Построить таблицу истинности для логического выражения b. V


Проблема определения истинности выражения встаёт перед многими науками. Любая доказательная дисциплина должна опираться на некоторые критерии истинности доказательств. Наука, изучающая эти критерии, называется алгеброй логики. Основной постулат алгебры логики заключается в том, что любое самое витиеватое утверждение может быть представлено в виде алгебраического выражения из более простых утверждений, истинность или ложность которых легко определить.

Для любого "алгебраического" действия над утверждением задаётся правило определения истинности или ложности измененного утверждения, исходя из истинности или ложности исходного утверждения. Эти правила записываются через таблицы истинности выражения . Прежде, чем составлять таблицы истинности, надо поближе познакомиться с алгеброй логики.

Алгебраические преобразования логических выражений

Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина . Ложь обозначается нулём, а истина - единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

Отрицание

Отрицание и инверсия - самое простое логическое преобразование. Ему соответствует частица "не." Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то "не А" - ложно. Например, утверждение "прямой угол - это угол, равный девяносто градусов" - истина. Тогда его отрицание "прямой угол не равен девяноста градусам" - ложь.

Таблица истинности для отрицания будет такова:

Дизъюнкция

Эта операция может быть обычной или строгой , их результаты будут различаться.

Обычная дизъюнкция или логическое сложение соответствует союзу "или". Она будет истинной если хотя бы одно из утверждений, входящих в неё - истина. Например, выражение "Земля круглая или стоит на трёх китах" будет истинным, так как первое утверждение - истинно, хоть второе и ложно.В таблице это будет выглядеть так:

Строгую дизъюнкцию или сложение по модулю также называют "исключающим или" . Эта операция может принимать вид грамматической конструкции "одно из двух: либо..., либо...". Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

Таблица значений исключающего или

Импликация и эквивалентность

Импликация представляет собой следствие и грамматически может быть выражена как "из А следует Б". Здесь утверждение А будет называться предпосылкой, а Б - следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки - истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А - "точка О - экстремум непрерывной функции", утверждение Б - "производная непрерывной функции в точке О обращается в ноль". Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

Таблица истинности для импликации выглядит следующим образом:

Логическая операция эквивалентность, по сути, является взаимной импликацией . "А эквивалентно Б" означает, что "из А следует Б" и "из Б следует А" одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А - "Точка О является точкой экстремума непрерывной функции", утверждение Б - "В точке О производная функции обращается в ноль и меняет знак". Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А. Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: "производная в точке О обращается в ноль" и "производная в точке О меняет знак".

Прочие логические функции

Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

  • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
  • Стрелка Пирса представляет сбой отрицание дизъюнкции.

Построение таблиц истинности

Чтобы построить таблицу истинности для какого-либо логического выражения, надо действовать в соответствии с алгоритмом:

  1. Разбить выражение на простые утверждения и обозначить каждое из них как переменную.
  2. Определить логические преобразования.
  3. Выявить порядок действий этих преобразований.
  4. Сосчитать строки в будущей таблице. Их количество равно два в степени N, где N - число переменных, плюс одна строка для шапки таблицы.
  5. Определить число столбцов. Оно равно сумме количества переменных и количества действий. Можно представлять результат каждого действия в виде новой переменной, если так будет понятней.
  6. Шапка заполняется последовательно, сначала все переменные, потом результаты действий в порядке их выполнения.
  7. Заполнение таблицы надо начать с первой переменной. Для неё количество строк делится пополам. Одна половина заполняется нулями, вторая - единицами.
  8. Для каждой следующей переменной нули и единицы чередуются вдвое чаще.
  9. Таким образом заполняются все столбцы с переменными и для последней переменной значение меняется в каждой строке.
  10. Потом последовательно заполняются результаты всех действий.

В итоге последний столбец отобразит значение всего выражения в зависимости от значения переменных.

Отдельно следует сказать о порядке логических действий . Как его определить? Здесь, как и в алгебре, есть правила, задающие последовательность действий. Они выполняются в следующем порядке:

  1. выражения в скобках;
  2. отрицание или инверсия;
  3. конъюнкция;
  4. строгая и обычная дизъюнкция;
  5. импликация;
  6. эквивалентность.

Примеры

Для закрепления материала можно попробовать составить таблицу истинности для ранее упомянутых логических выражений. Рассмотрим три примера:

  • Штрих Шеффера.
  • Стрелка Пирса.
  • Определение эквивалентности.

Штрих Шеффера

Штрих Шеффера - это логическое выражение, которое можно записать в виде "не (А и Б)". Здесь две переменные, и два действия. Конъюнкция в скобках, значит, она выполняется первой. В таблице будет шапка и четыре строки со значениями переменных, а также четыре столбца. Заполним таблицу:

А Б А и Б не (А и Б)
Л Л Л И
Л И Л И
И Л Л И
И И И Л

Отрицание конъюнкции выглядит как дизъюнкция отрицаний. Это можно проверить, если составить таблицу истинности для выражения "не А или не Б". Проделайте это самостоятельно и обратите внимание, что здесь будет уже три операции.

Стрелка Пирса

Рассматривая Стрелку Пирса, которая представляет собой отрицание дизъюнкции "не (А или Б)", сравним её с конъюнкцией отрицаний "не А и не Б". Заполним две таблицы:

А Б не А не Б не А и не Б
Л Л И И И
Л И И Л Л
И Л Л И И
И И Л Л Л

Значения выражений совпали. Изучив два эти примера, можно прийти к выводу, как раскрывать скобки после отрицания: отрицание применяется ко всем переменным в скобках, конъюнкция меняется на дизъюнкцию, а дизъюнкция - на конъюнкцию.

Определение эквивалентности

Про утверждения А и Б можно сказать, что они эквивалентны, тогда и только тогда, когда из А следует Б и из Б следует А. Запишем это как логическое выражение и построим для него таблицу истинности. "(А эквивалентно Б) эквивалентно (из А следует Б) и (из Б следует А)".

Здесь две переменных и пять действий. Строим таблицу:

В последнем столбце все значения истинные. Это значит, что приведенное определение эквивалентности верно при любых значениях А и Б. Значит, оно всегда истинно. Именно так с помощью таблицы истинности можно проверить корректность любых определений и логических построений.

Решение логических выражений принято записывать в виде таблиц истинности – таблиц, в которых по действиям показано, какие значения принимает логическое выражение при всех возможных наборах его переменных.

При составлении таблицы истинности для логического выражения необходимо учитывать порядок выполнения логических операций , а именно:

      1. действия в скобках,
      2. инверсия (отрицание ),
      3. & (конъюнкция ),
      4. v (дизъюнкция ),
      5. => (импликация ),
      6. <=> (эквивалентность ).

Алгоритм составления таблицы истинности :

1. Выяснить количество строк в таблице (вычисляется как 2 n , где n – количество переменных + строка заголовков столбцов).

2. Выяснить количество столбцов (вычисляется как количество переменных + количество логических операций).

3. Установить последовательность выполнения логических операций.

4. Построить таблицу, указывая названия столбцов и возможные наборы значений исходных логических переменных.

5. Заполнить таблицу истинности по столбцам.

6. Записать ответ.

Пример 6

Построим таблицу истинности для выражения F =(Av B )&(¬ A v ¬ B ) .

1. Количество строк=2 2 (2 переменных+строка заголовков столбцов)=5.

2. Количество столбцов=2 логические переменные (А, В)+ 5 логических операций (v ,&, ¬ , v , ¬ ) = 7.

3. Расставим порядок выполнения операций: 1 5 2 43

(A v B ) & (¬ A v ¬ B )

4-5. Построим таблицу и заполним ее по столбцам:

А v В

¬ А

¬ В

¬ А v ¬ В

(A v B )&(¬ A v ¬ B )

0

0

0

1

1

0

6. Ответ: F =0, при A= B=0 и A= B=1

Пример 7

Построим таблицу истинности для логического выражения F = X v Y & ¬ Z .

1. Количество строк=2 3 +1=(3 переменных+строка заголовков столбцов)=9.

2. Количество столбцов=3 логические переменные+3 логических операций = 6.

3. Укажем порядок действий: 3 2 1

X v Y & ¬ Z

4-5. Построи м таблицу и заполним ее по столбцам:

¬ Z

Y& ¬ Z

Xv Y & ¬ Z

0

0

0

0

0

0

1

0

6. Ответ:

F =0, при X= Y= Z= 0; при X= Y=0 и Z= 1.

Упражнение 8

Постройте таблицы истинности для следующих логических выражений:

1. F =(Av B )&(¬ A& ¬ B).

2. F = X&¬ Yv Z.

Проверьте себя (эталон ответов)

Обратите внимание!

Наборы входных переменных, во избежание ошибок, рекомендуется перечислять следующим образом:

А) разделить колонку значений первой переменной пополам и заполнить верхнюю часть колонки нулями, а нижнюю единицами;

Б) разделить колонкузначенийвторой переменной на четыре части и заполнить каждую четверть чередующимися группами нулей и единиц, начиная с группы нулей;

В) продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами нулей или единиц до тех пор, пока группы нулей и единиц не будут состоять из одного символа.

Тавтология - тождественно истинная формула истина " ("1

Противоречие - тождественно ложная формула , или формула принимающая значение "ложь " ("0 ") при любых входящих в нее значениях переменных.

Равносильные формулы - две формулы А и В принимающие одинаковые значения, при одинаковых наборах значений входящих в них переменных. Равносильность двух формул алгебры логики обозначается символом .

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

4.3. Логические функции и таблицы истинности

Соотношения между логическими переменными и логическими функциями в алгебре логики можно отобразить также с помощью соответствующих таблиц, которые носят название таблиц истинности. Таблицы истинности находят широкое применение, поскольку наглядно показывают, какие значения принимает логическая функция при всех сочетаниях значений ее логических переменных. Таблица истинности состоит из двух частей. Первая (левая) часть относится к логическим переменным и содержит полный перечень возможных комбинаций логических переменных А, В, С… и т. д. Вторая (правая) часть этой таблицы определяет выходные состояния как логическую функцию от комбинаций входных величин.

Например, для логической функции F = A v B v C (дизъюнкции) трех логических переменных А, В, и С таблица истинности будет иметь вид, показанный на рис. 4.1. Для записи значений логических переменных и логической функции данная таблица истинности содержит 8 строк и 4 столбца, т. е. число строк для записи значений аргументов и функции любой таблицы истинности будет равно 2 n , где п – число аргументов логической функции, а число столбцов равно п + 1.

Рис. 4.1. Таблица истинности для логической функции F = A v В v С

Таблицу истинности можно составить для любой логической функции, например, на рис. 4.2 приведена таблица истинности логической функции F = A ? B ? C (эквиваленции).

Логические функции имеют соответствующие названия. Для двух двоичных переменных существует шестнадцать логических функций, названия которых приведены ниже. На рис. 4.3 представлена таблица, в которой приведены логические функции F 1 , F 2 , F 3 , … , F 16 двух логических переменных A и В.

Функция F 1 = 0 и называется функцией константы нуля, или генератора нуля.

Рис. 4.2. Таблица истинности для логической функции F = A ? B ? C

Рис. 4.3. Логические функции F 1 , F 2 , F 3 ,… F 16 двух аргументов А и В

Функция F 2 = A & B называется функцией конъюнкции.

А.

Функция F 4 = А А.

называется функцией запрета по логической переменной В.

Функция F 6 = В называется функцией повторения по логической переменной В.

называется функцией исключающее «ИЛИ».

Функция F 8 = A v В называется функцией дизъюнкции.

называется функцией Пирса.

называется функцией эквиваленции.

В.

Функция F 12 = B ? A B ? A.

называется функцией отрицания (инверсии) по логической переменной А.

Функция F 14 = A ? B называется функцией импликации A ? B .

называется функцией Шеффера.

Функция F 16 = 1 называется функцией генератора 1.

Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:

Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.

При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.

Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»

Как видно из рис. 4.4, в состав логических функций программы MS Excel входит функционально полный набор логических функций, состоящий из следующих логических функций: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание). Таким образом, с помощью функционально полного набора логических функций программы MS Excel можно реализовать другие функции. Логическая функция ЕСЛИ (импликация), также входящая в логические функции MS Excel, выполняет логическую проверку и в зависимости от результата проверки выполняет одно из двух возможных действий. В данной программе она имеет следующий формат: = ЕСЛИ (арг1;арг2;арг3), где арг1 – логическое условие; арг2 – возвращаемое значение при условии, что значение аргумента арг1 выполняется (ИСТИНА); арг3 – возвращаемое значение при условии, что значение аргумента арг1 не выполняется (ЛОЖЬ). Например, если в произвольную ячейку листа программы MS Excel ввести выражение « = ЕСЛИ (А1 = 5; „пять“; „не пять“)», то при вводе числа 5 в ячейку А1 и нажатии клавиши «Enter» в ячейке А1 автоматически будет записано слово «пять», при вводе любого другого числа в ячейку А1 в ней запишется слово «не пять». Как уже отмечалось, с помощью логических функций программы MS Excel можно представить другие логические функции и соответствующие им таблицы истинности.

Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции F = А & В (конъюнкции), состоящую из двух строк и трех столбцов, которая позволяет при изменении значений (0 или 1) логических переменных А и В автоматически устанавливать, например, в ячейке Е6 значение функции F = А & В, соответствующее значениям этих логических переменных. Для этого в ячейку Е6 введем следующее выражение: «=ЕСЛИ(И(С6;D6);1;0)», тогда при вводе в ячейки С6 и D6 значений 0 или 1 в ячейке Е6 будет выполняться логическая функция F = А & В. Результат этих действий представлен на рис. 4.5.

Рис. 4.5. Реализация модифицированной таблицы истинности логической функции F = A & В

Данный текст является ознакомительным фрагментом. Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Логические команды Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Логические функции в Excel При расчетах часто приходится выбирать формулу в зависимости от конкретных условий. Например, при расчете заработной платы могут применяться разные надбавки в зависимости от стажа, квалификации или конкретных условий труда, которые вычисляются

Из книги Excel. Мультимедийный курс автора Мединов Олег

Логические функции Логические функции могут найти применение при математических, инженерных вычислениях или при сравнительном анализе данных. Мы рассмотрим одну логическую функцию на примере функции ЕСЛИ.С помощью функции ЕСЛИ вы можете создать логическое выражение и

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.1. Логические переменные и логические операции Информация (данные, машинные команды и т. д.) в компьютере представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Электрический сигнал, проходящий по электронным схемам и соединительным

Из книги Справочник по PHP автора

Логические функции определения типа переменной is_scalarПроверяет, является ли переменная простой.Синтаксис:bool is_scalar(mixed var)Возвращает true, если var имеет скалярный тип (чила, строки, логические значения), но не комплексный (массивы или объекты).is_nullПроверяет, является ли

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Логические операторы Логические операторы выполняют действия над логическими значениями. Все они приведены в табл. 14.5. А в табл. 14.6 и 14.7 показаны результаты выполнения этих операторов.Основная область применения логических операторов - выражения сравнения (о них см.

Из книги XSLT автора Хольцнер Стивен

Логические функции XPath XPath также поддерживает следующий набор логических функций: boolean(). Приводит аргумент к логическому значению; false(). Возвращает false (ложь); lang(). Проверяет, совпадает ли язык, установленный в атрибуте xml:lang, с языком, переданным в функцию; not().

Из книги Технология XSLT автора Валиков Алексей Николаевич

Логические операции В XSLT имеются две логические операции - or и and. Эти операции бинарны, то есть каждая из них определена для двух операндов. Если операнды не являются булевыми значениями, они неявным образом приводятся к булевому типу.Семантика or и and очевидна - они

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Логические операции Логические операции выполняют над своими операндами логические функции И (&&) и ИЛИ (||). Операнды логических операций могут иметь целый, плавающий тип, либо быть указателями. Типы первого и второго операндов могут различаться. Сначала всегда

Из книги Краткое введение в программирование на Bash автора Родригес Гарольд

Логические И и ИЛИ Вы уже видели, что такое управляющие структуры и как их использовать. Для решения тех же задач есть еще два способа. Это логическое И - "&&" и логическое "ИЛИ" - « || ». Логическое И используется следующим образом:выражение_1&&выражение_2Сначала

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Логические операторы Firebird предоставляет три логических оператора, которые могут работать с другими предикатами разными способами.* NOT задает отрицание условия поиска, к которому он применяется. Он имеет наивысший приоритет.* AND создает сложный предикат, объединяет два

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Понимание истинности и ложности Семантически, если предикат возвращает "неопределенность", это не является ни истиной, ни ложью. В SQL при этом утверждения разрешаются только в виде "истина" или "ложь" - утверждение, которое не вычисляется как "истина", рассматривается как

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

IV. Логические операции Обычно логические операции "считают" условные выражения операндами. Операция! имеет один операнд, расположенный справа. Остальные операции имеют два операнда: один слева и один справа. && Логическое И: результат операции имеет значение "истина",

Из книги C++ для начинающих автора Липпман Стенли

Логические нарушения Если накопитель исправен физически, но представляется как пустой или неформатированный, а находящиеся на нем данные не видны операционной системе, то в данном случае повреждены служебные таблицы файловой системы.Данные почти всегда остаются на

Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

12.3.4. Логические объекты-функции Логические объекты-функции поддерживают операции "логическое И" (возвращает true, если оба операнда равны true, – применяет оператор &&, аcсоциированный с типом Type), "логическое ИЛИ" (возвращает true, если хотя бы один из операндов равен true, –

Из книги автора

Логические операции К логическим относятся бинарные операции and, or и xor, а также унарная операция not, имеющие операнды типа boolean и возвращающие значение типа boolean. Эти операции подчиняются стандартным правилам логики: a and b истинно только тогда, когда истинны a и b, a or b истинно

Сегодня мы поговорим о предмете под названием информатика. Таблица истинности, разновидности функций, порядок их выполнения - это наши основные вопросы, на которые мы постараемся найти ответы в статье.

Обычно данный курс преподается еще в средней школе, но большое количество учеников является причиной недопонимания некоторых особенностей. А если вы собрались посвятить этому свою жизнь, то просто не обойтись без сдачи единого государственного экзамена по информатике. Таблица истинности, преобразование сложных выражений, решение логических задач - это все может встретиться в билете. Сейчас мы рассмотрим более подробно данную тему и поможем вам набрать больше балов на ЕГЭ.

Предмет логики

Что же это за предмет - информатика? Таблица истинности - как ее строить? Зачем нужна наука логика? На все эти вопросы мы сейчас с вами ответим.

Информатика - это довольно увлекательный предмет. Он не может вызывать затруднения у современного общества, ведь все, что нас окружает, так или иначе, относится к компьютеру.

Основы науки логики даются преподавателями средней школы на уроках информатики. Таблицы истинности, функции, упрощение выражений - все это должны объяснять учителя информатики. Эта наука просто необходима в нашей жизни. Приглядитесь, все подчиняется каким-либо законам. Вы подбросили мяч, он подлетел вверх, но после этого упал опять на землю, это произошло из-за наличия законов физики и силы земного притяжения. Мама варит суп и добавляет соль. Почему когда мы его едим, нам не попадаются крупинки? Все просто, соль растворилась в воде, подчиняясь законам химии.

Теперь обратите внимание на то, как вы разговариваете.

  • «Если я отвезу своего кота в ветеринарную клинику, то ему сделают прививку».
  • «Сегодня был очень тяжелый день, потому что приходила проверка».
  • «Я не хочу идти в университет, потому что сегодня будет коллоквиум» и так далее.

Все, что вы говорите, обязательно подчиняется законам логики. Это относится как к деловой, так и к дружеской беседе. Именно по этой причине необходимо понимать законы логики, чтобы не действовать наугад, а быть уверенным в исходе событий.

Функции

Для того чтобы составить таблицу истинности к предложенной вам задаче, необходимо знать логические функции. Что это такое? Логическая функция имеет некоторые переменные, которые являются утверждениями (истинными или ложными), и само значение функции должно дать нам ответ на вопрос: «Выражение истинно или ложно?».

Все выражения принимают следующие значения:

  • Истина или ложь.
  • И или Л.
  • 1 или 0.
  • Плюс или минус.

Здесь отдавайте предпочтение тому способу, который для вас является более удобным. Для того чтобы составить таблицу истинности, нам нужно перечислить все комбинации переменных. Их количество вычисляется по формуле: 2 в степени n. Результат вычисления - это количество возможных комбинаций, переменной n в данной формуле обозначается количество переменных в условии. Если выражение имеет много переменных, то можно воспользоваться калькулятором или сделать для себя небольшую таблицу с возведением двойки в степень.

Всего в логике выделяют семь функций или связей, соединяющих выражения:

  • Умножение (конъюнкция).
  • Сложение (дизъюнкция).
  • Следствие (импликация).
  • Эквиваленция.
  • Инверсия.
  • Штрих Шеффера.
  • Стрелка Пирса.

Первая операция, представленная в списке, имеет название «логическое умножение». Ее графически можно отметить в виде перевернутой галочки, знаками & или *. Вторая в нашем списке операция - логическое сложение, графически обозначается в виде галочки, +. Импликацию называют логическим следствием, обозначается в виде стрелки, указывающей от условия на следствие. Эквиваленция обозначается двухсторонней стрелкой, функция имеет истинное значение только в тех случаях, кода оба значения принимают либо значение «1», либо «0». Инверсию называют логическим отрицанием. Штрих Шеффера называют функцией, которая отрицает конъюнкцию, а стрелку Пирса - функцией, отрицающей дизъюнкцию.

Основные двоичные функции

Логическая таблица истинности помогает найти ответ в задаче, но для этого необходимо запомнить таблицы двоичных функций. В этом разделе они будут предоставлены.

Конъюнкция (умножение). Если два то в результате мы получаем истину, во всех остальных случаях мы получаем ложь.

Результат - ложь при логическом сложении мы имеем только в случае двух ложных входных данных.

Логическое следствие имеет ложный результат только тогда, когда условие является истиной, а следствие - ложью. Здесь можно привести пример из жизни: «Я хотел купить сахар, но магазин был закрыт», следовательно, сахар так и не куплен.

Эквиваленция является истиной только в случаях одинаковых значений входных данных. То есть при парах: «0;0» или «1;1».

В случае инверсии все элементарно, если на входе есть истинное выражение, то оно преобразуется в ложное, и наоборот. На картинке видно, как она обозначается графически.

Штрих Шиффера будет на выходе иметь ложный результат только при наличии двух истинных выражений.

В случае стрелки Пирса, функция будет истинной только в том случае, если на входе мы имеем только ложные выражения.

В каком порядке выполнять логические операции

Обратите внимание на то, что построение таблиц истинности и упрощение выражений возможно только при правильной очередности выполнения операций. Запомните, в какой последовательности их необходимо проводить, это очень важно для получения верного результата.

  • логическое отрицание;
  • умножение;
  • сложение;
  • следствие;
  • эквиваленция;
  • отрицание умножения (штрих Шеффера);
  • отрицание сложения (стрелка Пирса).

Пример №1

Сейчас мы предлагаем рассмотреть пример построения таблицы истинности для 4 переменных. Необходимо узнать в каких случаях F=0 у уравнения: неА+В+С*D

Ответом на это задание будет являться перечисление следующих комбинаций: «1;0;0;0», «1;0;0;1» и «1;0;1;0». Как видите, составлять таблицу истинности довольно просто. Еще раз хочется обратить ваше внимание на порядок выполнения действий. В конкретном случае он был следующий:

  1. Инверсия первого простого выражения.
  2. Конъюнкция третьего и четвертого выражения.
  3. Дизъюнкция второго выражения с результатами предыдущих вычислений.

Пример №2

Сейчас мы рассмотрим еще одно задание, которое требует построения таблицы истинности. Информатика (примеры были взяты из школьного курса) может иметь и в качестве задания. Коротко рассмотрим одну из них. Виновен ли Ваня в краже мяча, если известно следующее:

  • Если Ваня не крал или Петя крал, то Сережа принял участие в краже.
  • Если Ваня не виновен, то и Сережа мяч не крал.

Введем обозначения: И - Ваня украл мяч; П - Петя украл; С - Сережа украл.

По данному условию мы можем составить уравнение: F=((неИ+П) импликация С)*(неИ импликация неС). Нам нужны те варианты, где функция принимает истинное значение. Далее необходимо составить таблицу, так как данная функция имеет целых 7 действий, то мы их опустим. Будем вносить только входные данные и результат.

Обратите внимание на то, что в данной задаче мы вместо знаков «0» и «1» использовали плюс и минус. Это также приемлемо. Нас интересуют комбинации, где F=+. Проанализировав их, мы можем сделать следующий вывод: Ваня участвовал в краже мяча, так как во всех случаях, где F принимает значение +, И имеет положительное значение.

Пример №3

Сейчас предлагаем вам найти количество комбинаций, когда F=1. Уравнение имеет следующий вид: F=неА+В*А+неВ. Составляем таблицу истинности:

Ответ: 4 комбинации.

Построение таблиц истинности и логических функций

Логическая функция - это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений f (a , b ).

Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записывается набор аргументов, а в правой части - соответствующие значения логической функции. При построении таблицы истинности необходимо учитывать порядок выполнения логических операций.

Порядок выполнения логических операций в сложном логическом выражении:

1. инверсия;

2. конъюнкция;

3. дизъюнкция;

4. импликация;

5. эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

Алгоритм построения таблиц истинности для сложных выражений :

количество строк = 2 n + строка для заголовка ,

n - количество простых высказываний.

количество столбцов = количество переменных + количество логических операций ;

· определить количество переменных (простых выражений);

· определить количество логических операций и последовательность их выполнения.

3. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

Пример: Составить таблицу истинности логического выражения:

D = А & ( B V C )

Решение:

1. Определить количество строк:

на входе три простых высказывания: А, В, С поэтому n =3 и количество строк = 23 +1 = 9.

2. Определить количество столбцов:

простые выражения (переменные): А, В, С ;

промежуточные результаты (логические операции):

А - инверсия (обозначим через E );

B V C - операция дизъюнкции (обозначим через F );

а также искомое окончательное значение арифметического выражения:

D = А & ( B V C ) . т. е. D = E & F - это операция конъюнкции.

Заполнить столбцы с учетом таблиц истинности логических операций.

font-size:12.0pt">Построение логической функции по ее таблице истинности:

Попробуем решить обратную задачу. Пусть дана таблица истинности для некоторой логической функции Z (X ,Y ):

font-size:12.0pt">1 .

Так как строки две, получаем дизъюнкцию двух элементов: () V () .

Каждый логический элемент в этой дизъюнкции запишем в виде конъюнкции аргументов функции X и Y : ( X & Y ) V ( X & Y ).







2024 © gtavrl.ru.