Как определить мгновенное ускорение точки. Ускорение – среднее, мгновенное, тангенциальное, нормальное, полное


1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

- уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

Или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

1)траектория точки,

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорениехарактеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

где , − единичный вектор касательной.

Тогда

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

− переменный по направлению вектор и

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

Найдем, как вычисляются скорость и ускорение точки, если движение задано уравнениями (3) или (4). Вопрос об определении траектории в этом случае был уже рассмотрен в § 37.

Формулы (8) и (10), определяющие значения v и а, содержат производные по времени от векторов . В равенствах, содержащих производные от векторов, переход к зависимостям между проекциями осуществляется с помощью следующей теоремы: проекция производной от вектора на ось, неподвижную в данной системе отсчета, равна производной от проекции дифференцируемого вектора на ту же ось, т. е.

1. Определение скорости точки. Вектор скорости точки Отсюда на основании формул (И), учитывая, что найдем:

где точка над буквой есть символ дифференцирования по времени. Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат течки по времени.

Зная проекции скорости, найдем ее модуль и направление (т. е. углы , которые вектор v образует с координатными осями) по формулам

2. Определение ускорения точки. Вектор ускорения точки Отсюда на основании формул (11) получаем:

т. e. проекции ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

где - углы, образуемые вектором ускорения с коорди осями.

Итак, если движение точки задано в декартовых прямоугольных координатах уравнениями (3) или (4), то скорость точки определяется по формулам (12) и (13), а ускорение - по формулам (14) и (15). При этом в случае движения, происходящего в одной плоскости, во всех формулах должна быть отброшена проекция на ось

Скоростью точки называется вектор, определяющий в каждый данный момент времени быстроту и направление движения точки.

Скорость равномерного движения определяется отношением пути, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени.

Скорость; S- путь; t- время.

Измеряется скорость в единицах длины, деленных на единицу времени: м/с; см/с; км/ч и т.д.

В случае прямолинейного движения вектор скорости направлен вдоль траектории в сторону ее движения.

Если точка за равные промежутки времени проходит неравные пути, то данное движение называется неравномерным. Скорость является величиной переменной и является функцией времени.

Средней за данный промежуток времени скоростью точки называется скорость такого равномерного прямолинейного движения, при котором точка за этот промежуток времени получила бы то же самое перемещение, как и в рассматриваемом ее движении.

Рассмотрим точку М, которая перемещается по криволинейной траектории, заданной законом

За промежуток времени?t точка М переместится в положение М 1 по дуге ММ 1 .Если промежуток времени?t мал, то дугу ММ 1 можно заменить хордой и в первом приближении найти среднюю скорость движения точки

Эта скорость направлена по хорде от точки М к точке М 1 . Истинную скорость найдем путем перехода к пределу при?t> 0

Когда?t> 0, направление хорды в пределе совпадает c направлением касательной к траектории в точке М.

Таким образом, величина скорости точки определяется как предел отношения приращения пути к соответствующему промежутку времени при стремлении последнего к нулю. Направление скорости совпадает с касательной к траектории в данной точке.

Ускорение точки

Отметим, что в общем случае, при движении по криволинейной траектории скорость точки изменяется и по направлению и по величине. Изменение скорости в единицу времени определяется ускорением. Другими словами, ускорением точки называется величина, характеризующая быстроту изменения скорости во времени. Если за интервал времени?t скорость изменяется на величину,то среднее ускорение

Истинным ускорением точки в данный момент времени t называется величина, к которой стремится среднее ускорение при?t> 0, то есть

При отрезке времени стремящимся к нулю вектор ускорения будет меняться и по величине и по направлению, стремясь к своему пределу.

Размерность ускорения

Ускорение может выражаться в м/с 2 ; см/с 2 и т.д.

В общем случае, когда движение точки задано естественным способом, вектор ускорения обычно раскладывают на две составляющие, направленные по касательной и по нормали к траектории точки.

Тогда ускорение точки в момент t можно представить так

Обозначим составляющие пределы через и.

Направление вектора не зависит от величины промежутка?t времени.

Это ускорение всегда совпадает с направлением скорости, то есть, направлено по касательной к траектории движения точки и поэтому называется касательным или тангенциальным ускорением.

Вторая составляющая ускорения точки направлена перпендикулярно к касательной к траектории в данной точке в сторону вогнутости кривой и влияет на изменение направления вектора скорости. Эта составляющая ускорения носит название нормального ускорения.

Поскольку численное значение вектора равно приращению скорости точки за рассматриваемый промежуток?t времени, то численное значение касательного ускорения

Численное значение касательного ускорения точки равно производной по времени от численной величины скорости. Численное значение нормального ускорения точки равно квадрату скорости точки, деленному на радиус кривизны траектории в соответствующей точке кривой

Полное ускорение при неравномерном криволинейном движении точки складывается геометрически из касательного и нормального ускорений.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.







2024 © gtavrl.ru.