GPS как работает? Принципы работы GPS-навигатора. Система спутниковой навигации GPS – принцип, схема, применение Системы координат в спутниковой навигации



Яценков В.С. Основы спутниковой навигации
Систематизирована информация о спутниковых навигационных системах GPS NAVSTAR и ГЛОНАСС. Изложена история разработки и создания систем, рассмотрены основные принципы их работы. Приведены характеристики и структура навигационных сигналов, данные о технических возможностях и параметрах действующих систем, даны определения основных понятий и терминов, перечислены наиболее познавательные ресурсы сети Интернет.
Для разработчиков и пользователей навигационных систем различного уровня подготовки, от любителей, эксплуатирующих приемники GPS в быту, до специалистов, использующих навигационные средства в повседневной работе. Может быть полезна студентам радиотехнических специальностей и аспирантам.

Скриншоты: оглавление

Доп. информация : ---

Мои раздачи литературы по ГЕО-наукам (Геодезия, Картография, Землеустройство, ГИС, ДЗЗ и др.)
Геодезия и Системы спутникового позиционирования


  • Инженерная геодезия : учебное пособие. В 2-х частях. / Е. С. Богомолова, М. Я. Брынь, В. А. Коугия и др.; под ред. В. А. Коугия. - СПб.: Петербургский государственный университет путей сообщения, 2006-2008. - 179 с.

  • Селиханович В.Г., Козлов В.П., Логинова Г.П. Практикум по геодезии : Учебное пособие / Под ред. Селиханович В.Г. 2–е изд., стереотипное. - М.: ООО ИД «Альянс», 2006. - 382 с.

  • Генике А.А., Побединский Г.Г. Глобальные спутниковые системы определения местоположения и их применение в геодезии . Изд. 2-е, перераб. и доп. - М.: Картгеоцентр, 2004. - 355 с.: ил.

  • Руководство пользователя по выполнению работ в системе координат 1995 года (СК-95) . ГКИНП (ГНТА)-06-278-04. - М: ЦНИИГАиК, 2004. - 89 с.

  • Инструкция по нивелированию I, II, III и IV классов . ГКИНП (ГНТА)-03-010-02. - М.: ЦНИИГАиК, 2003. - 135 с.

  • Хаметов Т.И. Геодезическое обеспечение проектирования, строительства и эксплуатации зданий, сооружений : Учеб. пособие. - М.: Изд-во АСВ, 2002. - 200 с.

  • Геодезия : учебное пособие для техникумов / Глинский С.П., Гречанинова Г.И., Данилевич В.М., Гвоздева В.А., Кощеев А.И., Морозов Б.Н. - М.: Картгеоцентр – Геодезиздат, 1995. - 483 с: ил.

  • Лукьянов В.Ф., Новак В.Е. и др. Лабораторный практикум по инженерной геодезии : Учебное пособие для ВУЗов. - М.: «Недра», 1990. - 336 с.

  • Новак В.Е., Лукьянов В.Ф. и др. Курс инженерной геодезии : Учебник для вузов под ред. проф. Новака В.Е. - М.: «Недра», 1989. - 432 с.

  • Лукьянов В.Ф., Новак В.Е., Ладонников В.Г. и др. Учебное пособие по геодезической практике . - М.: «Недра», 1986 - 236 с, с ил.

  • Закатов П.С. Курс высшей геодезии . - Изд. 4, перераб. и доп. - М.: «Недра», 1976. - 511 с.

  • Большаков В.Д., Васютинский И.Ю., Клюшин Е.Б. и др. Методы и приборы высокоточных геодезических измерений в строительстве . / Под ред. Большакова В.Д. - М.: «Недра», 1976, - 335 с.

  • Справочник геодезиста (в двух книгах) / Большаков В.Д., Левчук Г.П., Багратуни Г.В. и др.; под ред. Большакова В.Д., Левчука Г.П. Изд. 2, перераб. и доп. - М: «Недра», 1975. - 1056 с.

  • Голубева 3.С., Калошина О.В, Соколова И.И. Практикум по геодезии . Изд. 3-е, перераб. - М.: «Колос», 1969. - 240 с. с илл. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

  • Красовский Ф.Н. Избранные сочинения : в 4-х томах. - М.: Геодезиздат, 1953-1956. - 2001 с.

  • Красовский Ф.Н. Руководство по высшей геодезии : Курс Геодезического факультета Московского Межевого Института. Часть I. - М.: Издание Геодезического Управления В.С.Н.Х. С.С.С.Р. и Московского Межевого Института, 1926. - 479 с.


Фотограмметрия, Топография и Картография

  • Серапинас Б.Б. Математическая картография : Учебник для вузов / Балис Балио Серапинас. - М.: Издательский центр «Академия», 2005. - 336 с.

  • Верещака Т.В. Топографические карты : научные основы содержания. - М.: МАИК «Наука/Интерпериодика», 2002. - 319 с.

  • Математическая основа карт . Глава III из книги: Берлянт А. М. Картография : Учебник для вузов. - М.: Аспект Пресс, 2002. - 336 с.

  • Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов . ГКИНП (ГНТА)–02-036-02. - М.: ЦНИИГАиК, 2002. - 49 с.

  • Южанинов В.С. Картография с основами топографии : Учебное пособие для вузов. - М.: Высшая школа, 2001. - 302 с.

  • Тикунов В.С. Моделирование в картографии : Учебник. - М.: Изд-во МГУ, 1997. - 405 с.

  • Урмаев М.С. Космическая фотограмметрия : Учебник для вузов. - М.: Недра, 1989. - 279 с: ил.

  • Составление и использование почвенных карт (Под редакцией кандидата сельскохозяйственных наук Кашанского А.Д.). - 2-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 273 с.: ил. - (Учебники и учебные пособия для студентов высших учебных заведений).

  • Лосяков Н.Н., Скворцов П.А., Каменецкий А.В. и др. Топографическое черчение : Учебник для вузов / Под редакцией кандидата технических наук Лосякова Н.Н. - М.: Недра, 1986. - 325 с., ил.

  • Билич Ю. С., Васмут А. С. Проектирование и составление карт : Учебник для вузов. - М.: Недра, 1984. - 364 с.


Землеустройство и Земельный кадастр

  • Варламов А.А., Гальченко С.А. Земельный кадастр (в 6-ти томах). Том 6. Географические и земельные информационные системы . - М.: КолосС, 2006. - 400 с. - (Учебники и учеб. пособия для студентов высш. учеб. заведений).

  • Единая система технологической документации Государственного земельного кадастра Российской Федерации. Система классификаторов для целей ведения государственного земельного кадастра . Государственный комитет Российской Федерации по земельной политике. - М.: Госкомзем России, 2000 г. - 182 с.

  • Комплексная система управления качеством проектных и изыскательских работ. Стандарты предприятия по оформлению графических материалов . - М.: Росземпроект, 1983 г. - 86 с. (СТП 71.x-82)

  • Инструкция по дешифрированию аэрофотоснимков и фотопланов в масштабах 1:10000 и 1:25000 для целей землеустройства, государственного учета земель и земельного кадастра . - М.: Минсельхоз СССР, ГУ Землепользования и Землеустройства, ВИСХАГИ, 1978. - 143 с.


Географические информационные системы (ГИС)

  • Попов И.В., Чикинев М.А. Эффективное использование ArcObjects . Методическое руководство. - Новосибирск: Изд-во СО РАН, 2003 г. - 160 c.

  • Геоинформатика / Иванников А.Д., Кулагин В.П., Тихонов А.Н., Цветков В.Я. - М.: МАКС Пресс, 2001. - 349 с.

  • Берлянт А.М., Кошкарев А.В. и др. Геоинформатика . Толковый словарь основных терминов. - М.: ГИС-Ассоциация, 1999. - 204 с.

  • ДеМерс Майкл Н. Географические Информационные Системы . Основы.: Пер. с англ. - М: Дата+, 1999. - 507 с.

  • Замай С.С., Якубайлик О.Э. Программное обеспечение и технологии геоинформационных систем : Учебное. пособие. - Красноярск: Краснояр. гос. ун-т, 1998. - 110 с.

  • Королев Ю.К. Общая геоинформатика. Часть I. Теоретическая геоинформатика . Выпуск 1. - М.: СП ООО Дата+, 1998. - 118 с.


Дистанционное зондирование Земли (ДЗЗ)

  • Медведев Е.М., Данилин И.М., Мельников С.Р. Лазерная локация земли и леса : Учебное пособие. - 2-е изд., перераб. и доп. - М.: Геолидар, Геоскосмос; Красноярск: Институт леса им. В.Н. Сукачева СО РАН, 2007. - 230 с.

  • Кашкин В.Б., Сухинин А.И. Дистанционное зондирование Земли из космоса . Цифровая обработка изображений: Учебное пособие. - М.: Логос, 2001. - 264 с.: ил.

  • Гарбук С.В., Гершензон В.Е. Космические системы дистанционного зондирования Земли . - М.: Издательство А и Б, 1997. - 296 с., ил.

  • Виноградов Б.В. Аэрокосмический мониторинг экосистем . - М.: Наука, 1984. - 320 с.

  • Дейвис Ш.М., Ландгребе Д.А., Филлипс Т.Л. и др. Дистанционное зондирование: количественный подход / Под ред. Ф. Свейна и Ш. Дейвис. Пер. с англ. - М.: Недра, 1983. - 415 с.

  • Востокова Е.А., Шевченко Л.А., Сущеня В.А. и др. Картографирование по космическим снимкам и охрана окружающей среды / Под ред. Востоковой Е.А, Злобина Л.И. (отв. ред.), Кельнера Ю.Г. - М.: «Недра», 1982. - 251 с.

  • Богомолов Л.А. Дешифрирование аэроснимков . - М.: «Недра», 1976. - 145 с.

  • Миллер В., Миллер К. Аэрофотогеология / Пер. с англ. Воеводы В.М. и Ильина А.В., под ред. Лунгерсгаузена Г.Ф. - М.: МИР, 1964. - 292 с., ил.

  • Богомолов Л.А. Топографическое дешифрирование природного ландшафта на аэроснимках . - М.: Госгеолтехиздат, 1963. - 198 с.


Навигация, Ориентирование и Определение местоположения

  • Найман В.С. GPS–навигаторы для путешественников, автомобилистов, яхтсменов = Лучшие GPS–навигаторы / Под научной редакцией Скрылева В.В. - М.: НТ Пресс, 2008. - 400 с.: ил.

  • Яценков В.С. Основы спутниковой навигации . Системы GPS NAVSTAR и ГЛОНАСС. - М: Горячая линия-Телеком, 2005. - 272 с: ил.

  • Громаков Ю.А., Северин А.В., Шевцов В.А. Технологии определения местоположения в GSM и UMTS : Учеб. пособие. - М.: Эко-Трендз, 2005. - 144 с: ил.

  • Соловьев Ю.А. Системы спутниковой навигации . - М.: Эко-Трендз, 2000. - 270 с.

  • Глобальная спутниковая радионавигационная система ГЛОНАСС / Под ред. Харисова В.Н., Перова А.И., Болдина В.А. - М.: ИПРЖР, 1998. - 400 с. : ил.

  • Шебшаевич В.С., Дмитриев П.П., Иванцевич И.В. и др. Сетевые спутниковые радионавигационные системы / Под ред. Шебшаевича В.С. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1993. - 408 с,: ил.

  • Меньчуков А.Е. В мире ориентиров . Изд. 3, доп. - М.: «Мысль», 1966. - 284 с.

- «Говоря СПАСИБО, вы продлеваете жизнь торренту» (Dark_Ambient )

Идея создания спутниковой системы навигации родилась в 50-е годы прошлого века. Американские учёные во главе с Ричардом Кершнером наблюдали сигнал, исходящий от советского спутника, и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Тем самым, точно зная свои координаты на Земле, можно измерить положение и скорость спутника, и наоборот, зная положение спутника, можно определить собственную скорость и координаты.

Первые шаги по созданию GPS были предприняты американцами в 1964 году с запуском спутников по программе Timation на околоземную орбиту. Изначально GPS задумывался как военная технология, но в процессе работы систему решили использовать для гражданских целей. Для этого специальным алгоритмом была уменьшена ее точность. Советские ученые начали работу над отечественной системой ГЛОНАСС в 76 году. Изначально она также имела лишь военное предназначение.


Система навигации состоит из трёх основных сегментов: космического, управляющего и пользовательского. Космический представлен 32-мя спутниками у GPS и 28-ю у ГЛОНАСС, вращающихся на средней орбите Земли. Управляющий сегмент состоит из нескольких станций мониторинга и наземных антенн, корректирующих данные о расположении объектов. транслируют сигнал из космоса, и все приёмники используют этот сигнал для вычисления своего положения в пространстве по координатам в режиме реального времени. Для этого приёмник должен принимать сигнал как минимум от трех (а лучше четырех) спутников.

Спутники GPS вращаются вокруг Земли по 6 круговым орбитальным траекториям по 4 спутника в каждой на высоте 20 180 км. За звездные сутки они совершают два полных витка вокруг Земли. Орбита спутников ГЛОНАСС в отличие от GPS располагается на высоте 19 400 км для более точного использования в северных и южных полярных регионах.


Спутники непрерывно отправляют сигнал на всю доступную поверхность планеты с информацией о своем расположении и времени на собственных часах. Они не принимают данных ни о каких устройствах-приемниках. Приемник получает координаты спутников и информацию о времени отправки сигналов и рассчитывает расстояние до каждого спутника. Это выполняется программой путем умножения скорости света на разницу между временем получения и временем отправки сигнала.

Задача усложняется тем, что время на часах принимающего устройства не совпадает с тем, что показывают часы спутников. Кроме того, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На высоте 20 000 километров гравитация достаточно слаба, а спутники перемещаются с большой скоростью. Из-за этих эффектов часы приходится корректировать на 38 миллисекунд в сутки. Если этого не делать, то погрешность при определении координат на Земле может составлять около 10 км!


Рассчитав расстояние до каждого из трех-четырех спутников, приемник анализирует полученные данные и определяет свое точное местоположение.

Недостатками навигационных систем является то, что при определенных условиях сигнал от спутников может не доходить до приемника: например, в подвале или тоннеле. Также уровень приема может ухудшаться из-за большой облачности и магнитных бурь.

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Основным конкурентом GPS является российская система ГЛОНАСС (глобальная навигационная спутниковая система). Свою полноценную работу система начала с 2010 года, попытки активно использовать ее предпринимались с 1995 года. Существует несколько отличий между двумя системами:

  • Разные кодировки – американцы используют CDMA, для российской системы используется FDMA;
  • Разные габариты устройств – ГЛОНАСС использует более сложную модель, поэтому повышается энергопотребление и размеры устройств;
  • Расстановка и движение спутников на орбите – российская система обеспечивает более широкий охват территории и более точное определение координат и времени.
  • Срок службы спутников – американские спутники делаются более качественными, поэтому они служат дольше.

Помимо ГЛОНАСС и GPS существуют и другие менее популярные навигационные системы – европейский Galileo и китайский Beidou.

Описание GPS

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS :

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.


В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.


Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.
Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).


Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.


Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.


Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.


Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.


Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

Многие слышали такие слова, как GPS, ГЛОНАСС, GALILEO. Большинство знает, что эти понятия означают навигационные спутниковые системы (далее - НСС).

Аббревиатура GPS относится к американской НСС NAVSTAR. Эта система была разработана для военных целей, но была использована и для решения гражданских задач - определение местоположения для воздушных, сухопутных, морских пользователей.

В Советском союзе разработка собственной НСС ГЛОНАСС была скрыта за завесой секретности. После распада СССР работы в этом направлении длительное время не велись, поэтому NAVSTAR стала единственной глобальной системой, которая применялась для определения местоположения в любой точке планеты. Но только США доступно другое предназначение этой системы – наведения массового поражения на цель. И еще один не маловажный фактор – по решению военного ведомства США может быть отключен «гражданский» сигнал с американских навигационных спутников и пассажирские самолеты, корабли потеряют ориентацию. Эта монополия на управление спутниковой системой со стороны США не устраивает многие страны, включая Россию. Поэтому многие страны Россия, Индия, Япония, страны Европы, Китай, стали разрабатывать свои собственные НСС позиционирования. Все системы являются системами двойного назначения – они могут передавать два вида сигналов: для гражданских объектов и повышенной точности для военных потребителей. Основной принцип работы навигационной системы – полная автономность: система не принимает никаких сигналов от пользователей (беззапросная) и имеет высокую степень помехозащищенности и надежности.

Создание и эксплуатация любой НСС - очень сложный и дорогостоящий процесс, который из-за военной направленности должен принадлежать только государству страны-разработчика, поскольку является стратегическим видом вооружения. В случае вооруженного конфликта технология спутниковой навигации может быть использована не только для наведения оружия, но и для десантирования грузов, поддержки передвижения военных подразделений, осуществления диверсионных и разведывательных операций, что даст значительное преимущество стране, обладающей собственной технологией спутникового позиционирования.

Российская система ГЛОНАСС использует принцип определения позиции такой же, как у американской системы. В октябре 1982 года первый спутник ГЛОНАСС вышел на орбиту Земли, но в эксплуатацию система была введена только в 1993 году. Спутники российской системы беспрерывно излучают сигналы стандартной точности (СТ) - в диапазоне 1, 6 ГГц и высокой точности (ВТ) - в диапазоне 1,2 ГГц. Прием сигнала СТ доступен любому пользователю системы и обеспечивает определение горизонтальных и вертикальных координат, вектора скорости, а также времени. Например, для точного указания координат и времени необходимо принять и обработать информацию не менее, чем от четырех спутников системы ГЛОНАСС. Вся система ГЛОНАСС состоит из двадцати четырех спутников, находящихся на круговых орбитах на высоте около 19100 км. Период обращения каждого из них составляет 11 часов и 15 минут. Все спутники располагаются в трех орбитальных плоскостях - в каждой по 8 аппаратов. Конфигурация их размещения обеспечивает глобальное покрытие навигационным полем не только поверхность земли, но и околоземное пространство. В систему ГЛОНАСС входят Центр управления и сеть станций измерения и контроля, которые располагаются на всей территории России. Каждый потребитель, принимающий навигационный сигнал со спутников ГЛОГАСС, должен иметь навигационный приемник и аппаратуру обработки, позволяющей вычислить собственные координаты, время и скорость.

В настоящее время система ГЛОНАСС не обеспечивает 100% доступ к своим услугам для пользователей, но предполагает наличие трех спутников на видимом горизонте России, что по заявлению специалистов делает возможным вычислять пользователям свое местоположение. Сейчас на орбите Земли находятся спутники «ГЛОНАСС-М», но после 2015 года планируется их заменить на аппараты нового поколения - «ГЛОНАСС-К». Новый спутник будет иметь улучшенные показатели (увеличен гарантийный срок, появиться третья частота для гражданских потребителей и т.д.), аппарат будет в два раза легче - 850 кг вместо 1415 кг. Также для поддержания работоспособности всей системы потребуется только один групповой запуск «ГЛОНАСС-К» в год, что существенно снизит общие расходы. Для внедрения системы ГЛОНАСС и обеспечения ее финансирования, аппаратура этой навигационной системы устанавливается на всех вводимых в эксплуатацию транспортных средствах: самолетах, судах, наземном транспорте и т.д. Другое основное предназначение системы ГЛОНАСС - обеспечение национальной безопасности страны. Однако, по мнению экспертов, будущее российской навигационной системы не является безоблачным.

Система Galileo создается с целью обеспечения европейских потребителей самостоятельной навигационной системой - независимой, в первую очередь, от США. Финансовый источник этой программы составляет около 10 млрд. евро в год и финансируется на одну треть из бюджета, а на две трети из средств частных компаний. Система Galileo включает 30 спутников и наземные сегменты. Изначально Китай, наравне с другими 28 государствами присоединился к программе GALILEO. Россия вела переговоры по взаимодействию российской системы навигации с европейской GALILEO. Кроме европейских государств к программе GALILEO присоединились Аргентина, Малайзия, Австралия, Япония и Мексика. Планируется, что GALILEO будет передавать десять видов сигналов для предоставления следующих видов услуг: определение местоположения с точностью от 1 до 9 метров, обеспечение информацией служб спасения всех видов транспорта, предоставление услуг государственным службам, скорой помощи, пожарным, полиции, военным специалистам и службам, обеспечивающим жизнедеятельности населения. Еще одна немаловажная деталь - программа GALILEO обеспечит создание около 150 тыс. рабочих мест.

В 2006 году Индия также приняла решение о создании собственной навигационной системы IRNSS. Бюджет программы около 15 млрд. рупий. На геосинхронные орбиты планируется вывести семь спутников. Работы по развертыванию индийской системы ведет государственная компания ISRO. Все аппаратные средства системы будут разрабатываться только индийскими компаниями.

Китай, желающий занять ведущую позицию на геополитической карте мира, разработал собственную спутниковую навигационную систему «Бэйдоу» (Beidou). В сентябре 2012 года два спутника, входящие в эту систему, были успешно запущены с космодрома Сичан. Они пополнили список 15 космических аппаратов, выведенных китайскими специалистами на околоземную орбиту в рамках создания полноценной спутниковой навигационной системы.

Реализация программы началась китайскими разработчиками еще в 2000 году с запуска двух спутников. Уже в 2011 году на орбите находилось 11 спутников, и система вошла в стадию экспериментальной эксплуатации.

Развертывание собственной навигационной спутниковой системы позволит Китаю не зависеть от крупнейших мировых систем американской (GPS) и российской (ГЛОНАСС). Это повысит эффективность китайских отраслей экономики, особенно, таких, которые связаны с телекоммуникациями.

Планируется, что к 2020 году в китайской НСС будет задействовано около 35 спутников, и тогда система «Бэйдоу» сможет контролировать весь земной шар. Китайская НСС предусматривает следующие виды услуг: определение местоположения с точностью до 10 м, скорости до 0,2 м/с и времени до 50 нс. Особенный круг пользователей будет иметь доступ к более точным параметрам измерений. Китай готов на взаимодействие с другими странами по разработке и эксплуатации спутниковой навигации. Китайская система «Бэйдоу» полностью совместима с европейской Galileo, российской ГЛОНАСС и американской GPS.

«Бэйдоу» эффективно применяется при подготовке прогнозов погоды, предупреждении стихийных бедствий, в области транспорта наземного, воздушного и морского, а также геологоразведке.

В планах Китая постоянное усовершенствование своей спутниковой навигационной системы. Увеличение количества спутников позволит расширить зону обслуживания всего азиатско-тихоокеанского региона.

Использованы материалы:
http://www.odnako.org/blogs/show_20803/
http://www.masters.donntu.edu.ua/2004/ggeo/mikhedov/diss/libruary/mark.htm
http://overseer.com.ua/about_glonass.html
http://4pda.ru/2010/03/16/21851/
http://expert.com.ua/57706-galileo-%D0%BE%D0%B1%D0%BE%D0%B9%D0%B4%D1%91%D1%82%D1%81%D1%8F-%D0%B5%D0%B2%D1%80%D0%BE%D1%81%D0%BE%D1%8E%D0%B7%D1%83-%D0%BD%D0%B0%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE-%D0%B4%D0%BE%D1%80%D0%BE%D0%B6%D0%B5.html







2024 © gtavrl.ru.