Основные этапы разработки баз данных. Проектирование баз данных


При разработке БД можно выделить следующие этапы работы.

I этап. Постановка задачи.

На этом этапе формируется задание по созданию БД. В нем подробно описывается состав базы, назначение и цели ее создания, а также перечисляется, какие виды работ предполагается осуществлять в этой базе данных (отбор, дополнение, изменение данных, печать или вывод отчета и т. д).

II этап. Анализ объекта.

На этом этапе рассматривается, из каких объектов может состоять БД, каковы свойства этих объектов. После разбиения БД на отдельные объекты необходимо рассмотреть свойства каждого из этих объектов, или, другими словами, установить, какими параметрами описывается каждый объект. Все эти сведения можно располагать в виде отдельных записей и таблиц. Далее необходимо рассмотреть тип данных каждой отдельной единицы записи. Сведения о типах данных также следует занести в составляемую таблицу.

III этап. Синтез модели.

На этом этапе по проведенному выше анализу необходимо выбрать определенную модель БД. Далее рассматриваются достоинства и недостатки каждой модели и сопоставляются с требованиями и задачами создаваемой БД. После такого анализа выбирают ту модель, которая сможет максимально обеспечить реализацию поставленной задачи. После выбора модели необходимо нарисовать ее схему с указанием связей между таблицами или узлами.

IV этап. Выбор способов представления информации и программного инструментария.

После создания модели необходимо, в зависимости от выбранного программного продукта, определить форму представления информации.

В большинстве СУБД данные можно хранить в двух видах:

с использованием форм;

без использования форм.

Форма - это созданный пользователем графический интерфейс для ввода данных в базу.

V этап. Синтез компьютерной модели объекта.

В процессе создания компьютерной модели можно выделить некоторые стадии, типичные для любой СУБД.

Стадия 1. Запуск СУБД, создание нового файла базы данных или открытие созданной ранее базы.

Стадия 2. Создание исходной таблицы или таблиц.

Создавая исходную таблицу, необходимо указать имя и тип каждого поля. Имена полей не должны повторяться внутри одной таблицы. В процессе работы с БД можно дополнять таблицу новыми полями. Созданную таблицу необходимо сохранить, дав ей имя, уникальное в пределах создаваемой базы.

  • 1. Информация в таблице не должна дублироваться. Не должно быть повторений и между таблицами. Когда определенная информация хранится только в одной таблице, то и изменять ее придется только в одном месте. Это делает работу более эффективной, а также исключает возможность несовпадения информации в разных таблицах. Например, в одной таблице должны содержаться адреса и телефоны клиентов.
  • 2. Каждая таблица должна содержать информацию только на одну тему. Сведения на каждую тему обрабатываются намного легче, если они содержатся в независимых друг от друга таблицах. Например, адреса и заказы клиентов лучше хранить в разных таблицах, с тем, чтобы при удалении заказа информация о клиенте осталась в базе данных.
  • 3. Каждая таблица должна содержать необходимые поля. Каждое поле в таблице должно содержать отдельные сведения по теме таблицы. Например, в таблице с данными о клиенте могут содержаться поля с названием компании, адресом, городом, страной и номером телефона. При разработке полей для каждой таблицы необходимо помнить, что каждое поле должно быть связано с темой таблицы. Не рекомендуется включать в таблицу данные, которые являются результатом выражения. В таблице должна присутствовать вся необходимая информация. Информацию следует разбивать на наименьшие логические единицы (Например, поля "Имя" и "Фамилия", а не общее поле "Имя").
  • 4. База данных должна иметь первичный ключ. Это необходимо для того, чтобы СУБД могла связать данные из разных таблиц, например, данные о клиенте и его заказы.

Стадия 3. Создание экранных форм.

Первоначально необходимо указать таблицу, на базе которой будет создаваться форма. Ее можно создавать при помощи мастера форм, указав, какой вид она должна иметь, или самостоятельно. При создании формы можно указывать не все поля, которые содержит таблица, а только некоторые из них. Имя формы может совпадать с именем таблицы, на базе которой она создана. На основе одной таблицы можно создать несколько форм, которые могут отличаться видом или количеством используемых из данной таблицы полей. После создания форму необходимо сохранить. Созданную форму можно редактировать, изменяя местоположение, размеры и формат полей.

Стадия 4. Заполнение БД.

Процесс заполнения БД может проводиться в двух видах: в виде таблицы и в виде формы. Числовые и текстовые поля можно заполнять в виде таблицы, а поля типа МЕМО и OLE - в виде формы.

VI этап. Работа с созданной базой данных.

Работа с БД включает в себя следующие действия:

поиск необходимых сведений;

сортировка данных;

отбор данных;

вывод на печать;

изменение и дополнение данных.

Темы: этапы проектирования баз данных, проектирование базы данных на основе модели типа объект — отношение.

Перед созданием базы данных разработчик должен определить, изкаких таблиц должна состоять база данных, какие данные нужно поместить в каждую таблицу, как связать таблицы. Эти вопросы решаются на этапе проектирования базы данных.

В результате проектирования должна быть определена логическая структура базы данных, то есть состав реляционных таблиц, их структура и межтабличные связи.

Перед созданием базы данных необходимо располагать описанием выбранной предметной области, которое должно охватывать реальные объекты и процессы, определить все необходимые источники информации для удовлетворения предполагаемых запросов пользователей и определить потребности в обработке данных.

На основе такого описания на этапе проектирования базы данных определяются состав и структура данных предметной области, которые должны находиться в БД и обеспечивать выполнение необходимых запросов и задач пользователей. Структура данных предметной области может отображаться информационно-логической моделью. На основе этой модели легко создается реляционная база данных.

Этапы проектирования и создания базы данных определяются следующей последовательностью:

Построение информационно-логической модели данных предметной области;

Определение логической структуры реляционной базы данных;

Конструирование таблиц базы данных;

Создание схемы данных;

Ввод данных в таблицы (создание записей);

Разработка необходимых форм, запросов, макросов, модулей, отчетов;

Разработка пользовательского интерфейса.

В процессе разработки модели данных необходимо выделить информационные объекты, соответствующие требованиям нормализации данных, и определить связи между ними. Эта модель позволяет создать реляционную базу данных без дублирования, в которой обеспечивается однократный ввод данных при первоначальной загрузке и корректировках, а также целостность данных при внесении изменений.

При разработке модели данных могут использоваться два подхода. В первом подходе сначала определяются основные задачи, для решения которых строится база, выявляются потребности задач в данных и соответственно определяются состав и структура информационных объектов. При втором подходе сразу устанавливаются типовые объекты предметной области. Наиболее рационально сочетание обоих подходов. Это связано с тем, что на начальном этапе, как правило, нет исчерпывающих сведений обо всех задачах. Использование такой технологии тем более оправдано, что гибкие средства создания реляционных баз данных позволяют на любом этапе разработки внести изменения в базу данных и модифицировать ее структуру без ущерба для введенных ранее данных.


Процесс выделения информационных объектов предметной области, отвечающих требованиям нормализации, может производиться на основе интуитивного или формального подхода. Теоретические основы формального подхода были разработаны и полно изложены в монографиях по организации баз данных известного американского ученого Дж. Мартина.

При интуитивном подходе легко могут быть выявлены информационные объекты, соответствующие реальным объектам. Однако получаемая при этом информационно-логическая модель, как правило, требует дальнейших преобразований, в частности преобразования много-многозначных связей между объектами. При таком подходе возможны существенные ошибки, если отсутствует достаточный опыт. Последующая проверка выполнения требований нормализации обычно показывает необходимость уточнения информационных объектов.

Рассмотрим формальные правила, которые могут быть использованы для выделения информационных объектов:

На основе описания предметной области выявить документы и их атрибуты, подлежащие хранению в базе данных;

Определить функциональные зависимости между атрибутами;

Выбрать все зависимые атрибуты и указать для каждого все его ключевые атрибуты, т. е. те, от которых он зависит;

Сгруппировать атрибуты, одинаково зависимые от ключевых атрибутов. Полученные группы зависимых атрибутов вместе с их ключевыми атрибутами образуют информационные объекты.

При определении логической структуры реляционной базы данных на основе модели каждый информационный объект адекватно отображается реляционной таблицей, а связи между таблицами соответствуют связям между информационными объектами.

В процессе создания сначала конструируются таблицы базы данных, соответствующие информационным объектам построенной модели данных. Далее может создаваться схема данных, в которой фиксируются существующие логические связи между таблицами. Эти связи соответствуют связям информационных объектов. В схеме данных могут быть заданы параметры поддержания целостности базы данных, если модель данных была разработана в соответствии с требованиями нормализации. Целостность данных означает, что в БД установлены и корректно поддерживаются взаимосвязи между записями разных таблиц при загрузке, добавлении и удалении записей в связанных таблицах, а также при изменении значений ключевых полей.

После формирования схемы данных осуществляется ввод непротиворечивых данных из документов предметной области.

На основе созданной базы данных формируются необходимые запросы, формы, макросы, модули, отчеты, производящие требуемую обработку данных базы и их представление.

С помощью встроенных средств и инструментов базы данных создается пользовательский интерфейс, позволяющий управлять процессами ввода, хранения, обработки, обновления и представления информации базы данных.

Проектирование базы данных на основе модели типа объект — отношение

Имеется целый ряд методик создания информационно-логических моделей. Одна из наиболее популярных в настоящее время методик при разработке моделей использует ERD (Entity-Relationship Diagrams). В русскоязычной литературе эти диаграммы называют «объект — отношение» либо «сущность — связь». Модель ERD была предложена Питером Пин Шен Ченом в 1976 г. К настоящему времени разработано несколько ее разновидностей, но все они базируются на графических диаграммах, предложенных Ченом. Диаграммы конструируются из небольшого числа компонентов. Благодаря наглядности представления они широко используются в CASE-средствах (Computer Aided Software Engineering).

Рассмотрим используемую терминологию и обозначения.

Сущность (Entity) — реальный либо воображаемый объект, имеющий существенное значение для рассматриваемой предметной области, информация о котором подлежит хранению.

Каждая сущность должна обладать уникальным идентификатором. Каждый экземпляр сущности должен однозначно идентифицироваться и отличаться от всех других экземпляров данного типа (сущности).

Каждая сущность должна обладать некоторыми свойствами:

Иметь уникальное имя; причем к этому имени должна всегда применяться одна и та же интерпретация (определение сущности). И наоборот: одна и та же интерпретация не может применяться к различным именам, если только они не являются псевдонимами;

Обладать одним или несколькими атрибутами, которые либо принадлежат сущности, либо наследуются ею через связь;

Обладать одним или несколькими атрибутами, которые однозначно идентифицируют каждый экземпляр сущности.

Сущность может быть независимой либо зависимой. Признаком зависимой сущности служит наличие у нее наследуемых через связь атрибутов (рис. 1.).

Каждая сущность может обладать любым количеством связей с другими сущностями модели.

Связь (Relationship) — поименованная ассоциация между двумя сущностями, значимая для рассматриваемой предметной области. Одна из участвующих в связи сущностей — независимая, называется родительской сущностью, другая — зависимая, называется дочерней или сущностью-потомком. Как правило, каждый экземпляр родительской сущности ассоциирован с произвольным (в том числе нулевым) количеством экземпляров дочерней сущности. Каждый экземпляр сущности-потомка ассоциирован в точности с одним экземпляром сущности-родителя. Таким образом, экземпляр сущности-потомка может существовать только при существовании сущности-родителя.

Связи дается имя, выражаемое грамматическим оборотом глагола и помещаемое возле линии связи.

Имя каждой связи между двумя данными сущностями должно быть уникальным, но имена связей в модели не обязаны быть уникальными. Каждая связь имеет определение. Определение связи образуют соединением имени сущности-родителя, имени связи, выражения степени связи и имени сущности-потомка.

Например, связь продавца с контрактом может быть определена следующим образом:

Продавец может получить вознаграждение за один или более Контрактов;

Контракт должен быть инициирован ровно одним Продавцом.

На диаграмме связь изображается отрезком (ломаной). Концы отрезка с помощью специальных обозначений (рис. 2) указывают степень связи. Кроме того, характер линии — штриховая или сплошная, указывает обязательность связи.

Атрибут — любая характеристика сущности, значимая для рассматриваемой предметной области. Он предназначен для квалификации, идентификации, классификации, количественной характеристики или выражения состояния сущности. Атрибут представляет тип характеристик (свойств), ассоциированных с множеством реальных или абстрактных объектов (людей, мест, событий, состояний, идей, пар предметов и т. д.) (рис. 3).

Экземпляр атрибута — это определенная характеристика конкретного экземпляра сущности. Экземпляр атрибута определяется типом характеристики (например, «Цвет») и ее значением (например, «лиловый»), называемым значением атрибута. В ER-модели атрибуты ассоциируются с конкретными сущностями. Каждый экземпляр сущности должен обладать одним конкретным значением для каждого своего атрибута.

Атрибут может быть либо обязательным , либо необязательным . Обязательность означает, что атрибут не может принимать неопределенных значений (null values). Атрибут может быть либо описательным (т. е. обычным дескриптором сущности), либо входить в состав уникального идентификатора (первичного ключа).

Уникальный идентификатор — это атрибут или совокупность атрибутов и/или связей, однозначно характеризующая каждый экземпляр данного типа сущности. В случае полной идентификации экземпляр данного типа сущности полностью идентифицируется своими собственными ключевыми атрибутами, в противном случае в идентификации участвуют также атрибуты другой сущности — родителя.

Характер идентификации отображается в диаграмме на линии связи (рис. 4).

Каждый атрибут идентифицируется уникальным именем, выражаемым грамматическим оборотом существительного, описывающим представляемую атрибутом характеристику. Атрибуты изображаются в виде списка имен внутри блока ассоциированной сущности, причем каждый атрибут занимает отдельную строку. Атрибуты, определяющие первичный ключ, размещаются наверху списка и выделяются знаком «#».

Каждая сущность должна обладать хотя бы одним возможным ключом. Возможный ключ сущности — это один или несколько атрибутов, чьи значения однозначно определяют каждый экземпляр сущности. При существовании нескольких возможных ключей один из них обозначается в качестве первичного ключа, а остальные — как альтернативные ключи.

В настоящее время на основе подхода Чена создана методология IDEF1X , которая разработана с учетом таких требований, как простота изучения и возможность автоматизации. IDEFlX-диаграммы используются рядом распространенных CASE-средств (в частности, ERwin, Design/IDEF).

Сущность в методологии IDEF1X называется независимой от идентификаторов или просто независимой, если каждый экземпляр сущности может быть однозначно идентифицирован без определения его отношений с другими сущностями. Сущность называется зависимой от идентификаторов или просто зависимой, если однозначная идентификация экземпляра сущности зависит от его отношения к другой сущности (рис. 5).

Каждой сущности присваивается уникальное имя и номер, разделяемые косой чертой «/» и помещаемые над блоком.

Если экземпляр сущности-потомка однозначно определяется своей связью с сущностью-родителем, то связь называется идентифицирующей, в противном случае — неидентифицируюшей.

Идентифицирующая связь между сущностью-родителем и сущностью-потомком изображается сплошной линией. На рис. 5: №2 — зависимая сущность, Связь 1 — идентифицирующая связь. Сущность-потомок в идентифицирующей связи является зависимой от идентификатора сущностью. Сущность-родитель в идентифицирующей связи может быть как независимой, так и зависимой от идентификатора сущностью (это определяется ее связями с другими сущностями).

Штриховая линия изображает неидентифицирующую связь. На рис. 5: №4 — независимая сущность, Связь 2 — неидентифицирующая связь. Сущность-потомок в неидентифицируюшей связи будет независимой от идентификатора, если она не является также сущностью-потомком в какой-либо идентифицирующей связи.

Связь может дополнительно определяться с помощью указания степени или мощности (количества экземпляров сущности-потомка, которое может существовать для каждого экземпляра сущности-родителя).

В IDEF1X могут быть выражены следующие мощности связей:

Каждый экземпляр сущности-родителя может иметь ноль, один или более связанных с ним экземпляров сущности-потомка;

Каждый экземпляр сущности-родителя должен иметь не менее одного связанного с ним экземпляра сущности-потомка;

Каждый экземпляр сущности-родителя должен иметь не более одного связанного с ним экземпляра сущности-потомка;

Каждый экземпляр сущности-родителя связан с некоторым фиксированным числом экземпляров сущности-потомка.

Мощность связи обозначается, как показано на рис. 6 (мощность по умолчанию — N).


Атрибуты изображаются в виде списка имен внутри блока сущности. Атрибуты, определяющие первичный ключ, размещаются наверху списка и отделяются от других атрибутов горизонтальной чертой (рис. 7).

В результате получается информационно-логическая модель, которая используется рядом распространенных CASE-средств, таких, как ERwin, Design/IDEF. В свою очередь, CASE-технологии имеют высокие потенциальные возможности при разработке баз данных и информационных систем, а именно, увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы.

Сущности могут иметь также внешние ключи (Foreign Key). При идентифицирующей связи они используются в качестве части или целого первичного ключа, при неидентифицирующей — служат неключевыми атрибутами. В списке атрибутов внешний ключ отмечается буквами FK в скобках.

Этапы проектирования базы данных

Все тонкости построения информационной модели некоторой предметной области деятельности человека преследуют одну цель – получить хорошую БД. Поясним термин – хорошая БД и сформулируем требования, которым должна удовлетворять такая БД:

1. БД должна удовлетворять информационным потребностям пользователей (организаций) и по структуре и содержанию соответствовать решаемым задачам;

2. БД должна обеспечивать получение требуемых данных за приемлемое время, т.е. отвечать требованиям производительности;

3. БД должна легко расширяться при реорганизации предметной области;

4. БД должна легко изменяться при изменении программной и аппаратной среды;

5. Корректные данные, загруженные в БД, должны оставаться корректными (данные должны проверяться на корректность при их вводе).

Рассмотрим основные этапы проектирования (рис. 3.5):

Первый этап . Планирование разработки базы данных. На этом этапе выделятся наиболее эффективный способ реализации этапов жизненного цикла системы.

Второй этап . Определение требований к системе. Производится определение диапазона действий и границ приложения базы данных, а также производится сбор и анализ требований пользователей.

Третий этап . Проектирование концептуальной модели БД. Процесс создания БД начинается с определения концептуальной модели, представляющей объекты и их взаимосвязи без указания способов их физического хранения. Усилия на этом этапе должны быть направлены на структуризацию данных и выявление взаимосвязей между ними. Этот процесс можно разбить еще на несколько подэтапов:

a) Уточнение задачи. Еще перед началом работы над конкретным приложением у разработчика обычно имеются некоторые представления о том, что он будет разрабатывать. В иных случаях, когда разрабатывается небольшая персональная БД, такие представления могут быть достаточно полными. В других случаях, когда разрабатывается большая БД под заказ, таких представлений может быть очень мало, или они наверняка будут поверхностными. Сразу начинать разработку с определения таблиц, полей и связей между ними явно рановато. Такой подход может привести к полной переделке большей части приложения. Поэтому следует затратить некоторое время на составление списка всех основных задач, которые в принципе должны решаться этим приложением, включая и те, которые могут возникнуть в будущем.

Рис. 3.5. Схема проектирования БД

b) Уточнение последовательности выполнения задач. Чтобы приложение работало логично и удобно, лучше всего объединить основные задачи в группы и затем упорядочить задачи каждой группы так, чтобы они располагались в порядке их выполнения. Группировка и графическое представление последовательности их выполнения поможет определить естественный порядок выполнения задач.

c) Анализ данных. После определения списка задач необходимо для каждой задачи составить подробный перечень данных, требуемых для ее решения. После этапа анализа данных можно приступать к разработке концептуальной модели, т.е. к выделению объектов, атрибутов и связей.

Четвертый этап . Построение логической модели. Построение логической модели начинается с выбора модели данных. При выборе модели важную роль играет ее простота, наглядность и сравнение естественной структуры данных с моделью, ее представляющей. Например, если иерархическая структура присуща самим данным, то выбор иерархической модели будет предпочтительнее. Но зачастую этот выбор определяется успехом (или наличием) той или иной СУБД. То есть разработчик выбирает СУБД, а не модель данных. Таким образом, на этом этапе концептуальная модель транслируется в модель данных, совместимую с выбранной СУБД. Возможно, что отображенные в концептуальной модели взаимосвязи между объектами либо некоторые атрибуты объектов окажутся впоследствии нереализуемыми средствами выбранной СУБД. Это потребует изменения концептуальной модели. Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью . Иногда процесс определения концептуальной и логической моделей называется определением структуры данных.

Пятый этап . Построение физической модели. Физическая модель определяет размещение данных, методы доступа и технику индексирования. На этапе физического проектирования мы привязываемся к конкретной СУБД и расписываем схему данных более детально, с указанием типов, размеров полей и ограничений. Кроме разработки таблиц и индексов, на этом этапе производится также определение основных запросов.

При построении физической модели приходится решать две взаимно противоположные по своей сути задачи. Первой из них является минимизация места хранения данных, а второй – достижение максимальной производительности, целостности и безопасности данных. Например, для обеспечения высокой скорости поиска необходимо создание индексов, причем их число будет определяться всеми возможными комбинациями полей, участвующими в поиске; для восстановления данных требуется ведения журнала всех изменений и создание резервных копий БД; для эффективной работы транзакций требуется резервирование места на диске под временные объекты и т.д., что приводит к увеличению (иногда значительному) размера БД.

Шестой этап . Оценка физической модели. На этом этапе проводится оценка эксплуатационных характеристик. Здесь можно проверить эффективность выполнения запросов, скорость поиска, правильность и удобство выполнения операций с БД, целостность данных и эффективность расхода ресурсов компьютера. При неудовлетворительных эксплуатационных характеристиках возможен возврат к пересмотру физической и логической моделей данных, выбору СУБД и типа компьютера.

Седьмой этап . Реализация БД. При удовлетворительных эксплуатационных характеристиках можно перейти к созданию макета приложения, то есть набору основных таблиц, запросов, форм и отчетов. Этот предварительный макет можно продемонстрировать перед заказчиком и получить его одобрение перед детальной реализацией приложения.

Восьмой этап . Тестирование и оптимизация. Обязательным этапом является тестирование и оптимизация разработанного приложения.

Этап девятый, заключительный . Сопровождение и эксплуатация. Так как выявить и устранить все ошибки на этапе тестирования не получается, то этап сопровождения является обычным для баз данных.

Существует два основных подхода к проектированию схемы данных: нисходящий и восходящий. При восходящем подходе работа начинается с нижнего уровня – уровня определения атрибутов, которые на основе анализа существующих между ними связей группируются в отношения, представляющие объекты, и связи между ними. Процесс нормализации таблиц для реляционной модели данных является типичным примером этого подхода. Этот подход хорошо подходит для проектирования относительно небольших БД. При увеличении числа атрибутов до нескольких сотен и даже тысяч более подходящей стратегией проектирования является нисходящий подход. Начинается этот подход с определения нескольких высокоуровневых сущностей и связей между ними. Затем эти объекты детализируются до необходимого уровня. Примером такого подхода проектирования является использование модели «сущность-связь». На практике эти подходы обычно комбинируются. В этом случае можно говорить о смешанном подходе проектирования.

Этап 1. Уточнение задач

На первом этапе составляется список всех основных задач, которые в принципе должны решаться этим приложением, – включая и те, которые не нужны сегодня, но могут появиться в будущем. Под «основными» задачами понимаются функции, которые должны быть представлены в формах или отчетах приложения.

Этап 2. Последовательность выполнения задач

Для того, чтобы приложение работало логично и удобно, лучше всего объединить основные задачи в тематические группы и затем упорядочить задачи каждой группы так, чтобы они располагались в порядке их выполнения. Может получиться так, что некоторые задачи будут связаны с разными группами или, что выполнение некоторой задачи должно предшествовать выполнению другой, принадлежащей к иной группе.

Этап 3. Анализ данных

После формирования списка задач, наиболее важным этапом является составление подробного перечня всех данных, необходимых для решения каждой задачи. Некоторые данные понадобятся в качестве исходных и меняться не будут. Другие данные будут проверяться и изменяться в ходе выполнения задачи. Некоторые элементы данных могут быть удалены или добавлены. И наконец, некоторые данные будут получены с помощью вычислений: их вывод будет частью задачи, но в базу данных вноситься они не будут.

Этап 4. Определение структуры данных

После предварительного анализа всех необходимых элементов данных нужно упорядочить их по объектам и соотнести объекты с таблицами и запросами базы данных. Для реляционных баз данных типа Access используется процесс, называемый нормализацией, в результате которого вырабатывается наиболее эффективный и гибкий способ хранения данных.

Этап 5. Разработка макета приложения и пользовательского интерфейса

После задания структуры таблиц приложения, в Microsoft Access легко создать его макет с помощью форм и связать их между собой, используя несложные макросы или процедуры обработки событий. Предварительный рабочий макет легко продемонстрировать заказчику и получить его одобрение еще до детальной реализации задач приложения.

Этап 6. Создание приложения

В случае очень простых задач созданный макет является практически законченным приложением. Однако довольно часто приходится писать процедуры, позволяющие полностью автоматизировать решение всех намеченных в проекте задач. Поэтому, понадобится создать специальные связующие формы, которые обеспечивают переход от одной задачи к другой.

Этап 7. Тестирование и усовершенствование

После завершения работ по отдельным компонентам приложения необходимо проверить функционирование приложения в каждом из возможных режимов. Необходимо проверить работу макросов, для этого использовав пошаговый режим отладки, при котором будет выполняться одна конкретная макрокоманда. При использовании Visual Basic для приложений в вашем распоряжении имеются разнообразные средства отладки, позволяющие проверить работу приложения, выявить и исправить ошибки.

По мере разработки автономных разделов приложения желательно передать их заказчику для проверки их функционирования и получения мнения о необходимости внесения тех или иных изменений. После того как заказчик ознакомится с работой приложения, у него практически всегда возникают дополнительные предложения по усовершенствованию, какой бы тщательной не была предварительная проработка проекта. Пользователи часто обнаруживают, что некоторые моменты, о которых в процессе постановки задач, они говорили как об очень важных и необходимых, на самом деле не играют существенной роли при практическом использовании приложения. Выявление необходимых изменений на ранних стадиях разработки приложения позволяет существенно сократить время на последующие переделки.

Основы методологии проектирования прикладных программ были заложены в 60-е годы XX века известными специалистами Дж. Мартином, Э. Йордоном и Д. Константайном. На заре применения вычислительной техники разработка программ, поиск и устранение ошибок были настолько дорогостоящими, что опытные программисты-практики часто советовали: прежде чем написать хоть одну строку программы, стоит потратить не менее 60% всего необходимого для разработки времени на проектирование.

Современные технологии разработки прикладных программ делают построение приложений фантастически дешевым и быстрым. Квалифицированный пользователь с помощью Microsoft Access сегодня может за один вечер создать на персональном компьютере то, что на ранних ЭВМ требовало месяцев работы (если это вообще было возможным). Кроме того, сейчас стало значительно легче находить ошибки, устранять их и видоизменять проект в процессе создания приложения. Современные технологии позволяют создавать очень сложные приложения. К тому же скорость вычислений по сравнению даже с предыдущим десятилетием возросла на несколько порядков. Однако, несмотря на мощность средств, если вы не потратите значительных усилий на определение задач и принципов работы приложения, то впоследствии вам придется потерять значительно больше времени на всевозможные переделки. Если проект приложения недостаточно продуман, то добавление новых функций или устранение недостатков будет связано с большими временными и финансовыми затратами.

Рассмотрим основные этапы проектирования БД

Проектирование базы данных

В Microsoft Access, прежде чем создавать таблицы, формы и другие объекты необходимо задать структуру базы данных. Хорошая структура базы данных является основой для создания адекватной требованиям, эффективной базы данных.

Этапы проектирования базы данных

Ниже приведены основные этапы проектирования базы данных:

    Определение цели создания базы данных.

    Определение таблиц, которые должна содержать база данных.

    Определение необходимых в таблице полей.

    Задание индивидуального значения каждому полю.

    Определение связей между таблицами.

    Обновление структуры базы данных.

    Добавление данных и создание других рбъектов.6азы данных.

    Использование средств анализа в Microsoft Access.

1. Определение цели создания базы данных

На первом этапе проектирования базы данных необходимо определить цель создания базы данных, основные ее функции и информацию, которую она должна содержать. То есть нужно определить основные темы таблиц базы данных и информацию, которую будут содержать поля таблиц.

База данных должна отвечать требованиям тех, кто будет непосредственно с ней работать. Для этого нужно определить темы, которые должна покрывать база данных, отчеты, которые она должна выдавать, проанализировать формы, которые в настоящий момент используются для записи данных, сравнить создаваемую базу данных с хорошо спроектированной, подобной ей базой.

2. Определение таблиц, которые должна содержать база данных

Одним из наиболее сложных этапов в процессе проектирования базы данных является разработка таблиц, так как результаты, которые должна выдавать база данных (отчеты, выходные формы и др.) не всегда дают полное представление о структуре таблицы.

При проектировании таблиц вовсе не обязательно использовать Microsoft Access. Сначала лучше разработать структуру на бумаге. При проектировке таблиц, рекомендуется руководствоваться следующими основными принципами:

Информация в таблице не должна дублироваться. Не должно быть повторений и между таблицами.

Когда определенная информация храниться только в одной таблице, то и изменять ее придется только в одном месте. Это делает работу более эффективной, а также исключает возможность несовпадения информации в разных таблицах. Например, в одной таблице должны содержаться адреса и телефоны клиентов.

Каждая таблица должна содержать информацию только на одну тему.

Сведения на каждую тему обрабатываются намного легче, если содержаться они в независимых друг от друга таблицах. Например, адреса и заказы клиентов хранятся в разных таблицах, с тем, чтобы при удалении заказа информация о клиенте осталась в базе данных.







2024 © gtavrl.ru.