Объектно-ориентированная модель данных. Объектно-ориентированная модель баз данных Ограниченные возможности настройки производительности


Объектно-ориентированная модель данных является расширением положений объектно-ориентированного программирования (в то время как реляционная модель возникла на основе теории множеств, именно как модель данных). Группой управления Объектно-ориентированных БД разработан стандарт ODMG-93 (Object DataBase Management Group). Этот стандарт полностью еще не реализован.

Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Видимая структура объекта определяется свойствами его класса. Класс включает в себя объекты, при этом структура и поведение объектов одного класса одинаковы. Каждый объект, а именно экземпляр класса считается потомком объекта, в котором он определен как свойство. Свойства объектов - или стандартный тип, например, string, или конструируемый пользователем тип class. Поведение объектов задается с помощью методов. Метод – это некая операция, которую можно применить к объекту.

В качестве примера рассмотрим БД «БИБЛИОТЕКА» (рис.4.4). Для каждого объекта определены свойства, их типы и значения. В БД:

«БИБЛИОТЕКА» – родитель (предок) для «АБОНЕМЕНТ», «КАТАЛОГ», «ВЫДАЧА»;

«КАТАЛОГ» – родитель для «КНИГА».


«КНИГА» – различные объекты могут иметь одного или разных родителей. Если один и тот же родитель (один автор), то инвентарные номера разные, но isbn, УДК, название и автор – одинаковы.

Логическая структура объектно-ориентированной БД похожа на иерархическую, основное отличие – в методах манипулирования данными. Над БД можно производить такие действия как логические операции, усиленные объектно-ориентированными методами инкапсуляции, наследования и полиморфизма.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором определено. Так, если в «КАТАЛОГ» добавлено свойство телефон автора книги, то получаются аналогично в «АБОНЕМЕНТ» и «КАТАЛОГ». Смысл свойства будет определяться тем объектом, в который оно инкапсулировано.

Наследование ,наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа «КНИГА», являющимся потомками «КАТАЛОГ», можно приписать свойства родителя isbn, УДК, название и автор.

Полиформизм означает способность одного и того же программного кода работать с разнотипными данными. Иными словами, он означает допустимость в объектах разных типов иметь методы – процедуры и функции – с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Для БД «БИБЛИОТЕКА» это означает, что объекты класса «КНИГА», имеющие разных родителей из класса «КАТАЛОГ» может иметь разный набор свойств, т.е. программы работы с объектом класса «КНИГА» может содержать полиморфный код. В классе у метода нет тела, т. е. не определено, какие конкретно действия он должен выполнить. Каждый подкласс выполняет нужные операции. Инкапсуляция скрывает детали реализации от всех объектов вне данной иерархии.

Достоинствамиобъектно-ориентированноймодели в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов, отсутствие ограниченности в структурах хранения данных. В объектно-ориентированной БД может храниться не только структура, но и поведенческие аспекты данных. С использованием объектно-ориентированного подхода могут создаваться и БД с большими объемами семантической информации, такие как мультимедийные и специализированные для конкретных предметных областей (географические, проектные и др.).

К недостаткам данного подходаможно отнести высокую понятийную сложность, неудобство обработки данных и низкую скорость выполнения запросов.

В 90-е годы были созданы прототипы действующих объектно-ориентированных БД. Это POET (POET SoftWare), JASMINE (COMPUTER ASSOCIATES), IRIS, ORION, POSTGRES.

Тема 5

Реляционный подход при построении информационно-логической модели: основные понятия

Реляционная модель данных. Основные понятия

Как было отмечено в разделе предыдущей лекции, реляционная модель в настоящее время является одной из наиболее распространенных моделей на рынке БД. Основу этой модели составляет набор взаимосвязанных таблиц (отношений).

Основные теоретические идеи реляционной модели были изложены в работах по теории отношений американского логика Чарльза Содерса Пирса (1839-1914) и немецкого логика Эрнста Шредера (1841-1902), а также американского математика Эдгара Кодда.

В работах Пирса и Шредера было доказано, что множество отношений замкнуто относительно некоторых специальных операций, совместно образующих абстрактную алгебру. Это важнейшее свойство отношений было использовано в реляционной модели для разработки языка манипулирования данными.

В 1970 г. появилась статья Э.Кодда о представлении данных, организованных в виде двумерных таблиц, называемых отношениями. Коддом впервые были введены основные понятия и ограничения реляционной модели как основы хранения данных, и показана возможность обработки данных с помощью традиционных операций над множествами и специальных введенных реляционных операций.

Основные понятия реляционной модели даны в табл. 3.1.

Объектами реляционной модели в основном являются таблицы (отношения). Целостность данных обеспечивается внешними и первичными ключами (см. п. «Реляционная целостность данных»).

Операторы в реляционной модели – это набор инструкций, которые обеспечивают выборку и манипуляцию над данными.

Таблица 5.1. Элементы реляционной модели

Термин реляционной модели Описание
База данных (БД) Набор таблиц и других объектов, необходимых для абстрактного представления выбранной предметной области
Схема БД Набор заголовков таблиц, взаимосвязанных друг с другом
Отношение Таблица – совокупность объектов реального мира, которые характеризуются общими свойствами и характеристиками (поля таблицы)
Заголовок отношения Заголовок таблицы – названия полей (столбцов) таблицы
Тело отношения Тело таблицы – совокупность значений для всех объектов реального мира, которая представима в виде записей таблицы (строки таблицы)
Схема отношения Строка заголовков столбцов таблицы («шапка» таблицы)
Атрибут отношения Наименование столбца таблицы (поле таблицы)
Кортеж отношения Строка таблицы (запись) – однозначное представление объекта реального мира, созданное с использованием значений полей таблицы
Домен Множество допустимых значений атрибута
Значение атрибута Значение поля в записи (кортеже)
Первичный ключ Один или несколько (в случае составного ключа) атрибутов, которые единственным образом определяют значение кортежа (значение строки таблицы)
Внешний ключ Атрибут таблицы, значения которого соответствуют значениям первичного ключа в другой связанной (родительской, первичной) таблице. Внешний ключ может состоять как из одного, так и из нескольких атрибутов (составной внешний ключ). Если число атрибутов внешнего ключа меньше, чем количество атрибутов соответствующего первичного ключа, то он называется усеченным (частичным) внешним ключом
Степень (арность) отношения Количество столбцов таблицы
Мощность отношения Количество строк (кортежей) таблицы
Экземпляр отношения Множество записей (кортежей) для данной таблицы (отношения). С течением времени экземпляр может изменяться. Поскольку обычная БД в текущий момент времени работает только с одной версией отношения, то такой экземпляр отношения называется текущим
Тип данных Тип значений элементов таблицы
Базовое отношение Отношение, содержащие один или несколько столбцов, характеризующих свойства объекта, а также первичный ключ
Производное отношение Не является базовым отношением, т.е. не характеризует свойства объекта и используется для обеспечения связей между другими таблицами, может не содержать первичного ключа. Если первичный ключ задан, то он состоит из внешних ключей, связанных с первичными ключами базового отношения
Связь Устанавливает взаимосвязь между совпадающими значениями в ключевых полях – первичным ключом одной таблицы и внешним ключом другой
Связь «один-к-одному» (1:1) При использовании этого вида связи запись в одной таблице может иметь не более одной связанной с нею записи в другой таблице. В обеих таблицах ключевые поля должны быть первичными. Используется для разделения таблиц с многочисленными полями или по требованию защиты данных
Связь «один-ко-многим» (1:M) При использовании этого вида связи каждой записи одной таблицы может соответствовать несколько записей второй, но каждой записи второй таблицы соответствует лишь одна запись первой таблицы. В первой таблицы обязательно должен быть задан первичный ключ, во второй – внешний
Связь «многие-ко-многим» (N:M) При данном типе связи одной записи в первой таблице может соответствовать несколько записей второй таблицы, но и одной записи второй таблицы может соответствовать несколько записей первой. Уникальность ключей для таких таблиц не требуется. В процессе проектирования схемы БД такие связи преобразуют. Для этого необходимо ввести вспомогательное отношение, позволяющее заменить связь «многие-ко-многим» на две связи типа «один-ко-многим»

Структура данных реляционной модели предполагает представление предметной области рассматриваемой задачи в виде набора взаимосвязанных отношений.

В каждой связи одно отношение может выступать как основное (базовое, родительское), а другое – в роли подчиненного (производного, дочернего). Для поддержания этих связей оба отношения должны содержать набор атрибутов, по которым они связаны: в основном отношении это – первичный ключ отношения (однозначно определяет кортеж основного отношения); в подчиненном отношении должен присутствовать набор атрибутов, соответствующий первичному ключу основного отношения. Здесь этот набор атрибутов уже является вторичным ключом или внешним ключом, т.е. определяет множество кортежей производного отношения., связанных с единственным кортежем основного отношения.

Множество взаимосвязанных друг с другом таблиц образуют схему БД .

Итак, отношение R представляет собой двумерную таблицу, содержащую некоторые данные.

Математически N -арное отношение R – это множество декартова произведения D 1 ×D 2 ×…×D n множеств (доменов) D 1 , D 2 ,…,D n (n ≥1), необязательно различных:

R D 1 ×D 2 ×…×D n ,

где D 1 ×D 2 ×…×D n – полное декартово произведение, т.е. набор всевозможных сочетаний из n элементов каждое, где каждый элемент берется из своего домена.

Домен представляет собой семантическое понятие, которое можно рассматривать как подмножество значений некоторого типа данных, имеющих определенный смысл.

Свойства домена :

Домен имеет уникальное имя (в пределах БД),

Определен на некотором простом типе данных или на другом домене,

Может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для этого домена,

Несет определенную смысловую нагрузку.

Основное значение доменов состоит в том, что они ограничивают сравнения: нельзя сравнивать значения из различных доменов, даже если они имею одинаковый тип данных.

Атрибут отношения представляет собой пару вида

<Имя_атрибута: Имя_домена> (либо <A:D >).

Имена атрибутов в пределах отношения уникальны. Часто имена атрибутов совпадают с именами соответствующих доменов.

Отношение R, определенное на множестве доменов, содержит две части: заголовок и тело.

Заголовок отношения – фиксированное кол-во атрибутов отношения, описывающее декартово произведение доменов, на котором задано отношение:

(<A 1: D 1 >, <A 2: D 2 >, …, <A n: D n >).

Заголовок статичен: не меняется во время работы с БД, Если в отношении изменены, добавлены, удалены атрибуты, то получается уже другое отношение. Даже при сохраненном имени.

Тело отношения содержит множество кортежей отношения.

Каждый кортеж представляет собой множество пар вида:

<Имя_атрибута: Значение атрибута>:

R (<A 1:Val 1 >, <A 2:Val 2 >, …, <A n: Val n >).

Таких, что значение Val i атрибута A i принадлежит домену D i .

Тело отношения представляет собой набор кортежей, т. Е. подмножество декартового произведения доменов. Таким образом, тело отношения собственно и является отношением в математическом смысле слова. Тело отношения может из­меняться во время работы с базой данных, т. К. кортежи с те­чением времени могут изменяться, добавляться и удаляться.

Отношение обычно записывается в виде:

R (<A 1: D 1 >, <A 2: D 2 >, …, <A n: D n >),

либо сокращенно: R (A 1 , A 2 , …, A n ) или R .

Схема отношения представляет собой набор заголовков отношения, входящих в базу данных, т. Е. перечень имен атри­бутов данного отношения с указанием домена, к которому они относятся:

S R = (A 1 , A 2 , …, A n ), A i D i , i = 1,..., n .

Если атрибуты принимают значения из одного и того же домена, то они называются θ-сравнимыми, где θ - множество допустимых операций сравнений, заданных для данного домена.

Например, если домен содержит числовые данные, то для него допустимы все операции сравнения: θ == {=, <>,>=,<=,<,>}. Однако и для доменов, содержащих символьные данные, могут быть заданы не только операции сравнения по равенству и неравенству значений. Если для данного домена задано лексикографическое упорядочение, то он также имеет полное множество операций сравнения.

Схемы двух отношений называются эквивалентными , если они имеют одинаковую степень, и возможно такое упорядочение имен атрибутов в схемах, что на одинаковых местах будут находиться сравнимые атрибуты, т. Е. атрибуты, принимаю­щие значения из одного домена.

Таким образом, для эквивалентных отношений выполняются следующие условия:

Наличие одинакового количества атрибутов;

Наличие атрибутов с одинаковыми наименованиями;

Наличие в отношениях одинаковых строк с учетом того, что порядок атрибутов может различаться;

Отношения такого рода есть различные изображения одно­го и того же отношения.

Свойства отношений непосредственно следуют из приведен­ного ранее определения отношения. В этих свойствах в ос­новном и состоят различия между отношениями реляционной модели данных и простыми таблицами:

Уникальность имени отношения. Имя одного отношения должно отличаться от имен других отношений.

Уникальность кортежей. В отношении нет одинаковых кор­тежей. Действительно, тело отношения есть множество кор­тежей и, как всякое множество, не может содержать нераз­личимые элементы. Таблицы в отличие от отношений могут содержать одинаковые строки. Каждая ячейка отношения содержит только атомарное (неделимое) значение.

Неупорядоченность кортежей. Кортежи не упорядочены (сверху вниз), т. К. тело отношения есть множество, а мно­жество не упорядочено (для сравнения - строки в табли­цах упорядочены). Одно и то же отношение может быть изображено разными таблицами, в которых строки идут в различном порядке.

Неупорядоченность атрибутов. Атрибуты не упорядочены (слева направо).

Уникальность имени атрибута в пределах отношения. Ка­ждый атрибут имеет уникальное имя в пределах отноше­ния, значит, порядок атрибутов не имеет значения (для сравнения - столбцы в таблице упорядочены). Это свой­ство несколько отличает отношение от математического определения отношения. Одно и то же отношение может быть изображено разными таблицами, в которых столбцы идут в различном порядке.

Атомарность значений атрибутов. Все значения атрибутов атомарны. Это следует из того, что лежащие в их основе атрибуты имеют атомарные значения, т. Е. с каждым трии­бутом связана какая-то область значений (отдельный эле­ментарный тип), значения атрибутов берутся из одного и того же домена. Схема и кортежи отношения - множест­ва, а не списки, поэтому порядок их представления не име­ет значения. Для сравнения - в ячейки таблицы можно поместить различную информацию: массивы, структуры, другие таблицы и т. Д.

Замечание:

Из свойств отношения следует, что не каждая таблица может быть отношением. Для того чтобы некоторая таблица задавала отношение, необходимо, чтобы таблица имела простую структуру (содержала только строки и столбцы, причем в каждой строке должно быть одинаковое количество полей), в таблице не должно быть одинаковых строк, любой столбец таблицы должен содер­жать данные только одного типа, все используемые типы данных должны быть простыми.

Следует отметить, что реляционная модель представляет собой базу данных в виде множества взаимосвязанных отношений, которые называются схемой реляционной базы данных .

Первой формализованной и общепризнанной моделью данных была реляционная модель Кодда. В этой модели, как и во всех следующих, выделялись три аспекта - структурный, целостный и манипуляционный. Структуры данных в реляционной модели основываются на плоских нормализованных отношениях, ограничения целостности выражаются с помощью средств логики первого порядка и, наконец, манипулирование данными осуществляется на основе реляционной алгебры или равносильного ей реляционного исчисления. Как отмечают многие исследователи, своим успехом реляционная модель данных во многом обязана тому, что опиралась на строгий математический аппарат теории множеств, отношений и логики первого порядка. Разработчики любой конкретной реляционной системы считали своим долгом показать соответствие своей конкретной модели данных общей реляционной модели, которая выступала в качестве меры "реляционности" системы.

Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных, не существует. В большой степени поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности.

Один из наиболее известных теоретиков в области моделей данных Беери предлагает в общих чертах формальную основу ООБД, далеко не полную и не являющуюся моделью данных в традиционном смысле, но позволяющую исследователям и разработчикам систем ООБД по крайней мере говорить на одном языке (если, конечно, предложения Беери будут развиты и получат поддержку). Независимо от дальнейшей судьбы этих предложений мы считаем полезным кратко их пересказать.

Во-первых, следуя практике многих ООБД, предлагается выделить два уровня моделирования объектов: нижний (структурный) и верхний (поведенческий). На структурном уровне поддерживаются сложные объекты, их идентификация и разновидности связи "isa". База данных - это набор элементов данных, связанных отношениями "входит в класс" или "является атрибутом". Таким образом, БД может рассматриваться как ориентированный граф. Важным моментом является поддержание наряду с понятием объекта понятия значения (позже мы увидим, как много на этом построено в одной из успешных объектно-ориентированных СУБД O2).



Важным аспектом является четкое разделение схемы БД и самой БД. В качестве первичных концепций схемного уровня ООБД выступают типы и классы. Отмечается, что во всех системах, использующих только одно понятие (либо тип, либо класс), это понятие неизбежно перегружено: тип предполагает наличие некоторого множества значений, определяемого структурой данных этого типа; класс также предполагает наличие множества объектов, но это множество определяется пользователем. Таким образом, типы и классы играют разную роль, и для строгости и недвусмысленности требуется одновременная поддержка обоих понятий.

Беери не представляет полной формальной модели структурного уровня ООБД, но выражает уверенность, что текущего уровня понимания достаточно, чтобы формализовать такую модель. Что же касается поведенческого уровня, предложен только общий подход к требуемому для этого логическому аппарату (логики первого уровня недостаточно).

Важным, хотя и недостаточно обоснованным предположением Беери является то, что двух традиционных уровней - схемы и данных - для ООБД недостаточно. Для точного определения ООБД требуется уровень мета-схемы, содержимое которой должно определять виды объектов и связей, допустимых на схемном уровне БД. Мета-схема должна играть для ООБД такую же роль, какую играет структурная часть реляционной модели данных для схем реляционных баз данных.

Имеется множество других публикаций, отноcящихся к теме объектно-ориентированных моделей данных, но они либо затрагивают достаточно частные вопросы, либо используют слишком серьезный для этого обзора математический аппарат (например, некоторые авторы определяют объектно-ориентированную модель данных на основе теории категорий).

Для иллюстрации текущего положения дел мы кратко рассмотрим особенности конкретной модели данных, применяемой в объектно-ориентированной СУБД O2 (это, конечно, тоже не модель данных в классическом смысле).

В O2 поддерживаются объекты и значения. Объект - это пара (идентификатор, значение), причем объекты инкапсулированы, т.е. их значения доступны только через методы - процедуры, привязанные к объектам. Значения могут быть атомарными или структурными. Структурные значения строятся из значений или объектов, представленных своими идентификаторами, с помощью конструкторов множеств, кортежей и списков. Элементы структурных значений доступны с помощью предопределенных операций (примитивов).

Возможны два вида организации данных: классы, экземплярами которых являются объекты, инкапсулирующие данные и поведение, и типы, экземплярами которых являются значения. Каждому классу сопоставляется тип, описывающий структуру экземпляров класса. Типы определяются рекурсивно на основе атомарных типов и ранее определенных типов и классов с применением конструкторов. Поведенческая сторона класса определяется набором методов.

Объекты и значения могут быть именованными. С именованием объекта или значения связана долговременность его хранения (persistency): любые именованные объекты или значения долговременны; любые объект или значение, входящие как часть в другой именованный объект или значение, долговременны.

С помощью специального указания, задаваемого при определении класса, можно добиться долговременности хранения любого объекта этого класса. В этом случае система автоматически порождает значение-множество, имя которого совпадает с именем класса. В этом множестве гарантированно содержатся все объекты данного класса.

Метод - программный код, привязанный к конкретному классу и применимый к объектам этого класса. Определение метода в O2 производится в два этапа. Сначала объявляется сигнатура метода, т.е. его имя, класс, типы или классы аргументов и тип или класс результата. Методы могут быть публичными (доступными из объектов других классов) или приватными (доступными только внутри данного класса). На втором этапе определяется реализация класса на одном из языков программирования O2 (подробнее языки обсуждаются в следующем разделе нашего обзора).

В модели O2 поддерживается множественное наследование классов на основе отношения супертип/подтип. В подклассе допускается добавление и/или переопределение атрибутов и методов. Возможные при множественном наследовании двусмысленности (по именованию атрибутов и методов) разрешаются либо путем переименования, либо путем явного указания источника наследования. Объект подкласса является объектом каждого суперкласса, на основе которого порожден данный подкласс.

Поддерживается предопределенный класс "Оbject", являющийся корнем решетки классов; любой другой класс является неявным наследником класса "Object" и наследует предопределенные методы ("is_same", "is_value_equal" и т.д.).

Специфической особенностью модели O2 является возможность объявления дополнительных "исключительных" атрибутов и методов для именованных объектов. Это означает, что конкретный именованный объект-представитель класса может обладать типом, являющимся подтипом типа класса. Конечно, с такими атрибутами не работают стандартные методы класса, но специально для именованного объекта могут быть определены дополнительные (или переопределены стандартные) методы, для которых дополнительные атрибуты уже доступны. Подчеркивается, что дополнительные атрибуты и методы привязываются не к конкретному объекту, а к имени, за которым в разные моменты времени могут стоять вообще говоря разные объекты. Для реализации исключительных атрибутов и методов требуется развитие техники позднего связывания.

В следующем разделе мы среди прочего рассмотрим особенности языков программирования и запросов системы O2, которые, конечно, тесно связаны со спецификой модели данных.

При наличии большого количества экспериментальных проектов (и даже коммерческих систем) отсутствует общепринятая объектно-ориентированная модель данных, и не потому, что нет ни одной разработанной полной модели, а по причине отсутствия общего согласия о принятии какой-либо модели. На самом деле, имеются и более конкретные проблемы, связанные с разработкой декларативных языков запросов, выполнением и оптимизацией запросов, формулированием и поддержанием ограничений целостности, синхронизацией доступа и управлением транзакциями и т.д.

Объектно-ориентированная модель (рис. 3) позволяет создавать, хранить и использовать информацию в форме объектов. Любой объект при своем создании получает генерируемый системой уникальный идентификатор, который связан с объектом все время его существования и не меняется при изменении состояния объекта.

Рис.3. Объектно-ориентированная модель данных

Каждый объект имеет состояние и поведение. Состояние объекта - набор значений его атрибутов. Поведение объекта - набор методов (программный код), оперирующих над состоянием объекта. Значение атрибута объекта - это тоже некоторый объект или множество объектов. Состояние и поведение объекта инкапсулированы в объекте; взаимодействие объектов производится на основе передачи сообщений и выполнении соответствующих методов.

Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования). Допускается наличие примитивных предопределенных классов, объекты-экземпляры которых не имеют атрибутов: целые, строки и т.д. Класс, объекты которого могут служить значениями атрибута объектов другого класса, называется доменом этого атрибута.

Допускается порождение нового класса на основе уже существующего класса - наследование. В этом случае новый класс, называемый подклассом существующего класса (суперкласса), наследует все атрибуты и методы суперкласса. В подклассе, кроме того, могут быть определены дополнительные атрибуты и методы. Различаются случаи простого и множественного наследования. В первом случае подкласс может определяться только на основе одного суперкласса, во втором случае суперклассов может быть несколько. Если в языке или системе поддерживается единичное наследование классов, набор классов образует древовидную иерархию. При поддержании множественного наследования классы связаны в ориентированный граф с корнем, называемый решеткой классов. Объект подкласса считается принадлежащим любому суперклассу этого класса.

Наиболее широкое применение объектно-ориентированные базы данных нашли в таких областях, как системы автоматизированного конструирования/производства (CAD/CAM), системы автоматизированной разработки программного обеспечения (CASE), системы управления составными документами, т.е. в областях не традиционных для баз данных. Примерами объектно-ориентированных СУБД являются – POET, Jasmine, Versant, Iris , Orion.

2.2.4.Реляционная модель данных

В 1970 году американский математик Кодд Е.Ф. опубликовал революционную по своему содержанию статью, предложив использовать для обработки данных теорию множеств. Он утверждал, что данные нужно связывать в соответствии с их логическими взаимоотношениями (например, объединение, пересечение), а не физическими указателями. Он предложил простую модель данных, в которой все данные сведены в таблицы, состоящие из строк и столбцов, имеющих уникальные имена. Эти таблицы получили название реляций (relatio - отношение), а модель – реляционной моделью данных, построенной на понятии математических отношений и ее иногда называют также моделью Кодда. Предложения Кодда были настолько эффективны для систем баз данных, что за эту модель он был удостоен престижной премии Тьюринга в области теоретических основ вычислительной техники.

В реляционных базах все данные хранятся в простых таблицах, разбитых на строки (их называют записями) и столбцы (их называют полями), на пересечении которых расположена информация о данных. В общем виде это может быть представлено как на рис. 4.

Рис.4. Таблица реляционной БД.

У каждого столбца есть свое имя. Например, в таблице «Товар на складе» (рис. 5.) имена полей такие: Идентификатор , Товар , Название группы , Группа , Единица измерения , Цена закупочная , Цена реализации , Наличие на складе .

Рис. 5. Таблица «Товар на Складе»

Все значения в одном столбце имеют один тип. Таким образом, поля – это различные характеристики (иногда говорят – атрибуты) объекта. Значения полей в одной строке относятся к одному объекту, а различные поля отличаются именами.

Каждая запись различается уникальным ключом записи, которые бывают двух типов: первичный и вторичный.

Первичный ключ – это одно или несколько полей, однозначно идентифицирующих запись. Если первичный ключ состоит из одного поля, он называется простым, если из нескольких полей – составным ключом.

Вторичный ключ – это поле, значение которого может повторяться в нескольких записях файла, то есть он не является уникальным.

Внешний ключ подчиненной таблицы - это вторичный ключ данного отношения, который, в то же время, выполняет функции первичного ключа в главной таблице. Если по значению первичного ключа может быть найден один единственный экземпляр записи, то по значению внешнего ключа несколько (рис.6).

Рис.6. Пример использование внешнего ключа

Как правило, реляционная база данных состоит из нескольких таблиц, т.к. объединить в одной таблице все сведения, необходимые сотрудникам (пользователям БД) какой-либо организации для решения задач, не представляется возможным.

Средством эффективного доступа по ключу к записи файла является индексирование. При индексировании создается дополнительный файл, который содержит в упорядоченном виде все значения ключа файла данных. Для каждого ключа в индексном файле содержится указатель на соответствующую запись файла данных. С помощью указателя на запись в файле данных осуществляется прямой доступ к этой записи.

Для работы с реляционными базами данных в настоящее время обычно используется язык структурированных запросов (Structured Query Language - SQL). Это язык, применяемый для создания, модификации и управления данными. Язык SQL не является алгоритмическим языком программирования. Это информационно-логический язык, он основывается на реляционной алгебре и подразделяется на три части:

· операторы определения данных;

· операторы манипуляции данными (Insert, Select, Update, Delete);

· операторы определения доступа к данным.

В 1986 году язык SQL был принят в качестве стандарта ANSI (Американский Национальный Институт Стандартов) языков реляционной базы данных. Сегодня данная база рассматривается в качестве стандарта для современных информационных систем.

Таким образом, таблица является основным типом структуры данных реляционной модели. Структура таблицы определяется совокупностью столбцов. В каждой строке таблицы содержатся по одному значению в соответствующем столбце. В таблице не может быть двух одинаковых строк, общее число строк не ограничено. Столбец – это элемент данных, каждый столбец имеет имя. Один или несколько атрибутов, значения которых однозначно идентифицируют строку таблицы, являются ключом таблицы.

Достоинствами реляционной модели являются:

Простота и доступность понимания конечным пользователем - единственной информационной конструкцией является таблица;

При проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате;

Полная независимость данных. При изменении структуры изменения, которые требуют произвести в прикладных программах, минимальны;

Для построения запросов и написания, прикладных программ нет необходимости знания конкретной организации БД во внешней памяти.

Недостатками реляционной модели являются:

Относительно низкая скорость доступа и большой объем внешней памяти;

Трудность понимания структуры данных из-за появления большого количества таблиц в результате логического проектирования;

Далеко не всегда предметную область можно представить в виде совокупности таблиц.

Реляционные базы данных в настоящее время получили наибольшее распространение. Сетевые и иерархические модели считаются устаревшими, объектно-ориентированные модели пока не стандартизированы и не получили широкого распространения.

Основные понятия

Определение 1

Объектно-ориентированная модель представления данных дает возможность идентификации отдельных записей базы.

Записи базы данных и функции их обработки связаны механизмами, подобными соответствующим средствам, которые реализуются в объектно-ориентированных языках программирования.

Определение 2

Графическим представлением структуры объектно-ориентированной базы данных является дерево, узлы которого представляют объекты.

Стандартный тип (например, строковый – string ) или тип, созданный пользователем (class ), описывает свойства объектов .

На рисунке 1 объект БИБЛИОТЕКА является родителем для объектов-экземпляров классов КАТАЛОГ , АБОНЕНТ и ВЫДАЧА. У разных объектов типа КНИГА может быть один или разные родители. У объектов типа КНИГА, которые имеют одного и того же родителя, должны быть по крайней мере разные инвентарные номера (уникальные для каждого экземпляра книги), но одинаковые значения свойств автор , название , удк и isbn .

Логические структуры объектно-ориентированной и иерархической базы данных внешне похожи. Отличаются они в основном методами манипулирования данными.

При выполнении действий над данными в объектно-ориентированной модели используются логические операции, которые усилены инкапсуляцией, наследованием и полиморфизмом. С некоторым ограничением можно применять операции, которые подобны командам SQL (например, при создании БД).

При создании и модификации БД выполняется автоматическое формирование и последующая корректировка индексов (индексных таблиц), которые содержат информацию для осуществления быстрого поиска данных.

Определение 3

Цель инкапсуляции – ограничение области видимости имени свойства границами того объекта, в котором оно определено.

Например, если в объект КАТАЛОГ добавлено свойство, которое задает телефон автора и имеет название телефон , то одноименные свойства получатся у объектов КАТАЛОГ и АБОНЕНТ. Смысл свойства определяется тем объектом, в который оно инкапсулировано.

Определение 4

Наследование , обратно инкапсуляции, отвечает за распространение области видимости свойства относительно всех потомков объекта.

Например, всем объектам КНИГА, которые являются потомками объекта КАТАЛОГ, могут быть приписаны свойства объекта-родителя: автор , название , удк и isbn .

При необходимости расширения действия механизма наследования на объекты, которые не являются непосредственными родственниками (например, на два потомка одного родителя) в их общем предке определяют абстрактное свойство типа abs .

Таким образом, свойства номер и билет в объекте БИБЛИОТЕКА наследуются всеми дочерними объектами ВЫДАЧА, КНИГА и АБОНЕНТ. Именно поэтому значения этого свойства классов АБОНЕНТ и ВЫДАЧА одинаковые – 00015 (рисунок 1).

Определение 5

Полиморфизм позволяет одному и тому же программному коду работать с разнотипными данными.

Иначе говоря, он допускает в объектах разных типов иметь методы (функции или процедуры) с одинаковыми именами.

Поиск в объектно-ориентированной базе данных заключается в определении сходства между объектом, который задает пользователь, и объектами, которые хранятся в БД.

Преимущества и недостатки объектно-ориентированной модели

Основное преимущество объектно-ориентированной модели данных в отличие от реляционной модели состоит в возможности отображения информации о сложных взаимосвязях объектов. Рассматриваемая модель данных позволяет определять отдельную запись БД и функции ее обработки.

К недостаткам объектно-ориентированной модели относят высокую понятийную сложность, неудобную обработку данных и низкую скорость выполнения запросов.

На сегодняшний день такие системы достаточно широко распространены. К ним относятся СУБД:

  • Postgres,
  • Orion,
  • Iris,
  • ODBJupiter,
  • Versant,
  • Objectivity /DB,
  • ObjectStore,
  • Statice,
  • GemStone
  • G-Base.

Постреляционная модель

Классическая реляционная модель предполагает неделимость данных, хранящихся в полях записей таблиц. Постреляционная модель представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных. Модель допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.

На рис. 2.6 на примере информации о накладных и товарах для сравнения приведено представление одних и тех же данных с помощью реляционной (а) и постреляционной (б) моделей. Из рисунка видно, что по сравнению с реляционной моделью в постреляционной модели данные хранятся более эффективно, а при обработке не потребуется выполнять операцию соединения данных из двух таблиц.

Накладные Накладные-товары

N накладной

Покупатель

N накладной

Количество

Накладные

N накладной

Покупатель

Количество

Рис. 2.6. Структуры данных реляционной и постреляционной моделей

Поскольку постреляционная модель допускает хранение в таблицах ненормализованных данных, возникает проблема обеспечения целостности и непротиворечивости данных. Эта проблема решается включением в СУБД соответствующих механизмов.

Достоинством постреляционной модели является возможность представления совокупности связанных реляционных таблиц одной постреляционной таблицей. Это обеспечивает высокую наглядность представления информации и повышение эффективности ее обработки.

Недостатком постреляционной модели является сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.

Рассмотренная постреляционная модель данных поддерживается СУБД uniVers . К числу других СУБД, основанных на постреляционной модели данных, относятся также системы Bubba и Dasdb .

Многомерная модель

Многомерный подход к представлению данных появился практически одновременно с реляционным, но интерес к многомерным СУБД стал приобретать массовый характер с середины 90-х годов. Толчком послужила в 1993 году статья Э. Кодда. В ней были сформулированы 12 основных требований к системам класса OLAP (OnLine Analytical Processing – оперативная аналитическая обработка), важнейшие из которых связаны с возможностями концептуального представления и обработки многомерных данных.

В развитии концепций информационных систем можно выделить следующие два направления:

Системы оперативной (транзакционной) обработки;

Системы аналитической обработки (системы поддержки принятия решений).

Реляционные СУБД предназначались для информационных систем оперативной обработки информации и в этой области весьма эффективны. В системах аналитической обработки они показали себя несколько неповоротливыми и недостаточно гибкими. Более эффективными здесь оказываются многомерные СУБД.

Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. Основные понятия, используемые в этих СУБД: агрегируемость, историчность и прогнозируемость.

Агрегируемость данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь, управляющий, руководитель.

Историчность данных предполагает обеспечение высокого уровня статичности собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.

Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.

Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.

По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью. Для иллюстрации на рис. 2.7 приведены реляционное (а) и многомерное (б) представления одних и тех же данных об объемах продаж автомобилей.

Основные понятия многомерных моделей данных: измерение и ячейка.

Измерение – это множество однотипных данных, образующих одну из граней гиперкуба. В многомерной модели измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.

Ячейка – это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронных таблиц, вычисляются по заранее заданным формулам).

Рис. 2.7. Реляционное и многомерное представление данных

В примере на рис. 2.7 б каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения Месяц продаж и модели автомобиля. На практике зачастую требуется большее количество измерений. Пример трехмерной модели данных приведен на рис. 2.8.

Рис. 2.8. Пример трехмерной модели

В существующих многомерных СУБД используются две основных схемы организации данных: гиперкубическая и поликубическая.

В поликубической схеме предполагается, что в БД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Oracle Express Server .

В случае гиперкубической схемы предполагается, что все ячейки определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов в БД, все они имеют одинаковую размерность и совпадающие измерения.

Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем.

Недостатком многомерной модели данных является ее громоздкость для простейших задач обычной оперативной обработки информации.

Примерами систем, поддерживающими многомерные модели данных, является Essbase , Media Multi - matrix , Oracle Express Server , Cache . Существуют программные продукты, например Media / MR , позволяющие одновременно работать с многомерными и с реляционными БД.

Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы данных. Между записями и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизированная объектно-ориентированная модель описана в рекомендациях стандарта ODMG -93 (Object Database Management Group – группа управления объектно-ориентированными базами данных).

Рассмотрим упрощенную модель объектно-ориентированной БД. Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом или типом, конструируемым пользователем (определяется как class). Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют связн ую ие рархию объектов. Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.9. Здесь объект типа Библиотека является родительским для объектов-экземпляров классов Абонент , Каталог и Выдача . Различные объекты типа Книг а могут иметь одного или разных родителей. Объекты типа Книга , имеющие одного и того же родителя, должны различаться, по крайней мере, инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств isb n , удк , названи е и автор .

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное различие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа Каталог добавить свойство, задающее телефон автора книги и имеющее название телефон , то мы получим одноименные свойства у объектов Абонент и Каталог . Смысл такого свойства будет определяться тем объектом, в который оно инкапсулировано.

Наследование , наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа Книга , являющимся потомками объекта типа Каталог , можно приписать свойства объекта-родителя: isbn , удк , название и автор . Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственными родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs . Так, определение абстрактных свойств билет и номер в объекте Библиотека приводит к наследованию этих свой ств вс еми дочерними объектами Абонент , Книга и Выдач а. Не случайно, поэтому значения свойства билет классов Абонент и Выдача , показанных на рис. 2.9, являются одинаковыми – 00015.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к рассматриваемому примеру полиморфизм означает, что объекты класса Книга , имеющие разных родителей из класса Каталог , могут иметь разный набор свойств. Следовательно, программы работы с объектами класса Книга могут содержать полиморфный код.

Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД.

Рис. 2.9. Логическая структура БД библиотечного дела

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

К объектно-ориентированным СУБД относятся POET , Jasmine , Versant , O 2, ODB - Jupiter , Iris , Orion , Postgres .







2024 © gtavrl.ru.