 = C14 = 1nF керамический
C5 = C6 = 470pF керамический
C7 = 11pF керамический
C8 = 3-10pF подстроечный
C9 = C12 = 7-35pF подстроечный
C10 = C11 = 10-60pF подстроечный
C15 = 4-20pF подстроечный
C16 = 22nF керамический *

L1 = 4 витка посеребренной проволки на оправке 5,5mm
L2 = 6 витков посеребренной проволки на оправке 5,5mm
L3 = 3 витка посеребренной проволки на оправке 5,5mm
L4 = вытравлена на плате
L5 = 5 витков посеребренной проволки на оправке 7,5mm

RFC1=RFC2=RFC3= VK200 RFC tsok

TR1 = TR2 = 2N2219 NPN
TR3 = 2N3553 NPN
TR4 = BC547/BC548 NPN
D1 = 1N4148 диод*
MIC = crystalic microphone

Внимание: детали отмеченные * используются для настройки передатчика, в случае когда у вас нет стационарного волнового моста.

Настройки

Если вы ждете, что ваш передатчик будет отдавать максимум мощности в любое время, вам необходимо настроить надлежащим образом все 3 РЧ каскада, чтобы гарантировать что энергия между ними, течет наилучшим образом. Для этого есть два пути, и каким путем следовать зависит от того есть ли у вас КСВ метр. Если у вас есть КСВ метр, то включите передатчик, с подключенным последовательно к антенне КСВ метром, и крутите C15, чтобы настроить передатчик на частоту, выбранную вами для вещания. Затем регулируйте подстроечники C8,9,10,12 и 11 пока не добьетесь максимальной выходной мощности на КСВ метре. Для тех у кого нет КСВ метра, есть другой метод, который дает неплохие результаты. Нужно только собрать небольшую схему, изобр. на рис. 2, которая соединяется с выходом передатчика, на его вход (на C16) вы подключаете ваш мультитестер, имеющий подходящую размеченную шкалу вольт. Вы подстраиваете C15 на желаемую частоту, а затем настраиваете другие подстроечники в том же порядке как это описано выше, до максимального значения на мультитестере. Неудобство этого метода в том что вы не можете регулировать передатчик с подключенной на выходе антенной, что может быть необходимо при небольшой настройки C11 и C12 для наилучшего согласования антенны. Не забывайте регулировать ваш передатчик каждый раз после смены антенны или рабочей частоты. ВНИМАНИЕ: В каждом передатчике, кроме основной частоты, присутствуют различные гармоники, обычно имеющие небольшой радиус действия. Для того чтобы убедиться что вы не настроились на одну из них, проводите настройку как можно дальше от вашего приемника, или используйте анализатор спектра, чтобы посмотреть спектр на выходе и убедиться что вы настроили передатчик на правильную частоту.

ВНИМАНИЕ

Если устройство не работает. - Проверьте устройство на наличие плохого соединения, замыкания соседних дорожек или остатков флюса, которые обычно являются причиной проблемы. - Проверти еще раз все внешние соединения идущие к схеме и от нее, может ошибка в них. - Проверьте все ли комноненты установлены, и на свои ли места. - Убедитесь в том, что все компоненты имеющие полярность установлены правильно. - Убедитесь в том, что напряжение питания имеет верное значение, и подается на схему в соответствующем месте. - Проверти схему на наличие неисправных или поврежденных компонентов.

Передатчик на 10 Вт

Схема 1 (27 Мгц):

Q1 КТ904 на радиаторе площадью 600 см^2
L1 - диаметр 15 мм на керамическом каркасе. 5 витков серебрёного провода диаметром 1 мм, длина намотки - 20 мм, отвод от 2-го витка, считая от заземлённого провода.
L3 - бескаркасная, на оправе 8 мм, содержит 11 витков ПЭВ-2 диаметром 1 мм.
L2(дроссель) типа ДММ-2,4 (20 мкГн)
C1, C5, C6 - с воздушным диэлектриком.
L3 - бескаркасная, на оправе 8 мм, содержит 8 (6 на 94 Мгц) витков ПЭВ-2 диаметром 1 мм. Состоит из 2-х половин.
L4 - на той же оправе и тем же проводом, расположена между 2-х половин L3 и содержит 2-3 витка

Схема 3 (Частотный модулятор):

Q1 КТ315
D1, D2 - варикапы КВ102Д или диоды Д220.
ВМ1 - электретный микрофон МКЭ-3

Описание и настройка: Выбирете одну из 2-х высокочастотных схем (в зависимости от приёмника) и соедините её с модулятором в точке А. Далее в качестве нагрузки подключите к антенне и общему проводу 2 лампы 6,3 В(0.22 А), соединённые последовательно. Подключите питание 5 В. Отключите контур L1, C1, вместо него подайте на вход сигнал с УКВ генератора. Проверьте волномером частоту выходного сигнала (если его нет или она не как с генератора - подстройте конденсаторы и катушки выходного контура). Далее соедините контур L1, C1 и повышайте напряжение питания. Дoлжна возникнуть автогенерация уже при 5 В (если не возникает - переместите эмиттер по катушке на 0.5...2 витка) - ток 250 мА. Не поднимайте напряжение выше 20В(ток 750 мА, мощность 8...10 Вт). Далее подстройте все контура, проверяя частоту по волномеру. При монтаже (навесном, прямо на радиаторе) выводы деталей должны быть как можно короче, использоваться конденсаторыс соответствующим ТКЕ, катушки должны быть плотно намотаны. Только тогда вы получите хорошую стабильность частоты, иначе она будет "плыть" до 500 Гц. Частотный модулятор насттраивают, подбирая R1, когда напряжение на коллекторе Q1 станет равны половине питающего. Так же может потребоваться поключение точки А к части витков L1.

Передатчик АМ сигналов

Микросборка ХА994 применяется в радиопереговорных устройствах в трактах высокой и низкой частоты передатчика для генерирования и усиления сигналов ВЧ

Радиомикрофон

Предлаrаемое устройство совместно с радиовещательным

УКВ ЧМ приёмником можно использовать для беспроводной

передачи речевых сообщений на небольшие расстояния или,

например, в качестве радионяни для дистанционноrо прослушивания шумов и звуков в детской комнате. Особенность конструкции - катушка LC-гeнepaтopa выполнена в виде печатноrо проводника.


Радиопередатчик с питанием от сети 220 в

Данная схема при минимуме радиодеталей обладает достаточно хорошими характеристиками:

большая чувствительность микрофона (в комнате слышно тиканье настенных часов),

при длине антенны 100 см дальность составляет 500 метров (при использовании мобильного телефона с встроенным FM - радио).

L1 - 6 витков медного провода, диаметром 0.5 мм

VD1 - стабилитрон, типа КС168 (можно любой другой на напряжение 6,8V)

VT1, VT2 - транзисторы, типа КТ315, можно КТ3102, КТ368.

Правильно собранная схема должна заработать сразу, вся наладка заключается в подстройке частоты, путём сжатия и раздвигания витков катушки L1 и в подборе сопротивления R7 (100 Ом - 1кОм) для достижения максимальной мощности.

C4 можно поставить большей ёмкости, в этом случае он ещё лучше будет сглаживать пульсации. Блок питания следует отгородить от передатчика алюминиевым экраном.

Ретропередатчик

Малогабаритный радиопередатчик из Радио № 9 – 1957 г., вероятно, послужил прототипом для создания «игрушки 60-х». Интересен тот факт, что «передатчик был испытан также и на 80-и 40-метровых любительских диапазонах, где были получены хорошие результаты». Радиолюбителям, решившим повторить конструкции (приведенной выше или из статьи, публикуемой ниже), естественно, не следует забывать о виде модуляции, которая в этих передатчиках АМ…

Простой радиомикрофон

Дальность действия радиомикрофона более 300 метров вне помещения. Несмотря на низкое напряжение питания 3В радиомикрофон достаточно мощный, сигнал уверенно приминается от него на радиоприемник через 3 этажа здания. Частотный диапазон радиомикрофона от 87 до 108 МГц. Прием радиосигнала возможен на любой FM радиоприемник.

Катушка (L1) 3мм в диаметре, имеет 5 оборотов медного провода диаметром 0,61 мм. Длина антенны должна быть в половину или четверть длины волны (для 100 МГц-150 см и 75 см). Изменением ширины витков катушки L1 настройте радиомикрофон на диапазон от 87 до 108 МГц.

Источник - http://www.hobby-hour.com/electronics/wireless_microphone.php

Простой CW передатчик

Выходная мощность передатчика около 1 вт. Кварц применяется от станции РСИУ. Катушки L1 и L2 намотаны прямо на корпусе резонатора, соотношение витков-5:1. Для работы в диапазоне 3,5 мгц катушка L1 должна иметь индуктивность 25-29 мкгн а для рабоы в диапазоне 7 мгц-7-8 мкгн. Отвод делается от 1/3 до 1/5 части витков L1. Настройка контура производится С2 а настройка антенны-С3. Схему можно собрать на более современных транзисторах КТ606,КТ904 и т д, поменяв полярность источника питания на обратную.

Простой QRP CW передатчик

УКВ ЧМ маломощный радиопередатчик

В сущности, эту схему можно отнести к радиомикрофонам повышенной дальности приема сигнала. Устройство предназначено

для передачи аудиосигнала на некоторое расстояние, используя частоту в УКВ-ЧМ диапазоне 88-108 МГц. При этом прием сигнала возможен на радиовещательный УКВ-ЧМ приемник работающий в

соответствующем диапазоне частот. Следует заметить что ыходная мощность устройств такого назначения строго регламентирована и не может превышать 0,01 W. Однако, при налаживании и доводке данной схемы теоретически можно выйти на 0,3-0,5W.

Простой FM передатчик

Сигнал с микрофона подается на базу транзистора VT1 через разделительный конденсатор С1 (10мкФ). VT1 действует как усилитель ЗЧ и одновременно как генератор ВЧ, в итоге на выходе передатчика мы получаем FM - сигнал.

L1 - определяет частотный диапазон передатчика, катушка имеет диаметр 7мм, диаметр провода 0,3...0,35мм, число витков 7, после намотки катушку надо вытянуть ее до длины 15 мм. Коллектор транзистора VT1 подключен к антенне L2 (антенна) , L2 имеет диаметр намотки 6 мм, антенна намотана проводом диаметром 0,35...0,5 мм. Длина антенны примерно 25...30см. При намотке у Вас должна получится пружина.

Дальность действия передатчика 100 метров, при корректировке диапазона передатчика сожмите или растяните катушку L1.

АМ передатчик мощнотью 25 вт

Простой АМ передатчик







2024 © gtavrl.ru.