Оборудование для хранения данных. Построение бюджетной системы хранения данных


Отправить вопрос по решению По будням отвечаем
в течение часа

Андрей Оловянников, a.olovjannikov@сайт

Давайте договоримся….

Целью этой статьи является не подробное изучение различных систем хранения данных (СХД). Мы не будем анализировать всевозможные интерфейсы - программные и аппаратные - которые используются при создании разных способов хранения данных. Не будем рассматривать «узкие места» тех или иных разновидностей организации СХД. Здесь вы не увидите подробного рассмотрения протоколов iSCSI и их реализации в виде FC (Fibre Channel), SCSI и т.д.

Наша задача куда скромнее - просто «Договориться о терминологии» с нашим потенциальным покупателем. Так два физика перед началом обсуждения какой-либо проблемы, приходят к соглашению о том, какой процесс или явление они будут обозначать теми или иными словами. Это необходимо для того, чтобы сэкономить и время и нервные клетки друг друга, и проводить беседу более продуктивно и к взаимному удовольствию.

СХД или… СХД?

Начнем, как говорится, с начала.

Под СХД мы будем понимать все же Системы Хранения Данных как совокупность программно-аппаратных средств, служащих для надежного, максимально скоростного и простого способа хранения и доступа к данным для организаций разного уровня как финансовых, так и структурных особенностей. Сразу хотим обратить ваше внимание, что у различных фирм разные потребности в хранении информации в том или ином виде и разные финансовые возможности для их воплощения. Но в любом случае, хотим отметить, что сколько бы не было денег или специалистов того или иного уровня в распоряжении покупателя, мы настаиваем, что все их потребности укладываются в наше определение СХД - будь то обычный набор дисков большого объема, или сложная многоуровневая структура PCS (Parallels Cloud Storage). Это определение, по нашему мнению, включает в себя и другую широко применяющуюся аббревиатуру, переведенную на английский язык - СХД как Сеть Хранения Данных (Storage Area Network) - SAN. SAN мы немного проиллюстрируем ниже, когда будем рассказывать о типичных способах реализации СХД.

Наиболее типичный и понятный способ исполнения СХД это DAS - Direct Attached Storages - накопители, подключающиеся напрямую к компьтеру, который управляет работой этих накопителей.

Самый простой пример DAS - обычный компьютер с установленным в нем жестким диском или DVD (CD) приводом с данными. Пример посложнее (см. рис) - внешнее устройство-накопитель (внешний жесткий диск, дисковая полка, ленточный накопитель и т.д.), которые общаются с компьютером напрямую посредством того или иного протокола и интерфейса (SCSI, eSATA, FC и т.д.). Мы предлагаем в качестве устройств СХД DAS дисковые полки или Сервера Хранения Данных (еще одна аббревиатура СХД).

Сервер хранения данных в данном случае подразумевает некий компьютер с собственным процессором, ОС и достаточным количеством памяти для обработки больших массивов данных, хранящихся на многочисленных дисках внутри сервера.

Нужно отметить, что при таком воплощении СХД данные напрямую видит только компьютер с DAS, все остальные пользователи имеют доступ к данным только “с разрешения” этого компьютера.

Базовые конфигурации СХД DAS вы можете посмотреть в

Системы хранения NAS

Еще одна достаточно простая реализация СХД - NAS (Network Attached Storage) - Сетевое Хранилище Данных (опять та же аббревиатура СХД).

Как становится понятно, доступ к данным осуществляется посредством сетевых протоколов, как правило, через привычную нам компьютерную локальную сеть (хотя сейчас уже получили распространение и боле сложные доступы к данным, хранящимся на сетевых ресурсах). Самый понятный и простой пример СХД NAS - бытовое хранилище музыки и фильмов, к которому имеют доступ сразу несколько пользователей домашней сети.

NAS хранит данные в виде файловой системы и, соответственно, предоставляет доступ к ресурсам посредством сетевых файловых протоколов (NFS, SMB, AFP…).

Простой пример реализации СХД NAS см. на рис. 2.

Сразу хотим отметить, что NAS в принципе, может считаться любое интеллектуальное устройство, имеющее собственный процессор, память и достаточно быстрые сетевые интерфейсы для передачи данных по сети разным пользователям. Также особое внимание необходимо уделить схорости дисковой подсистемы. Наиболее типичные конфигурации устройств NAS вы можете посмотреть в

Storage Area Network - один из способов реализации СХД как Системы Хранения Данных - см. выше.

Это программно - аппаратное, а также архитектурное решение для подключения различных устройств хранения данных таким образом, что операционная система «видит» эти устройства как локальные. Это достигается посредством подключения этих устройств к соответствующим серверам. Сами устройства могут быть различными - дисковые массивы, ленточные библиотеки, массивы оптических накопителей.

С развитием технологий хранения данных различие между системами SAN и NAS стало весьма условным. Условно их можно различить по способу хранения данных: SAN - блочные устройства, NAS - файловая система данных.

Протоколы реализации систем SAN могут быть различные - Fibre Channel, iSCSI, AoE.

Один из архитектурных способов реализации SAN представлен на рис. 3.

Типичные примеры СХД SAN можно посмотреть в

В заключение, выразим надежду, что нам удалось «договориться о терминологии» с вами и осталось только обсудить варианты создания СХД для вашего бизнеса и подобрать решения, подходящие вам по надежности, простоте и бюджету.

Каково назначение систем хранения данных (СХД)?

Системы хранения данных предназначены для безопасного и отказоустойчивого хранения обрабатываемых данных с возможностями быстрого восстановления доступа к данным в случае сбоя в работе системы.

Какие основные разновидности СХД?

По типу реализации СХД делятся на аппаратные и программные. По области применения СХД делятся на индивидуальные, для малых рабочих групп, для рабочих групп, для предприятий, корпоративные. По типу подключения СХД делятся на:

1. DAS (Direct Attached Storage — системы с прямым подключением)

Особенностью данного типа систем является то, что контроль за доступом к данным для устройств, подключенных к сети, осуществляется сервером или рабочей станцией, к которой подключено хранилище.

2. NAS (Network Attached Storage — системы, подключаемые к ЛВС)

В данном типе систем доступ к информации, размещенной в хранилище, контролируется программным обеспечением, которое работает в самом хранилище.

3. SAN (Storage Attached Network — системы, представляющие собой сеть между серверами, которые обрабатывают данные и, собственно, СХД);

При таком способе построения системы хранения данных контроль за доступом к информации осуществляется программным обеспечением, работающим на серверах СХД. Через коммутаторы SAN производится подключение хранилища к серверам по высокопроизводительным протоколам доступа (Fibre channel, iSCSI, ATA over ethernet, и т.п.)

Каковы особенности программной и аппаратной реализации СХД?

Аппаратная реализация СХД представляет собой единый аппаратный комплекс, состоящий из устройства хранения (представляющего собой диск или массив дисков, на которых данные физически хранятся), и устройства управления (контроллер, занимающийся распределением данных между элементами хранилища).

Программная реализация СХД представляет собой распределенную систему, в которой данные хранятся без привязки к какому-либо конкретному хранилищу или серверу, и доступ к данным осуществляется посредством специализированного ПО, которое отвечает за сохранность и безопасность хранимых данных).

Начинаем новую рубрику под названием «Ликбез». Здесь будут описываться, казалось бы, всем хорошо известные вещи, но, как часто оказывается — не всем, и не настолько хорошо. Надеемся, что рубрика будет полезной.

Итак, выпуск №1 – «Системы хранения данных».

Системы хранения данных.

По-английски они называются одним словом – storage, что очень удобно. Но на русский это слово переводится довольно коряво – «хранилище». Часто на слэнге «ИТ-шников» используют слово «сторадж» в русской транскрипции, или слово «хранилка», но это уже совсем моветон. Поэтому будем использовать термин «системы хранения данных», сокращенно СХД, или просто «системы хранения».

К устройствам хранения данных можно отнести любые устройства для записи данных: т.н. «флешки», компакт-диски (CD, DVD, ZIP), ленточные накопители (Tape), жесткие диски (Hard disk, их еще называют по старинке «винчестеры», поскольку первые их модели напоминали обойму с патронами одноименной винтовки 19 века) и пр. Жесткие диски используются не только внутри компьютеров, но и как внешние USB-устройства записи информации, и даже, например, одна из первых моделей iPod’а – это небольшой жесткий диск диаметром 1,8 дюйма, с выходом на наушники и встроенным экраном.

В последнее время все большую популярность набирают т.н. «твердотельные» системы хранения SSD (Solid State Disk, или Solid State Drive), которые по принципу действия схожи с «флешкой» для фотоаппарата или смартфона, только имеют контроллер и больший объем хранимых данных. В отличие от жесткого диска, SSD-диск не имеет механически движущихся частей. Пока цены на такие системы хранения достаточно высоки, но быстро снижаются.

Все это – потребительские устройства, а среди промышленных систем следует выделить, прежде всего, аппаратные системы хранения: массивы жестких дисков, т.н. RAID-контроллеры для них, ленточные системы хранения для долговременного хранения данных. Кроме того, отдельный класс: контроллеры для систем хранения, для управления резервированием данных, создания «мгновенных снимков» (Snapshot) в системе хранения для последующего их восстановления, репликации данных и т.д.). В системы хранения данных также входят сетевые устройства (HBА, коммутаторы Fiber Channel Switch, кабели FC/SAS и пр.). И, наконец, разработаны масштабные решения по хранению данных, архивации, восстановления данных и устойчивости к катастрофам (disater recovery).

Откуда берутся данные, которые необходимо хранить? От нас, любимых, пользователей, от прикладных программ, электронной почты, а также от различного оборудования – файловых серверов, и серверов баз данных. Кроме того, поставщик большого количества данных – т.н. устройства М2М (Machine-to-Machine communication) – разного рода датчики, сенсоры, камеры и пр.

По частоте использования хранимых данных, СХД можно подразделить на системы краткосрочного хранения (online storage), хранения средней продолжительности (near-line storage) и системы долговременного хранения (offline storage).

К первым можно отнести жесткий диск (или SSD) любого персонального компьютера. Ко вторым и третьим – внешние системы хранения DAS (Direct Attached Storage), которые могут представлять собой массив внешних, по отношению к компьютеру, дисков (Disk Array). Их, в свою очередь также можно подразделить на «просто массив дисков» JBOD (Just a Bunch Of Disks) и массив с управляющим контроллером iDAS (intelligent disk array storage).

Внешние системы хранения бывают трех типов DAS (Direct Attached Storage), SAN (Storage Area Network) и NAS (Network attached Storage). К сожалению, даже многие опытные ИТ-шники не могут объяснить разницу между SAN и NAS, говоря, что когда-то эта разница была, а теперь – ее, якобы, уже и нет. На самом деле, разница есть, и существенная (см. рис. 1).

Рисунок 1. Различие между SAN и NAS.

В SAN с системой хранения связаны фактически сами серверы через сеть области хранения данных SAN. В случае NAS – сетевые серверы связаны через локальную сеть LAN с общей файловой системой в RAID.

Основные протоколы подключения СХД

Протокол SCSI (Small Computer System Interface), произносится как «скáзи», протокол, разработанный в середине 80-х годов для подключения внешних устройств к мини-компьютерам. Его версия SCSI-3 является основой для всех протоколов связи систем хранения данных и использует общую систему команд SCSI. Его основные преимущества: независимость от используемого сервера, возможность параллельной работы нескольких устройств, высокая скорость передачи данных. Недостатки: ограниченность числа подключенных устройств, дальность соединения сильно ограничена.

Протокол FC (Fiber Channel), внутренний протокол между сервером и совместно используемой СХД, контроллером, дисками. Это широко используемый протокол последовательной связи, работающий на скоростях 4 или 8 Гигабит в секунду (Gbps). Он, как явствует из его названия, работает через оптоволокно (fiber), но и по меди тоже может работать. Fiber Channel – основной протокол для систем хранения FC SAN.

Протокол iSCSI (Internet Small Computer System Interface), стандартный протокол для передачи блоков данных поверх широко известного протокола TCP/IP т.е. «SCSI over IP». iSCSI может рассматриваться как высокоскоростное недорогое решение для систем хранения, подключаемых удаленно, через Интернет. iSCSI инкапсулирует команды SCSI в пакеты TCP/IP для передачи их по IP-сети.

Протокол SAS (Serial Attached SCSI). SAS использует последовательную передачу данных и совместим с жесткими дисками SATA. В настоящий момент SAS может передавать данные со скоростью 3 Гбит/с или 6 Гбит/с, и поддерживает режим полного дуплекса, т.е. может передавать данные в обе стороны с одинаковой скоростью.

Типы систем хранения.

Можно различить три основных типа систем хранения:

  • DAS (Direct Attached Storage)
  • NAS (Network attached Storage)
  • SAN (Storage Area Network)

СХД c непосредственном подключением дисков DAS были разработаны еще в конце 70-х годов, вследствие взрывного увеличения пользовательских данных, которые уже просто физически не помещались во внутренней долговременной памяти компьютеров (для молодых сделаем примечание, что здесь речь идет не о персоналках, их тогда еще не было, а больших компьютерах, т.н. мейнфреймах). Скорость передачи данных в DAS была не очень высокой, от 20 до 80 Мбит/с, но для тогдашних нужд её вполне хватало.

Рисунок 2. DAS

СХД с сетевым подключением NAS появились в начале 90-х годов. Причиной стало быстрое развитие сетей и критические требования к совместному использованию больших массивов данных в пределах предприятия или сети оператора. В NAS использовалась специальная сетевая файловая система CIFS (Windows) или NFS (Linux), поэтому разные серверы разных пользователей могли считывать один и тот же файл из NAS одновременно. Скорость передачи данных была уже повыше: 1 – 10 Гбит/с.

Рисунок 3. NAS

В середине 90-х появились сети для подключения устройств хранения FC SAN. Их разработка была вызвана необходимостью организации разбросанных по сети данных. Одно устройство хранения в SAN может быть разбито на несколько небольших узлов, называемых LUN (Logical Unit Number), каждый из которых принадлежит одному серверу. Скорость передачи данных возросла до 2-8 Гбит/с. Такие СХД могли обеспечивать технологии защиты данных от потерь (snapshot, backup).

Рисунок 4. FC SAN

Другая разновидность SAN – IP SAN (IP Storage Area Network), разработанная в начале 2000-х годов. FC SAN были дороги, сложны в управлении, а сети протокола IP находились на пике развития, поэтому и появился этот стандарт. СХД подключались к серверам при помощи iSCSI-контроллера через IP-коммутаторы и обеспечивали скорость передачи данных 1 – 10 Гбит/с.

Рис.5. IP SAN.

В таблице ниже показаны некоторые сравнительные характеристики всех рассмотренных систем хранения:

Тип NAS SAN
Параметр FC SAN IP SAN DAS
Тип передачи SCSI, FC, SAS FC IP IP
Тип данных Блок данных Файл Блок данных Блок данных
Типичное приложение Любое Файл-сервер Базы данных Видео-наблюдение
Преимущество Превосходная совместимость Легкость установки, низкая стоимость Хорошая масштаби-руемость Хорошая масштаби-руемость
Недостатки Трудность управления.

Неэффективное использование ресурсов. Плохая масштабиру-емость

Низкая производительность.

Ограничения в применимости

Высокая стоимость.

Сложность конфигурации масштабирования

Низкая производи-тельность

Кратко, SAN предназначены для передачи массивных блоков данных в СХД, в то время как NAS обеспечивают доступ к данным на уровне файлов. Комбинацией SAN + NAS можно получить высокую степень интеграции данных, высокопроизводительный и совместный доступ к файлам. Такие системы получили название unified storage – «унифицированные системы хранения».

Унифицированные системы хранения: архитектура сетевых СХД, которая поддерживает как файлово-ориентированную систему NAS, так и блоко-ориентированную систему SAN. Такие системы были разработаны в начале 2000-х годов с целью разрешить проблемы администрирования и высокой суммарной стоимости владения раздельными системами на одном предприятии. Эта СХД поддерживает практически все протоколы: FC, iSCSI, FCoE, NFS, CIFS.

Жесткие диски

Все жесткие диски можно подразделить на два основных типа: HDD (Нard Disk Drive, что, собственно, и переводится как «жесткий диск») и SSD (Solid State Drive, – т.н. «твердотельный диск»). То есть, и тот и другой диск – жесткие. Что же тогда «мягкий диск», такие вообще бывают? Да, в прошлом были, назывались «флоппи-диски» (так их прозвали из-за характерного “хлопающего” звука в дисководе при работе). Приводы для них ещё можно увидеть в системных блоках старых компьютеров, которые сохранились в некоторых госучреждениях. Однако, при всем желании, такие магнитные диски их вряд ли можно отнести к СИСТЕМАМ хранения. Это были некие аналоги теперешних «флешек», хотя и очень небольшой ёмкости.

Различие HDD и SSD в том, что HDD имеет внутри несколько соосных магнитных дисков и сложную механику, перемещающую магнитные головки считывания-записи, а SSD совсем не имеет механически движущихся частей, и представляет собой, по сути, микросхему, запрессованную в пластик. Поэтому называть «жесткими дисками» только HDD, строго говоря, некорректно.

Жесткие диски можно классифицировать по следующим параметрам:

  • Конструктивное исполнение: HDD, SSD;
  • Диаметру HDD в дюймах: 3.5 , 2.5, 1.8 дюйма;
  • Интерфейсу: ATA/IDE, SATA/NL SAS, SCSI, SAS, FC
  • Классу использования: индивидуальные (desktop class), корпоративные (enterprsie class).
Параметр SATA SAS NL-SAS SSD
Скорость вращения (RPM) 7200 15000/10000 7200 NA
Типичная ёмкость (TБ) 1T/2T/3T 0.3T/0.6T/0.9T 2T/3T/4T 0.1T/0.2T/0.4T
MTBF (час) 1 200 000 1 600 000 1 200 000 2 000 000
Примечания Развитие жестких дисков ATA с последовательной передачей данных.

SATA 2.0 поддерживает скорости передачи 300MБ/с, SATA3.0 поддерживает до 600MБ/с.

Среднегодовой % отказов AFR (Annualized Failure Rate) для дисков SATA – около 2%.

Жесткие диски SATA с интерфейсом SAS подходят для иерархических (tiering). Среднегодовой % отказов AFR (Annualized Failure Rate) для дисков NL-SAS около 2%. Твердотельные диски выполненные из электронных микросхем памяти, включая устройство управления и чип (FLASH/DRAM). Спецификация интерфейса, функции и метод использования такие же, как у HDD, размер и форма – тоже.

Характеристики жестких дисков.

  • Ёмкость

В современных жестких дисках емкость измеряется в гигабайтах или терабайтах. Для HDD эта величина кратна ёмкости одного магнитного диска внутри коробки, умноженной на число магнитных, которых обычно бывает несколько.

  • Скорость вращения (только для HDD)

Скорость вращения магнитных дисков внутри привода, измеряется в оборотах в минуту RPМ (Rotation Per Minute), обычно составляет 5400 RPM или 7200 RPM. HDD с интерфейсами SCSI/SAS имеют скорость вращения 10000-15000 RPM.

  • Среднее время доступа = Среднее время поиска (Mean seek time) + Среднее время ожидания (Mean wait time), т.е. время извлечения информации с диска.
  • Скорость передачи данных

Это скорости считывания и записи данных на жестком диске, измеряемая в мегабайтах в секунду (MB/S).

  • IOPS (Input/Output Per Second)

Число операций ввода-вывода (или чтения-записи) в секунду (Input/Output Operations Per Second), один из основных индикаторов измерения производительности диска. Для приложений с частыми операциями чтения и записи, таких как OLTP (Online Transaction Processing) – онлайн-обработка транзакций, IOPS – самый важный показатель, т.к. именно от него зависит быстродействие бизнес-приложения. Другой важный показатель – data throughput, что примерно можно перевести как «пропускная способность передачи данных», что показывает, какой объем данных можно передать за единицу времени.

RAID

Как бы ни были надёжны жесткие диски, а все же данные в них иногда теряются, по разным причинам. Поэтому была предложена технология RAID (Redundant Array of Independent Disks) – массив независимых дисков с избыточностью хранения данных. Избыточность означает то, что все байты данных при записи на один диск дублируются на другом диске, и могут быть использованы в том случае, если первый диск откажет. Кроме того, эта технология помогает увеличить IOPS.

Основные понятия RAID – stripping (т.н. «располосование» или разделение) и mirroring (т.н. «зеркалирование», или дублирование) данных. Их сочетания определяют различные виды RAID-массивов жестких дисков.

Различают следующие уровни RAID-массивов:

Комбинации этих видов порождают еще несколько новых видов RAID:

Рисунок поясняет принцип выполнения RAID 0 (разделение):

Рис. 6. RAID 0.

А так выполняется RAID 1 (дублирование):

Рис. 7. RAID 1.

А вот так работает RAID 3. XOR – логическая функция “исключающее ИЛИ” (eXclusive OR). При помощи неё вычисляется значение паритета для блоков данных A, B, C, D… , который записывается на отдельный диск.

Рис. 8. RAID 3.

Вышеприведенные схемы хорошо иллюстрируют принцип действия RAID и в комментариях не нуждаются. Мы не будем приводить схемы работы остальных уровней RAID, желающие могут их найти в Интернете.

Основные характеристики видов RAID приведены в таблице.

Программное обеспечение систем хранения

Программное обеспечение для систем хранения можно подразделить на следующие категории:

  1. Управление и администрирование (Management): управление и задание параметров инфраструктуры: вентиляции, охлаждения, режимы работы дисков и пр., управление по времени суток и пр.
  2. Защита данных: Snapshot («моментальный снимок» состояния диска), копирование содержимого LUN, множественное дублирование (split mirror), удаленное дублирование данных (Remote Replication), непрерывная защита данных CDP (Continuous Data Protection) и др.
  3. Повышение надежности: различное ПО для множественного копирования и резервирования маршрутов передачи данных внутри ЦОД и между ними.
  4. Повышение эффективности: Технология тонкого резервирования (Thin Provisioning), автоматическое разделение системы хранения на уровни (tiered storage), устранение повторений данных (deduplication), управление качеством сервиса, предварительное извлечение из кэш-памяти (cache prefetch), разделение данных (partitioning), автоматическая миграция данных, снижение скорости вращения диска (disk spin down)

Очень интересна технология «thin provisioning ». Как это часто бывает в ИТ, термины часто трудно поддаются адекватному переводу на русский язык, например, трудно точно перевести слово «provisioning» («обеспечение», «поддержка», «предоставление» – ни один из этих терминов не передает смысл полностью). А уж когда оно – «тонкое» (thin)…

Для иллюстрации принципа «thin provisioning», можно привести банковский кредит. Когда банк выпускает десять тысяч кредитных карт с лимитом в 500 тысяч, ему не нужно иметь на счету 5 миллиардов, чтобы этот объем кредитов обслуживать. Пользователи кредитных карт обычно не тратят весь кредит сразу, и используют лишь его малую часть. Тем не менее, каждый пользователь в отдельности может воспользоваться всей или почти всей суммой кредита, если общий объем средств банка не исчерпан.

Рис. 9. Thin provisioning .

Таким образом, использование thin provisioning позволяет решить проблему неэффективного распределения пространства в SAN, сэкономить место, облегчить административные процедуры распределения пространства приложениям на хранилище, и использовать так называемый oversubscribing, то есть выделить приложениям места больше, чем мы располагаем физически, в расчете на то, что приложения не затребуют одновременно все пространство. По мере же возникновения в нем потребности позже возможно увеличить физическую емкость хранилища.

Разделение системы хранения на уровни (tiered storage) предполагает, что различные данные хранятся в устройствах хранения, быстродействие которых соответствует частоте обращения к этим данным. Например, часто используемые данные можно размещать в «online storage» на дисках SSD с высокой скоростью доступа, высокой производительностью. Однако, цена таких дисков пока высока, поэтому их целесообразно использовать только для online storage (пока).

Скорость дисков FC/SAS также достаточно высока, а цена умерена. Поэтому такие диски хорошо походят для «near-line storage», где хранятся данные, обращения к которым происходят не так часто, но в то же время и не так редко.

Наконец, диски SATA/NL-SAS имеют относительно невысокую скорость доступа, но зато отличаются большой емкостью и относительно дешевы. Поэтому на них обычно делают offline storage, для данных редкого использования.

Как только система управления замечает, что обращения к данным в offline storage участились, она переводит их в near-line storage, а при дальнейшей активизации их использования – и в online storage на дисках SSD.

Дедупликация (устранение повторений) данных (deduplication, DEDUP). Как следует из названия, дедупликация устраняет повторы данных на пространстве диска, обычно используемого в части резервирования данных. Хотя система неспособна определить, какая информация избыточна, она может определить наличие повторов данных. За счет этого становится возможным значительно сократить требования к емкости системы резервирования.

Снижение скорости вращения диска (Disk spin-down ) – то, что обычно называют «гибернацией» (засыпанием) диска. Если данные на каком-то диске не используются долгое время, то Disk spin-down переводит его в режим гибернации, чтобы снизить потребление энергии на бесполезное вращение диска на обычной скорости. При этом также повышается срок службы диска и увеличивается надежность системы в целом. При поступлении нового запроса к данным на этом диске, он «просыпается» и скорость его вращения увеличивается до обычной. Платой за экономию энергии и повышение надежности является некоторая задержка при первом обращении к данным на диске, но эта плата вполне оправдана.

«Моментальный снимок» состояния диска (Snapshot ). Snapshot – это полностью пригодная к использованию копия определенного набора данных на диске на момент съёма этой копии (поэтому она и называется «моментальным снимком»). Такая копия используется для частичного восстановления состояния системы на момент копирования. При этом непрерывность работы системы совершенно не затрагивается, и быстродействие не ухудшается.

Удаленная репликация данных (Remote Replication) : работает с использованием технологии зеркалирования (Mirroring). Может поддерживать несколько копий данных на двух или более сайтах для предотвращения потери данных в случае стихийных бедствий. Существует два типа репликации: синхронная и асинхронная, различие между ними пояснено на рисунке.

Рис. 10. Удаленная репликация данных (Remote Replication).

Непрерывная защита данных CDP (Continuous data protection) , также известная как continuous backup или real-time backup, представляет собой создание резервной копии автоматически при каждом изменении данных. При этом становится возможным восстановление данных при любых авариях в любой момент времени, причем при этом доступны актуальная копия данных, а не тех, что были несколько минут или часов назад.

Программы управления и администрирования (Management Software): сюда входит разнообразное программное обеспечение по управлению и администрированию различных устройств: простые программы конфигурации (cofiguration wizards), программы централизованного мониторинга: отображение топологии, мониторинг в реальном времени механизмы формирования отчетов о сбоях. Также сюда входят программы «гарантии непрерывности бизнеса» (Business Guarantee): многоразмерная статистика производительности, отчеты и запросы производительности и пр.

Восстановление при стихийных бедствиях (DR, Disaster Recovery) . Это довольно важная составляющая серьезных промышленных СХД, хотя и достаточно затратная. Но эти затраты необходимо нести, чтобы не потерять в одночасье «то, что нажито непосильным трудом». Рассмотренные выше системы защиты данных (Snapshot, Remote Replication, CDP) хороши до тех пор, пока в населённом пункте, где расположена система хранения не произошло какое-либо стихийное бедствие: цунами, наводнение, землетрясение или (тьфу-тьфу-тьфу) – ядерная война. Да и любая война тоже способна сильно подпортить жизнь людям, которые занимаются полезными делами, например, хранением данных, а не беганием с автоматом с целью оттяпать себе чужие территории или наказать каких-нибудь «неверных». Удаленная репликация подразумевает, что реплицирующая СХД находится в том же самом городе, или как минимум поблизости. Что, например, при цунами не спасает.

Технология Disaster Recovery предполагает, что центр резервирования, используемый для восстановления данных при стихийных бедствиях, располагается на значительном удалении от места основного ЦОД, и взаимодействует с ним по сети передачи данных, наложенной на транспортную сеть, чаще всего оптическую. Использовать при таком расположении основного и резервного ЦОД, например, технологию CDP будет просто невозможно технически.

В технологии DR используются три основополагающих понятия:

  • BW (Backup Window) – «окно резервирования», время, необходимое для системы резервирования для того, чтобы скопировать принятый объем данных рабочей системы.
  • RPO (Recovery Point Objective) – «Допустимая точка восстановления», максимальный период времени и соответствующий объем данных, который допустимо потерять для пользователя СХД.
  • RTO (Recovery Time Objective) – «допустимое время недоступности», максимальное время, в течение которого СХД может быть недоступной, без критического воздействия на основной бизнес.

Рис. 11. Три основополагающих понятия технологии DR.

* * *

Данное эссе не претендует на полноту изложения и лишь поясняет основные принципы работы СХД, хотя и далеко не в полном объеме. В различных источниках в Интернете содержится много документов, более подробно описывающих все изложенные (и не изложенные) здесь моменты.

Продолжение темы СХД об объектных системах хранения – .

Как известно, в последнее время наблюдается интенсивное увеличение объемов накапливаемой информации и данных. Исследование, проведенное IDC «Цифровая вселенная», продемонстрировало, что мировой объем цифровой информации к 2020 г. способен увеличиться с 4,4 зеттебайт до 44 зеттебайт. По словам экспертов, каждые два года объем цифровой информации удваивается. Поэтому сегодня чрезвычайно актуальной является проблема не только обработки информации, но также и ее хранения.

Для решения данного вопроса в настоящее время наблюдается весьма активное развитие такого направления, как развитие СХД (сетей/систем хранения данных). Попробуем разобраться, что именно современная ИТ-индустрия подразумевает под понятием «система хранения данных».

СХД – это программно-аппаратное комплексное решение, направленное на организацию надежного и качественного хранения различных информационных ресурсов, а также предоставления бесперебойного доступа к этим ресурсам.

Создание подобного комплекса должно помочь в решении самых разных задач, встающих перед современным бизнесом в ходе построения цельной информационной системы.

Основные компоненты СХД :

Устройства хранения (ленточная библиотека, внутренний либо внешний дисковый массив);

Система мониторинга и управления;

Подсистема резервного копирования/ архивирования данных;

Программное обеспечение управления хранением;

Инфраструктура доступа ко всем устройствам хранения.

Основные задачи

Рассмотрим наиболее типичные задачи:

Децентрализация информации. Некоторые организации обладают развитой филиальной структурой. Каждое отдельное подразделение такой организации должно обладать свободным доступом ко всей информации, необходимой ему для работы. Современные СХД взаимодействуют с пользователями, которые находится на большом расстоянии от центра, где выполняется обработка данных, поэтому способны решить эту задачу.

Невозможность предусмотреть конечные требуемые ресурсы. Во время планирования проекта определить, с каким именно объемами информации придется работать во время эксплуатации системы, бывает крайне сложно. Кроме этого, постоянно увеличивается масса накапливаемых данных. Большинство современных СХД обладает поддержкой масштабируемости (способности наращивать свою производительность после добавления ресурсов), поэтому мощность системы можно будет увеличивать пропорционально возрастанию нагрузок (производить апгрейд).

Безопасность всей хранимой информации. Проконтролировать, а также ограничить доступ к информационным ресурсам предприятия бывает довольно сложно. Неквалифицированные действия обслуживающего персонала и пользователей, умышленные попытки вредительства – все это способно нанести хранящимся данным значительный вред. Современные СХД используют различные схемы отказоустойчивости, позволяющие противостоять как умышленным диверсиям, так и неумелым действиям неквалифицированных сотрудников, сохранив тем самым работоспособность системы.

Сложность управления распределенными информационными потоками – любое действие, направленное на изменение распределенных информационных данных в одном из филиалов, неизбежно создает ряд проблем – от сложности синхронизации разных баз данных и версий файлов разработчиков до ненужного дублирования информации. Программные продукты управления, поставляемые вместе с СХД , помогут вам оптимально упростить и эффективно оптимизировать работу с хранимой информацией.

Высокие расходы. Как показали результаты проведенного IDC Perspectives исследования, расходы на хранение данных составляют порядка двадцати трех процентов от всех расходов на IT. Эти расходы включают стоимость программной и аппаратной частей комплекса, выплаты обслуживающему персоналу и пр. Использование СХД позволяет сэкономить на администрировании системы, а также обеспечивает снижение расходов на персонал.


Основные типы СХД

Все системы хранения данных подразделяются на 2 типа: ленточные и дисковые СХД . Каждый из двух вышеупомянутых видов делится, в свою очередь, на несколько подвидов.

Дисковые СХД

Такие системы хранения данных используются для создания резервных промежуточных копий, а также оперативной работы с различными данными.

Дисковые СХД подразделяются на следующие подвиды:

Устройства для резервных копий (различные дисковые библиотеки);

Устройства для рабочих данных (оборудование, характеризующееся высокой производительностью);

Устройства, используемые для длительного хранения архивов.


Ленточные СХД

Используются для создания архивов, а также резервных копий.

Ленточные СХД подразделяются на следующие подвиды:

Ленточные библиотеки (два либо более накопителей, большое количество слотов для лент);

Автозагрузчики (1 накопитель, несколько слотов, предназначенных для лент);

Отдельные накопители.

Основные интерфейсы подключения

Выше мы рассмотрели основные типы систем, а теперь давайте разберемся подробнее со структурой самих СХД . Современные системы хранения данных подразделяются в соответствии с типом используемых ими интерфейсов подключения хостов. Рассмотрим ниже 2 наиболее распространенных внешних интерфейса подключения - SCSI и FibreChannel. Интерфейс SCSI напоминает широко распространенный IDE и представляет собой параллельный интерфейс, который допускает размещение на одной шине от шестнадцати устройств (для IDE, как известно, два устройства на канал). Максимальная скорость SCSI протокола сегодня составляет 320 мегабайт в секунду (версия, которая будет обеспечивать скорость в 640 мегабайт в секунду, сегодня находится в разработке). Недостатки SCSI следующие – неудобные, не обладающие помехозащищенностью, слишком толстые кабели, максимальная длина которых не превышает двадцати пяти метров. Сам протокол SCSI тоже накладывает определенные ограничения – как правило, это 1 инициатор на шине плюс ведомые устройства (стримеры, диски и пр.).

Интерфейс FibreChannel используется реже, чем интерфейс SCSI, так как оборудование, используемое для данного интерфейса, стоит дороже. Кроме этого, FibreChannel используется для развертывания крупных SAN сетей хранения данных, поэтому используется он только в крупных компаниях. Расстояния могут быть, практически, любыми – от стандартных трехсот метров на типовом оборудовании до двух тысяч километров для мощных коммутаторов («директоров»). Основным преимуществом интерфейса FibreChannel является возможность объединить многие устройства хранения и хосты (сервера) в общую SAN сеть хранения данных. Менее важными преимуществами являются: большие, чем со SCSI, расстояния, возможность агрегирования каналов и резервирования путей доступа, возможность «горячего подключения» оборудования, более высокая помехозащищенность. Используются двухжильные одно- и многомодовые оптические кабели (с коннекторами типа SC либо LC), а также SFP – оптические трансмиттеры, изготавливаемые на основе лазерных либо светодиодных излучателей (от этих компонентов зависит максимальное расстояние между используемыми устройствами, а также скорость передачи).

Варианты топологий СХД

Традиционно СХД используется для подключения серверов к DAS – системе хранения данных. Кроме DAS существуют еще и NAS – устройства хранения данных, которые подключаются к сети, а также SAN – составляющие сетей хранения данных. SAN и NAS системы были созданы как альтернатива архитектуре DAS. При этом каждое из вышеупомянутых решений разрабатывалось в качестве ответа на постоянно увеличивающиеся требования к современным системам хранения данных и основывалось на применении доступных на тот момент технологий.

Архитектуры первых сетевых систем хранения разработаны были в 1990-х годах для устранения наиболее ощутимых недостатков DAS систем. Сетевые решения в сфере систем хранения были предназначены для реализации вышеперечисленных задач: снижения затрат и сложности управления данными, уменьшения трафика локальных сетей, повышения общей производительности и степени готовности данных. При этом архитектуры SAN и NAS решают разные аспекты одной общей проблемы. В результате одновременно стали существовать 2 сетевые архитектуры. Каждая из них обладает собственными функциональными возможностями и преимуществами.

DAS


(D irect A ttached S torage) – это архитектурное решение, используемое в случаях, когда устройство, применяемое для хранения цифровых данных, подключено по протоколу SAS через интерфейс непосредственно к серверу либо к рабочей станции.


Основные преимущества DAS систем: невысокая, сравнительно с остальными решениями СХД, стоимость, простота развертывания, а также администрирования, высокоскоростной обмен данными между сервером и системой хранения.

Вышеперечисленные преимущества позволили DAS системам стать чрезвычайно популярными в сегменте небольших корпоративных сетей, хостинг-провайдеров и малых офисов. Но при этом у DAS-систем имеются и свои недостатки, например, не оптимальная утилизация ресурсов, объясняемая тем, что для каждой DAS-системы требуется подключение выделенного сервера, кроме этого, каждая такая система позволяет подключить к дисковой полке не больше двух серверов в определенной конфигурации.

Преимущества:

Доступная стоимость. СХД представляет собой по сути установленную за пределами сервера дисковую корзину, снабженную жесткими дисками.

Обеспечение высокоскоростного обмена между сервером и дисковым массивом.


Недостатки:

Недостаточная надежность – в случае аварии либо возникновения в сети каких-либо проблем сервера перестают быть доступными ряду пользователей.

Высокая латентность, возникающая из-за того, что все запросы обрабатываются одним сервером.

Низкая управляемость – доступность всей емкости одному серверу уменьшает гибкость распределения данных.

Низкая утилизация ресурсов – требуемые объемы данных предсказать сложно: одни устройства DAS в организации могут испытывать избыток емкости, а другим может ее не хватать, поскольку перераспределение емкости обычно бывает слишком трудоемким либо вовсе невозможным.

NAS


(N etwork A ttached S torage) – это интегрированная отдельно стоящая дисковая система, включающая в себя NAS сервер с собственной специализированной операционной системой и набором полезных для пользователей функций, обеспечивающих быстрый запуск системы, а также доступ к любым файлам. Подключается система к обыкновенной компьютерной сети, позволяя пользователям данной сети решить проблему недостатка свободного дискового пространства.

NAS - хранилище, которое подключается к сети как обычное сетевое устройство, обеспечивая файловый доступ к цифровым данным. Любое устройство NAS представляет собой комбинацию системы хранения данных и сервера, к которому подключена эта система. Простейшим вариантом NAS устройства является сетевой сервер, который предоставляет файловые ресурсы.

Состоят NAS устройства из головного устройства, которое выполняет обработку данных, а также соединяет цепочку дисков в единую сеть. NAS обеспечивают использование систем хранения данных в сетях Ethernet. Совместный доступ к файлам организуется в них при помощи протокола TCP/IP. Подобные устройства обеспечивают совместное использование файлов даже теми клиентами, системы которых функционируют под управлением разных операционных систем. В отличие от DAS архитектуры, в NAS системах сервера для повышения общей емкости в автономный режим можно не переводить; добавлять диски в структуру NAS можно посредством простого подключения устройства в сеть.

NAS технология развивается сегодня в качестве альтернативы универсальным серверам, несущим в себе большое количество различных функций (электронная почта, факс сервер, приложения, печать и пр.). NAS-устройства, в отличие от универсальных серверов, выполняют всего одну функцию – файлового сервера, стараясь делать это максимально быстро, просто и качественно.

Подключение NAS к ЛВС обеспечивает доступ к цифровой информации неограниченному числу гетерогенных клиентов (то есть клиентов с разными операционными системами) либо другим серверам. Сегодня практически все устройства NAS используются в сетях Ethernet на основе TCP/IP протоколов. Доступ к NAS устройствам осуществляется посредством использования специальных протоколов доступа. Самые распространенные протоколы файлового доступа – DAFS, NFS, CIFS. Внутри таких серверов устанавливаются специализированные операционные системы.

NAS-устройство может выглядеть как обычная «коробочка», снабженная одним портом Ethernet, а также парой жестких дисков, а может представлять собой огромную систему, снабженную несколькими специализированными серверами, огромным количеством дисков, а также внешних Ethernet-портов. Иногда устройства NAS представляют собой часть SAN-сети. В этом случае они собственных накопителей не имеют, а лишь предоставляют доступ к тем данным, которые располагаются на блочных устройствах. В данном случае NAS выступает как мощный специализированный сервер, а SAN – как устройство хранения данных. Из SAN и NAS компонентов в данном случае формируется единая DAS топология.

Преимущества

Невысокая стоимость, доступность ресурсов для отдельных серверов, а также для любого компьютера организации.

Универсальность (один сервер способен обслуживать клиентов Unix, Novell, MS, Mac).

Простота развертывания, а также администрирования.

Простота совместного использования ресурсов.


Недостатки

Доступ к информации посредством протоколов сетевых файловых систем часто бывает более медленным, чем доступ к локальному диску.

Большая часть доступных по цене NAS-серверов не в состоянии обеспечивать гибкий, скоростной метод доступа, который обеспечивается современными SAN системами (на уровне блоков, а не файлов).

SAN


(S torage A rea N etwork) - это архитектурное решение позволяет подключать к серверам внешние устройства хранения данных (ленточные библиотеки, дисковые массивы, оптические накопители и пр.). При таком подключении внешние устройства распознаются операционной системой как локальные. Использование SAN сети позволяет снизить совокупную стоимость содержания системы хранения данных и позволяет современным организациям организовать надежное хранение своей информации.

Простейший вариант SAN – это СХД , сервера и коммутаторы, объединенные оптическими каналами связи. Кроме дисковых систем хранения данных, в SAN могут быть подключены дисковые библиотеки, стримеры (ленточные библиотеки), устройства, используемые для хранения информации на оптических дисках и пр.

Преимущества

Надежностью доступа к тем данным, которые находятся на внешних системах.

Независимость SAN топологии от используемых серверов и систем хранения данных.

Безопасность и надежность централизованного хранения данных.

Удобство централизованного управления данными и коммутацией.

Возможность перенести в отдельную сеть трафика ввода-вывода, обеспечивающая разгрузку LAN.

Низкая латентность и высокое быстродействие.

Гибкость и масштабируемость логической структуры SAN.

Фактическая неограниченность географических размеров SAN.

Возможность оперативного распределения ресурсов между серверами.

Простота схемы резервного копирования, обеспечиваемая тем, что все данные располагаются в одном месте.

Возможность создания отказоустойчивых кластерных решений на основе имеющейся SAN без дополнительных затрат.

Наличие дополнительных сервисов и возможностей, таких как удаленная репликация, снапшоты и пр.

Высокий уровень безопасности SAN/


Единственным недостатком подобных решений является их высокая стоимость. В целом, отечественный рынок систем хранения данных отстает от рынка развитых западных государств, для которого характерно широкое использование СХД . Высокая стоимость и дефицит скоростных каналов связи – главные причины, тормозящие развитие российского рынка СХД .

RAID

Говоря о системах хранения данных, обязательно следует рассмотреть и одну и главных технологий, лежащих в основе работы таких систем и повсеместно используемых в современной IT-индустрии. Мы имеем в виду RAID-массивы.

RAID-массив состоит из нескольких дисков, которые управляются контроллером и связаны между собой посредством скоростных каналов передачи данных. Внешней системой такие диски (запоминающие устройства) воспринимаются в качестве единого целого. Тип используемого массива непосредственным образом влияет на степень быстродействия и отказоустойчивости. RAID-массивы используются для увеличения надежности хранения данных, а также для повышения скорости записи/чтения.

Существует несколько уровней RAID, используемых при создании сетей хранения данных. Чаще всего используются следующие уровни:

1. Это дисковый массив увеличенной производительности, без отказоустойчивости, с чередованием.
Информация разбивается на отдельные блоки данных. Записывается она одновременно на два либо несколько дисков.

Плюсы:

Суммируется объем памяти.

Значительное увеличение производительности (количество дисков непосредственно влияет на кратность повышения производительности).


Минусы:

Надежность RAID 0 ниже надежности даже самого ненадежного диска, поскольку в случае отказа любого из дисков, весь массив становится неработоспособным.


2. – дисковый зеркальный массив. Этот массив состоит из пары дисков, полностью копирующих друг друга.

Плюсы:

Обеспечение при распараллеливании запросов приемлемой скорости записи, а также выигрыша по скорости чтения.

Обеспечение высокой надежности – дисковый массив такого типа функционирует до того времени, пока в нем работает хотя бы 1 диск. Вероятность поломки одновременно 2-х дисков, равная произведению вероятностей поломки каждого из них, намного ниже, чем вероятность поломки одного диска. При поломке одного диска на практике необходимо немедленно принимать меры, вновь восстанавливая избыточность. Для этого рекомендуется с RAID любого уровня (за исключением нулевого) применять диски горячего резерва.


Минусы:

Недостаток RAID 1 состоит только в том, что пользователь получает один жесткий диск по цене двух дисков.



3. . Это построенный из RAID 1 массивов массив RAID 0.

4. RAID 2 . Используется для массивов, применяющих код Хемминга.

Массивы данного типа основываются на применении кода Хемминга. Диски подразделяются на 2 группы: для данных, а также для кодов, используемых для коррекции ошибок. Данные по дискам, используемым для хранения информации, распределяются аналогично распределению в RAID 0, то есть они разбиваются на блоки небольшого размера в соответствии с количеством дисков. На оставшихся дисках хранятся все коды коррекции ошибок, которые помогают восстановить информацию в случае, если один из жестких дисков выйдет из строя. Метод Хемминга, используемый в ЕСС памяти, дает возможность исправлять на лету однократные ошибки, а также обнаруживать двукратные.

RAID 3 , RAID 4 . Это массивы дисковые с чередованием, а также выделенным диском четности. В RAID 3 данные из n дисков разбиваются на составляющие размером меньше сектора (на блоки либо байты), после чего распределяются по дискам n-1. На одном диске хранятся блоки четности. В массиве RAID 2 для данной цели использовался n-1 диск, однако большинство информации на контрольных дисках использовалось для коррекции на лету ошибок, тогда как большинству пользователей при поломке диска достаточно простого восстановления информации (для этого бывает достаточно информации, которая помещается на одном жестком диске).

Массив RAID 4 напоминает RAID 3, однако, данные на нем разбиваются не на отдельные байты, а на блоки. Это отчасти позволило решить проблему недостаточно высокой скорости передачи данных, имеющих небольшой объем. Запись при этом осуществляется чересчур медленно из-за того, что при записи генерируется четность для блока, записываясь на единственный диск.
От RAID 2 RAID 3 отличается невозможностью скорректировать ошибки на лету, а также меньшей избыточностью.

Плюсы:

Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказа RAID со второго по четвертый является невозможность осуществления параллельных операций записи, объясняемая тем, что для хранения цифровой информации о четности применяется отдельный контрольный диск. У RAID 5 вышеупомянутый недостаток отсутствует. Запись контрольных сумм и блоков данных осуществляется автоматически на все диски, асимметричность конфигурации дисков отсутствует. Под контрольными суммами имеется в виду результат операции XOR.XOR дает возможность заменить результатом любой операнд и, использовав алгоритм XOR, в результате получить недостающий операнд. Чтобы сохранить результат XOR , необходим всего один диск (размер его идентичен размеру любого диска в raid).

Плюсы:

Популярность RAID5 объясняется, прежде всего, его экономичностью. На запись на том RAID5 тратятся дополнительные ресурсы, что приводит в итоге к падению производительности, поскольку необходимы дополнительные вычисления, а также операции записи. Но зато при чтении (в сравнении с отдельным жестким диском) имеется определенный выигрыш, состоящий в том, что идущие с нескольких дисков потоки данных могут обрабатываться параллельно.


Минусы:

RAID 5 характеризуется намного более низкой производительностью, особенно при проведении операций, связанных с записью в произвольном порядке (типа Random Write), при которых производительность уменьшается на 10-25 процентов от производительности RAID 10 или RAID 0. Происходит это потому, что данному процессу требуется больше операций с дисками (происходит замена каждой операции записи сервера на RAID контроллере на 3 операции – 1 операцию чтения и 2 операции записи). Минусы RAID 5 проявляются тогда, когда из строя выходит один диск – при этом наблюдается переход всего тома в критический режим, все операции чтения и записи сопровождаются дополнительными манипуляциями, что приводит к резкому падению производительности. Уровень надежности при этом падает до уровня надежности RAID 0, снабженного соответствующим количеством дисков, становясь в n раз меньше надежности одиночного диска. В случае, если до восстановления массива выйдет из строя еще хоть один диск либо на нем возникнет невосстановимая ошибка, массив разрушится, причем данные на нем обычными методами восстановить не удастся. Учтите также, что процесс восстановления за счет избыточности данных RAID, носящий название RAID Reconstruction, после того, как диск выйдет из строя, вызовет интенсивную непрерывную нагрузку чтения со всех дисков, которая будет сохраняться в течение многих часов. В результате этого один из оставшихся дисков может выйти из строя. Также могут выявиться не обнаруженные ранее сбои чтения данных вcold data массивах (тех данных, к которым во время обычной работы массива не обращаются – малоактивных и архивных), что приводит к повышению риска сбоя во время восстановления данных.



6. – это массив RAID 50, который построен из массивов RAID5;

7. – массив дисковый с чередованием, который использует 2 контрольные суммы, вычисляемые 2-мя независимыми способами.

RAID 6 во многом аналогичен RAID 5, однако отличается от него более высокой степенью надежности: в нем под контрольные суммы происходит выделение емкости двух дисков, две суммы рассчитываются по различным алгоритмам. Необходим RAID-контроллер более высокой мощности. Помогает защитить от кратного отказа, обеспечивая работоспособность после выхода из строя одновременно двух дисков. Организация массива требует использования минимум четырех дисков. Использование RAID-6 обычно приводит к падению производительности дисковой группы приблизительно на 10-15 процентов. Это объясняется большим объемом информации, которую приходится обрабатывать контроллеру (появляется необходимость в расчете второй контрольной суммы, а также чтении и перезаписи большего количества дисковых блоков в процессе записи каждого из блоков).

8. – это массив RAID 0, который построен из массивов RAID6.

9. Hybrid RAID . Это еще один уровень массива RAID, ставший в последнее время достаточно популярным. Это обычные уровни RAID, используемые вместе с дополнительным программным обеспечением, а также SSD-дисками, которые применяются в качестве кэша для чтения. Это приводит к увеличению производительности системы, объясняемой тем, что SSD, в сравнении с HDD, обладают намного лучшими скоростными характеристиками. Сегодня существует несколько реализаций, к примеру, Crucial Adrenaline, а также несколько бюджетных контроллеров Adaptec. В настоящее время использование Hybrid RAID из-за маленького ресурса SSD-дисков не рекомендуется.


Операции считывания в Hybrid RAID выполняются с твердотельного накопителя, обладающего большей скоростью, а операции записи осуществляются и на твердотельных накопителях, и на жестких дисках (делается это с целью выполнения резервирования).
Hybrid RAID отлично подходит для приложений, использующих данные нижнего уровня (виртуальной вычислительной машины, файлового сервера либо интернет-шлюза).

Особенности современного рынка СХД

Аналитическая компания IDC летом 2013 г. обнародовала очередной свой прогноз для рынка СХД , рассчитанный ею до 2017 г. Подсчеты аналитиков демонстрируют, что в ближайшее четырехлетие мировыми предприятиями будут закуплены СХД , общая емкость которых составит сто тридцать восемь экзабайт. Совокупная реализуемая мощность систем хранения ежегодно будет увеличиваться примерно на тридцать процентов.

Тем не менее, в сравнении с предыдущими годами, когда наблюдался бурный рост потребления хранилищ данных, темпы этого роста несколько замедлятся, так как сегодня большинство компаний использует облачные решения, отдавая предпочтение технологиям, оптимизирующим хранилища данных. Экономия места в хранилищах достигается при помощи таких средств, как виртуализация, сжатие данных, дедупликация данных и пр. Все вышеперечисленные средства обеспечивают экономию места, позволяя компаниям избегать спонтанных покупок и прибегать к приобретению новых систем хранения лишь тогда, когда в них действительно имеется необходимость.

Из 138 экзабайт, продажа которых ожидается в 2017 г., 102 экзабайта будет приходиться на внешние СХД , а 36 – на внутренние. В 2012 г. было реализовано СХД на двадцать экзабайт для внешних систем и на восемь – для внутренних. Финансовые затраты на промышленные СХД ежегодно будут увеличиваться приблизительно на 4,1 процента и к 2017 г. составят порядка сорока двух с половиной миллиардов долларов.

Мы уже отмечали, что переживший недавно настоящий бум мировой рынок СХД постепенно пошел на спад. В 2005 г. рост потребления СХД составил на промышленном уровне шестьдесят пять процентов, а в 2006, а также 2007 г. – по пятьдесят девять процентов. В последующие годы рост потребления СХД еще больше снизился из-за негативного влияния мирового экономического кризиса.

Аналитики прогнозируют, что рост использования облачных СХД приведет к уменьшению потребления решений систем хранения данных на корпоративном уровне. Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Оперативная продажа систем хранения данных

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказчика тот комплекс, который подойдет для него наилучшим образом.

Широкие технические возможность, грамотность и опыт персонала компании гарантируют быстрое и комплексное выполнение поставленной задачи. При этом мы не ограничивается исключительно продажей систем хранения данных, поскольку выполняем также ее настройку, запуск и последующее сервисное и техническое обслуживание.

Компания Тринити является одним из лидеров ИТ-рынка среди поставщиков систем хранения данных (СХД) в России. За свою более 25-летнюю историю, являясь официальным поставщиком и партнером известных брендов СХД, мы поставили своим заказчиком несколько сотен систем хранения данных, различного назначения, таких вендоров (производителей) оборудования, как: IBM, Dell EMC, NetApp, Lenovo, Fujitsu, HP, Hitachi, Oracle (Sun Microsystems), Huawei, RADIX, Infortrend. Некоторые системы хранения данных содержали более 1000 жестких дисков и имели емкость более петабайта.

Сегодня мы являемся мультивендорным системным интегратором и занимаемся проектированием и построением ИТ-инфраструктуры предприятий, поставляя и внедряя у наших заказчиков, не только системы хранения данных известных марок, но и серверное и сетевое оборудование, инженерную инфраструктуру, средства обеспечения информационной безопасности, а также управления и мониторинга. Комплексный подход компании Тринити обеспечивается глубокой экспертизой наших инженеров и многолетними партнерскими отношениями с производителями аппаратного и программного обеспечения. Сегодня мы можем предложить комплексные ИТ-решения для бизнеса любого масштаба и задач любой сложности.

Мы оказываем большой спектр БЕСПЛАТНЫХ услуг , которыми сопровождаем возможные активности во взаимоотношениях с нашими потенциальными заказчиками ИТ-оборудования и решений. Мы готовы БЕСПЛАТНО проработать и подготовить решение ИТ-задачи в части анализа всех возможных вариантов, выбора оптимального, расчет архитектуры решения, составление всех спецификаций оборудования и ПО, а также развертывание этого решения в инфраструктуре заказчика.

Системный подход для комплексного решение ИТ-задач заказчика или поставка отдельных ИТ-составляющих решения предполагает глубокое консультирование экспертов «Тринити» для выбора единственно правильного и оптимального решения.

Компания Тринити является официальным партнером ведущих производителей СХД оборудования и программного обеспечения, подтвержденного самыми высокими статусами уровня Premier (Премьер), GOLD (Золотой), PLATINUM (Платиновый) и получением специальных наград, которыми вендоры отмечают своих партнеров за достижения в уровне экспертизы и внедрении сложных информационных технологий в отрасли производства, торговли и государственного управления.

Мы предлагаем не только купить оборудование для хранения данных ведущих международных брендов (производителей), таких как Dell EMC, Lenovo, NetApp, Fujitsu, HP (HPe), Hitachi, Cisco, IBM, Huawei, но и готовы выполнить для вас весь спектр ИТ-задач по подбору оборудования, консультированию, составлению спецификаций, пилотному тестированию в нашей лаборатории или на вашей площадке, настройке, инсталляции и оптимизации инфраструктуры именно под ваши задачи и конкретные приложения. Также мы готовы предоставить специальные цены на поставляемые системы хранения данных и сопутствующее оборудование и ПО, а также оказать квалифицированную техническую поддержку и сервисное обслуживание.

Мы всегда готовы помочь разработать техническое задание и спецификацию систем хранения данных (СХД) и серверного оборудования для конкретных задач, сервисов и приложений, подобрать финансовые условия (рассрочка, лизинг), осуществить доставку и монтаж оборудования на площадке заказчика и последующий запуск в работу с консультированием и обучением ИТ-сотрудников клиента.

Подбор оптимальной конфигурации оборудования для хранения и обработки данных

Мы готовы предложить Вам системы хранения данных оптимальной комплектации. В своем портфеле решений, мы имеем различные системы хранения данных: cистемы Класса All-Flash (флэш), Гибридные СХД на твердотельных Флэш-накопителях, SSD, NVMe, SAS, SATA с различными вариантами подключения к хостам, как файловых сред (сетевая файловая система NFS и SMB), так и блочных СХД (Fibre Channel и iSCSI), а также готовы произвести расчет гиперконвергентных систем (HCI). Вы можете сформулировать ваши задачи или пожелания к составу СХД, требования к производительности (IOPs - операций ввода-вывода в секунду), требований к времени доступа (Latency, задержка в мили- или микросекундах), емкости хранения (гигабайт, терабайт, петабайт), физическим размерам и потребляемой энергии, а также к серверам и ПО (операционные системы, гипервизоры и прикладные приложения). Мы готовы проконсультировать Вас по телефону или по почте и готовы предложить провести вам полный или частичный аудит ресурсов и сервисов хранения ИТ-инфраструктуры вашей компании, для глубокого понимания ваших задач, требований и возможностей для оптимального подбора ИТ-решения (СХД) или выполнения комплексного проекта, результаты которого будут работать на ваш бизнес долгие годы, имея возможность наращивания мощности и емкости хранения с ростом требований, вашей специфики и задач развития. Вы сможете подобрать (получить спецификации и цены), произвести пилотное тестирование систем хранения данных в своей инфраструктуре, получить все необходимые консультации и в последующем купить системы хранения данных и другое сопутствующее оборудование и ПО, получив моновендорное или мультивендорное решение, а наши специалисты выполнят весь комплекс поставки и работ от вашего первого контакта с нами, до подписания актов выполненных работ и оказания сервисного обслуживания.

Кроме готовых и настроенных систем хранения данных, компания Тринити предлагает большой спектр серверного оборудования и сетевой инфраструктуры, которые интегрируются в ИТ инфраструктуру заказчика для комплексного решения задач хранения и обработки данных. Практически любой обзор систем хранения данных, который можно найти на тематических сайтах и форумах, обязательно будет включать в себя информацию наших многолетних партнеров IBM, Dell EMC, NetApp, Lenovo, Fujitsu, HP, Hitachi, Cisco и Huawei. Все это оборудование для хранения данных Вы можете купить и настроить в нашей компании быстро и выгодно.

Сайзинг и подбор спецификации систем хранения данных под задачи Вашей компании

У нас на складе есть как готовые, наиболее востребованные системы хранения данных, так и все возможности для быстрой и точной проработки технического задания для разработки конфигураций СХД под нужды конкретной компании. Наши системы способны работать в круглосуточном режиме: 24 часа в день, 7 дней в неделю, 365 дней в году без сбоев и ошибок. Такой статистики мы добиваемся высоким качеством поставляемых решений и жестким тестированием всех узлов и компонентов систем хранения перед отгрузкой нашим заказчикам. Применение RAID технологий, средств отказоустойчивости, кластеризации и решений защиты от катастроф (Disaster Recovery), как на аппаратном уровне, так и на уровне операционных систем, контроллеров, гипервизоров и развернутых сервисов, гарантируют целостность и доступность обрабатываемой и хранимой информации на системах хранения данных, так и на резервных копиях. Вы можете купить просто системы хранения данных в нашей компании или пригласить нас для участия в комлексном ИТ-проекте, в котором оборудование хранения данных является одной из составляющих ИТ-инфраструктуры предприятия.

Собственная разработка системы хранения данных

Компания Тринити разработала и поставляет систему хранения данных (СХД) на российский рынок под собственной торговой маркой "FlexApp". В основе этой системы хранения данных лежит программное обеспечение (ПО) компании RAIDIX. Линейка оборудования СХД отечественного производства Тринити включает в себя, как высокопроизводительные системы хранения данных на базе флеш-накопителей (All-Flash), так и емкие СХД с использованием множества самых емких жестких дисков по 16ТБ (терабайт) в каждой полке с возможностью объединять эти полки в пулы достигая общей емкости в сотни петабайт. Разработанная нами система хранения данных FlexApp может являться основой оборудования хранения данных для выполнения операторами связи требований «закона Яровой».

Как можно купить систему хранения данных в нашей компании?

Для того, чтобы рассчитать и купить систему хранения данных в нашей компании, необходимо отправить запрос по почте на интересующую Вас модель или описать ваши требования к составу такой модели. Также вы можете позвонить по нашим телефонам в рабочие часы. Мы будем рады обсудить с Вами задачи и требования к системам хранения данных, их производительности, уровню отказоустойчивости. Мы готовы предоставить полную и бесплатную экспертную консультацию по комплектации и техническим особенностям любых систем хранения данных, производства наших партнеров: Dell EMC, Lenovo, NetApp, Fujitsu, HP (HPe), Hitachi, Cisco, IBM, Huawei для оптимального подбора необходимого решения.

Наши офисы с инженерами и экспертами расположены в трех регионах страны:

  • Центральный ФО, Москва;
  • Северо-Западный ФО, Санкт-Петербург;
  • Уральский ФО, Екатеринбург.

Мы всегда готовы видеть Вас и приглашаем посетить офисы Тринити для обсуждения решения поставленных ИТ-задач с нашими менеджерами, экспертами, инженерами и руководством компании. При необходимости мы готовы организовать встречи заказчиков с представителями вендоров (производителей) и поставщиков. Также наши сотрудники готовы приехать на вашу площадку для знакомства и детальной проработки ИТ-инфраструктуры и функционирования ИТ-сервисов.







2024 © gtavrl.ru.