Видеосигналы VGA и компонентный: рассмотрим в подробностях. Передайте мне вон ту картинку! Изучаем актуальные интерфейсы подключения мониторов и телевизоров


Максимальное разрешение изображения, которое способна формировать видеокарта.

Разрешение определяет количество точек по горизонтали и по вертикали, из которых формируется изображение. Чем выше разрешение, тем более детальной и информативной получается картинка на мониторе.

Высокое разрешение может понадобиться для подключения монитора с большой диагональю или для профессиональной работы с графикой. Современные профессиональные видеокарты обеспечивают максимальное разрешение - до 3840x2400.

Нужно отметить, что максимальное разрешение для разных видеовыходов может отличаться. Например, многие современные видеоадаптеры на выходе DVI могут формировать изображение с наибольшим разрешением 2560x1600, а по D-Sub - 2048x1536.

Разъемы видеокарты

На выбор видеокарты также может повлиять и имеющийся или предполагаемый к приобретению монитор. Или даже мониторы (во множественном числе). Так, для современных LCD-мониторов с цифровыми входами очень желательно, чтобы на видеокарте был разъём DVI, HDMI или DisplayPort. К счастью, на всех современных решениях сейчас есть такие порты, а зачастую и все вместе. Ещё одна тонкость заключается в том, что если требуется разрешение выше 1920×1200 по цифровому выходу DVI, то обязательно нужно подключать видеокарту к монитору при помощи разъёма и кабеля с поддержкой Dual-Link DVI. Впрочем, сейчас с этим проблем уже нет. Рассмотрим основные разъёмы, использующиеся для подключения устройств отображения информации.

Аналоговый D-Sub разъём (также известен как VGA-выход или DB-15F), изображен на рисунках 4.2.1 и 4.2.2

Рис. 4.2.1 VGA разъем.

Рис. 4.2.2 VGA разъем .

Это давно известный всем и привычный 15-контактный разъём для подключения аналоговых мониторов. Сокращение VGA расшифровывается как video graphics array (массив пикселей) или video graphics adapter (видеоадаптер).

Разъём DVI (вариации: DVI-I и DVI-D), изображен на рисунках 4.2.3 и 4.2.4

Рис. 4.2.3 DVI разъем.

Рис. 4.2.4 DVI разъем.

DVI - это стандартный интерфейс, чаще всего использующийся для вывода цифрового видеосигнала на ЖК-мониторы, за исключением самых дешевых. На рисунку 6 показана довольно старая видеокарта с тремя разъёмами: D-Sub, S-Video и DVI. Существует три типа DVI-разъёмов: DVI-D (цифровой), DVI-A (аналоговый) и DVI-I (integrated - комбинированный или универсальный):

Разъём HDMI

В последнее время широкое распространение получил новый бытовой интерфейс - High Definition Multimedia Interface. Этот стандарт обеспечивает одновременную передачу визуальной и звуковой информации по одному кабелю, он разработан для телевидения и кино, но и пользователи ПК могут использовать его для вывода видеоданных при помощи HDMI-разъёма.

HDMI - это очередная попытка стандартизации универсального подключения для цифровых аудио- и видеоприложений. Оно сразу же получило мощную поддержку со стороны гигантов электронной индустрии (в группу компаний, занимающихся разработкой стандарта, входят такие компании, как Sony, Toshiba, Hitachi, Panasonic, Thomson, Philips и Silicon Image), и большинство современных устройств вывода высокого разрешения имеет хотя бы один такой разъём. HDMI позволяет передавать защищенные от копирования звук и изображение в цифровом формате по одному кабелю, стандарт первой версии основывается на пропускной способности 5 Гбит/с, а HDMI 1.3 расширил этот предел до 10,2 Гбит/с.

HDMI 1.3 - это обновленная спецификация стандарта с увеличенной пропускной способностью интерфейса, увеличенной частотой синхронизации до 340 МГц, что позволяет подключать дисплеи высокого разрешения, поддерживающие большее количество цветов (форматы с глубиной цвета вплоть до 48 бит). Новой версией спецификации определяется и поддержка новых стандартов Dolby для передачи сжатого звука без потерь в качестве. Кроме этого, появились и другие нововведения, в спецификации 1.3 был описан новый разъём mini-HDMI, меньший по размеру по сравнению с оригинальным, изображен на рисунке 4.2.5 Такие разъёмы также используются на видеокартах.

Рис. 4.2.5 mini-HDMI разъем.

HDMI 1.4b - это последняя новая версия данного стандарта, вышедшая не так давно. В HDMI 1.4 появились следующие основные нововведения: поддержка формата стереоотображения (также называемого «3D») с поочередной передачей кадров и активными очками для просмотра, поддержка Fast Ethernet-соединения HDMI Ethernet Channel для передачи данных, реверсивный аудиоканал, позволяющий передавать цифровой звук в обратном направлении, поддержка форматов разрешения 3840×2160 до 30 Гц и 4096×2160 до 24 Гц, поддержка новых цветовых пространств и самый маленький разъём micro-HDMI, изображен на рисунке 4.2.6

Рис. 4.2.6 micro-HDMI разъем.

В HDMI 1.4a поддержка стереоотображения была значительно улучшена, появились новые режимы Side-by-Side и Top-and-Bottom в дополнение к режимам спецификации 1.4. И наконец, совсем свежее обновление стандарта HDMI 1.4b произошло буквально несколько недель назад, и нововведения этой версии пока неизвестны широкой публике, да и устройств с его поддержкой пока что на рынке нет.

Разъём DisplayPort

Постепенно, в дополнение к распространенным видеоинтерфейсам DVI и HDMI, на рынке появляются решения с интерфейсом DisplayPort. Single-Link DVI передаёт видеосигнал с разрешением до 1920×1080 пикселей, частотой 60 Гц и 8 бит на компоненту цвета, Dual-Link позволяет передавать 2560×1600 на частоте 60 Гц, но уже 3840×2400 пикселей при тех же условиях для Dual-Link DVI недоступны. У HDMI почти те же ограничения, версия 1.3 поддерживает передачу сигнала с разрешением до 2560×1600 точек с частотой 60 Гц и 8 бит на компоненту цвета (на более низких разрешениях - и 16 бит). Хотя максимальные возможности у DisplayPort немногим выше, чем у Dual-Link DVI, лишь 2560×2048 пикселей при 60 Гц и 8 бит на цветовой канал, но у него есть поддержка 10-битного цвета на канал при разрешении 2560×1600, а также 12 бит для формата 1080p.

Первая версия цифрового видеоинтерфейса DisplayPort была принята VESA (Video Electronics Standards Association) весной 2006 года. Она определяет новый универсальный цифровой интерфейс, не подлежащий лицензированию и не облагаемый выплатами, предназначенный для соединения компьютеров и мониторов, а также другой мультимедийной техники. В группу VESA DisplayPort, продвигающую стандарт, входят крупные производители электроники: AMD, NVIDIA, Dell, HP, Intel, Lenovo, Molex, Philips, Samsung.

Основным соперником DisplayPort является разъём HDMI с поддержкой защиты от записи HDCP, хотя он предназначен скорее для соединения бытовых цифровых устройств, вроде плееров и HDTV-панелей. Ещё одним конкурентом раньше можно было назвать Unified Display Interface - менее дорогую альтернативу разъёмам HDMI и DVI, но основной её разработчик, компания Intel, отказалась от продвижения стандарта в пользу DisplayPort.

Исходя из совместимости с процессором и поддержки модулей памяти материнской платой, а так же руководствуясь отзывами и оценками покупателей, мною был выбран набор из двух планок Kingston HyperX

KHX16C9B1RK2/8 DIMM DDR3 4096MBx2 PC12800 1600MHz. Модули памяти HyperX red Red компании Kingston имеют обновленный теплоотвод. Как и все модули памяти HyperX, red имеют пожизненную гарантию, бесплатную техническую поддержку и отличаются легендарной надежностью Kingston. Цена данного набора составляет 7 000 рублей.

Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.

С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.

Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.

Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.

Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.

Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.

Более совершенным вариантом композитного сигнала является сигнал S‑Video . Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.

Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.

Компонентные видеосигналы

Для достижения максимального качества изображения и создания видеоэффектов в профессиональном оборудовании видеосигнал разделяется на несколько каналов. Например, в системе RGB видеосигнал делится на красный, синий и зеленый компоненты, а также сигнал синхронизации. Такой сигнал еще называют сигналом RGBS, наибольшее распространение он получил в Европе.


В зависимости от способа передачи сигналов синхронизации сигнал RGB имеет несколько разновидностей. Если синхроимпульсы передаются в канале зеленого цвета, то сигнал называют RGsB, а если сигнал синхронизации передается во всех цветовых каналах, то RsGsBs.


Для подключения сигнала RGBS используют кабели с четырьмя разъемами BNC или разъем SCART.


Кабель для видеосигнала RGBS с разъемами BNC.


Разъем SCART

Таблица 1. Назначение контактов разъема SCART

Контакт Описание
1. Выход аудио, правый
2. Вход аудио, правый
3. Выход аудио, левый + моно
4. Земля для аудио
5. Земля для RGB Blue
6. Вход аудио, левый + моно
7. Вход RGB Blue (синий)
8. Вход, переключение режима телевизора, в зависимости от типа телевизора – Audio/RGB/16:9, иногда включение AUX (старые телевизоры)
9. Земля для RGB Green
10. Data 2: Clockpulse Out, только в старых видеомагнитофонах
11. Вход RGB Green (зеленый)
12. Data 1 Выход данных
13. Земля для RGB Red
14. Земля для Data, дистанционное управление, только в старых видеомагнитофонах
15. Вход RGB Red (красный) или вход канала С
16. Вход Blanking Signal, переключение режима телевизора (композит/RGB), «быстрый» сигнал (новые телевизоры)
17. Земля композитного видео
18 Земля Blanking Signal (для контактов 8 или 16)
19. Выход композитного видео
20. Вход композитного видео или канал Y (яркости)
21. Защитный экран (корпус)

В системе YUV, получившей распространение в США, используют другой набор компонентов: смешанный сигналы яркости и синхронизации, а также красный и синий цветоразностные сигналы. Для каждой компонентной системы требуется свой тип оборудования, каждая обладает своими достоинствами и недостатками. Для объединения устройств различных видеоформатов необходимы специальные интерфейсные блоки. Разъёмы на концах кабелей обычно бывают RCA или BNC.


Компонентый сигнал YUV


Компонентый сигнал формата RGBHV

Путь формирования видеосигнала таков: изображение раскладывается на сигналы трех первичных цветов: красного (Red – R), зеленого (Green – G) и синего (Blue – В) – отсюда и название «RGB», к которым добавляются сигналы горизонтальной и вертикальной синхронизации (HV), а затем превращается в RGB-сигнал с синхроимпульсами в канале зеленого (RGsB), который далее преобразуется в: компонентный (цветоразностный) сигнал YUV, где Y=0,299R+0,5876G+0,114В; U=R–Y; V= В–Y, преобразуемый затем в сигнал S-Video и композитный видеосигнал. Композитный видеосигнал преобразуется в радиочастотный сигнал, сочетающий аудио- и видеосигналы. Затем он модулируется несущей частотой и превращается в эфирный телесигнал.

На приемной стороне радиочастотный сигнал в результате демодуляции преобразуется в композитный видеосигнал, из которого в свою очередь в результате ряда преобразований получают компоненты RGB и HV.

Компонентный сигнал YPbPr преобразуется в RGB + HV в обход многих цепей видеотракта. Разделение цветоразностных сигналов Pb и Pr по отдельным каналам существенно повышает точность передачи фазы цветовой поднесущей, а настройка цветового тона не требуется.

Сигналы телевидения высокой четкости (ТВЧ, HDTV) 720p и 1080i всегда передаются в компонентном формате, ТВЧ в композитном или s-video форматах не существует.

Когда зарождался формат DVD, было решено, что при оцифровке материала для записи на DVD именно компонентный сигнал будет переводиться в цифровой вид, а затем обрабатываться по алгоритму MPEG-2 сжатия видеоданнных. Сигнал RGB на выходе DVD-плеера получается из компонентного сигнала YUV.

Важно отметить различие между соотношением цветовых компонент в RGB и компонентном сигнале формата YUV (YPbPr). В цветовом пространстве RGB относительное содержание (вес) каждой цветовой компоненты одинаково, тогда как в YPbPr оно учитывает спектральную чувствительность человеческого глаза.


Соотношение компонент в цветовом пространстве RGB

Соотношение компонент в цветовом пространстве YPbPr

Ограничения по расстоянию передачи компонентных разновидностей видеосигнала от источников сигнала к приемникам сведены в таблицу 2 (для сравнения приведены и некоторые цифровые интерфейсы).

Тип сигнала Полоса пропускания, МГц Тип кабеля Расстояние, м
UXGA (компонентный)
HDTV/1080i (компонентный)
170
70
Коаксиальный 75 Ом 5
5-30
Компонентный UXGA (с усилением) 170 Коаксиальный 75 Ом 50-70
Стандарт (цифровой SDI)
HDTV (цифровой SDI)
270
1300
Коаксиальный 75 Ом 50-300
50-80
DVI-D 1500 Витая пара 5
DVI-D (с усилением) 1500 Витая пара 10
IEEE 1394 (Firewire) 400(800) Витая пара 10

Видеосигналы VGA

Одна из широко распространенных разновидностей компонентного сигнала – формат VGA.

Формат VGA (Video Graphics Array) – это формат видеосигналов, разработанный для вывода на компьютерные мониторы.

По разрешающей способности форматы VGA принято классифицировать в соответствии с разрешением видеокарт персональных компьютеров, формирующих соответствующие видеосигналы:

  • VGA (640х480);
  • SVGA (800х600);
  • XGA (1024х780);
  • SXGA (1280х1024);
  • UXGA (1600x1200).

В каждой паре чисел первое показывает число пикселей по горизонтали, а второе – по вертикали изображения.

Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения стоимость видеокарт и устройств отображения возрастает.

Видеотехника развивается стремительно, и некоторые компьютерные форматы, такие как MDA, CGA и EGA ушли в прошлое. Например, формат CGA, считавшийся в течение нескольких лет самым распространенным, обеспечивал изображение с разрешением всего лишь 320х200 при четырех цветах!

Самый «слабый» из используемых в настоящее время видео форматов, VGA, появился в 1987 году. Количество градаций каждого цвета в нем увеличено до 64, в результате чего число возможных цветов составило 643=262144, что для компьютерной графики имеет даже более важное значение, чем разрешающая способность.

Назначение контактов разъема VGA приведено в таблице.

Контакт Сигнал Описание
1. RED Канал R (красный) (75 Ом, 0,7 В)
2. GREEN Канал G (зеленый) (75 Ом, 0,7 В)
3. BLUE Канал B (синий) (75 Ом, 0,7 В)
4. ID2 Идентификационный бит 2
5. GND Земля
6. RGND Земля канала R
7. GGND Земля канала G
8. BGND Земля канала B
9. KEY Нет контакта (ключ)
10. SGND Земля синхронизации
11. ID0
Идентификационный бит 0
12. ID1 or SDA
Идентификационный бит 1 или данные DDC
13. HSYNC or CSYNC
Строчная H или композитная синхронизация
14. VSYNC
Кадровая синхронизация V
15. ID3 or SCL Идентификационный бит 3 или такты DDC

Кроме собственно видеосигналов (R, G, B, H и V) в разъеме (по спецификации VESA) предусмотрены также некоторые дополнительные сигналы.

Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: бренд-нейм, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.

Таким образом, из таблицы видно, что если не использовать канал DDC, то сигнал формата VGA представляет собой, по сути дела, компонентный сигнал RGBHV.

В профессиональной аппаратуре вместо кабеля D-Sub с разъемом DB-15 обычно используют кабель с пятью разъемами BNC, что обеспечивает лучшие характеристики линии передачи. Такой кабель лучше согласован с приемником и передатчиком сигнала по импедансу, имеет меньшие перекрестные помехи между каналами, а следовательно лучше подходит для передачи видеосигнала с высоким разрешением (широким спектром сигнала) на большие расстояния.


Кабель VGA с разъемом DB-15


Кабель VGA с пятью разъемами BNC

В настоящее время наиболее широко используются устройства отображения с соотношением сторон 4:3: 800x600, 1024x768 и 1400x1050, однако существуют форматы с необычным соотношением сторон: 1152x970 (около 6:5) и 1280x1024 (5:4).

Распространение плоских панелей подталкивает рынок к более широкому использованию широкоэкранных дисплеев с соотношением сторон 16:9 с разрешением 852x480 (плазменные дисплеи), 1280x768 (жидкокристаллические дисплеи), 1366x768 и 920x1080 (плазменные и жидкокристаллические дисплеи).

Требуемая ширина полосы линии связи для передачи сигнала VGA или видеоусилителя определяется как результат произведения количества пикселей по горизонтали на количество строк по вертикали на частоту кадров. Полученный результат следует умножить на коэффициент запаса, равный 1,5.

Ш [Гц] = Гор * Верт * Кадр * 1,5

Частота строчной развертки есть произведение числа строк (или рядов пикселей) на частоту кадров.

Вид сигнала Занимаемый
спектр частот, МГц
Рекомендуемое макс.
расстояние передачи, м
Аналоговый видеосигнал NTSC 4,25 100 (кабель RG-6)
VGA (640x480, 60 Гц) 27,6 50
SVGA (800x600, 60 Гц) 43 30
XGA (1027x768, 60 Гц) 70 15
WXGA (1366x768, 60 Гц) 94 12
UXGA (1600x1200, 60 Гц) 173 5

Таким образом, сигнал UXGA требует полосу пропускания 173 МГц. Это огромная полоса: она простирается от звуковых частот до седьмого телевизионного канала!

Как удлинить компонентный сигнал

На практике часто возникает необходимость передать видеосигналы на расстояния большие, чем указано в вышеприведенных таблицах. Частичным решением проблемы является использование коаксиальных кабелей высокого качества, с малым омическим сопротивлением, хорошо согласованных с линией, имеющих малый уровень помех. Такие кабели довольно дороги и не дают полного решения проблемы.

Если устройство-приемник сигнала находится на значительном расстоянии, следует использовать специализированное оборудование – так называемые удлинители интерфейса. Устройства этого класса помогают устранить изначальное ограничение на длину линии связи между компьютером и элементами информационной сети. Удлинители сигналов VGA действуют на аппаратном уровне, поэтому они свободны от каких-либо проблем с совместимостью программного обеспечения, согласованием кодеков или преобразованием форматов.

Если рассматривать пассивную линию (т.е. линию без активного оконечного оборудования), то кабель типа RG-59 способен передать без видимых на экране искажений композитное видео, телевизионный сигнал стандартов PAL или NTSC только на 20-40 м (либо до 50-70 м по кабелю RG-11). Специализированные кабели, например Belden 8281 или Belden 1694A, позволят увеличить дальность передачи примерно на 50%.

Для сигналов VGA, Super-VGA или XGA, полученных с графических плат компьютеров, обычный кабель VGA обеспечивает передачу изображения с разрешением 640x480 на расстояние 5-7 м (а при разрешении 1024x768 и выше такой кабель не должен быть длиннее 3 м.). Высококачественные промышленные кабели VGA/XGA обеспечивают дальность до 10-15, редко до 30 м. Кроме того, линия связи будет подвержена потерям на высоких частотах (High frequency loss), которые проявляются в снижении яркости до полного исчезновения цвета, ухудшении разрешения и четкости.

Для устранения этой проблемы можно использовать линейный усилитель-корректор, включенный ПЕРЕД длинным кабелем. В нем используется схема компенсации потерь на высоких частотах, именуемая EQ (Cable Equalization, коррекция кабеля) или управление высокочастотной составляющей – HF (High Frequency) control. Схема EQ обеспечивает частотно-зависимое усиление сигнала для «спрямления» амплитудно-частотной характеристики (АЧХ). Регулятор общего усиления позволяет парировать обычные (омические) потери в кабеле.

Такие линейные усилители позволяют (при использовании кабелей максимального качества) передать сигнал с разрешением до 1600х1200 (60 Гц) на расстояния до 50-70 м (и больше, при меньших разрешениях).

Однако не всегда этого достаточно: иногда нужны большие расстояния, иногда на длинный кабель могут наводиться помехи, с которыми линейный усилитель бороться не может. В этом случае обычный коаксиальный кабель VGA можно заменить на иной, более подходящий носитель. Сегодня для этого чаще всего используют недорогой и удобный кабель витой пары, устанавливая на концах кабеля специальные преобразователи (передатчик и приемник).

Передающее устройство такого удлинителя преобразует видеосигналы в дифференциальный симметричный формат, наиболее подходящий для витых пар. На принимающей стороне восстанавливается стандартный видеоформат.

Используется обычный кабель для локальных сетей Ethernet, категории 5 и выше. Для видеосигналов лучше подходит неэкранированный кабель (UTP). За счет дешевизны такого кабеля весь тракт передачи сигнала обычно не удорожается, несмотря на необходимость установки дополнительных приборов.

Данный метод удлинения сигнала VGA хорошо работает на расстояниях до 300 м.

Аналогичные методы можно использовать и для удлинения компонентных сигналов других типов (YUV, RGBS, s-Video), промышленность выпускает соответствующие разновидности приборов.

Заметим, что для передачи компонентного видео YUV обычно хорошо подходят и приборы для сигнала VGA (и это оговаривается в их описаниях), если использовать их каналы R, G, B для передачи каналов Y, U и V (каналы синхронизации H и V можно не использовать). Обычно для этого достаточно использовать кабели-переходники для согласования типа разъемов.

Средой передачи в удлинителях могут также быть оптическое волокно и беспроводный радиоканал. По сравнению с витыми парами, оптоволокно значительно увеличит стоимость, а беспроводная связь не обеспечит достаточной помехозащищенности и надежности, да и получить разрешение на ее использование непросто.

- Расширение (формат) - это символы в конце файла после последней точки.
- Компьютер определяет тип файла именно по расширению.
- По умолчанию Windows не показывает расширения имен файлов.
- В имени файла и расширении нельзя использовать некоторые символы.
- Не все форматы имеют отношение к одной и той же программе.
- Ниже находятся все программы с помощью которых можно открыть файл VGA.

XnView - довольно мощная программа, сочетающая в себе множество функций по работе с изображениями. Это может быть и простой просмотр файлов, и их конвертирование, и незначительная обработка. Является кроссплатформенной, что позволяет использовать её практически в любой системе. Программа уникальна ещё и тем, что поддерживает около 400 различных форматов изображений, среди которых встречаются как самые используемые и популярные, так и нестандартные форматы. XnView может производить пакетную конвертацию изображений. Правда, сконвертировать их можно только в 50 форматов, но среди этих 50 форматов присутствуют все популярные расшир...

XnConvert – полезная утилита для конвертирования и первичной обработки фотографий и изображений. Работает с 400+ форматами. Поддерживает все популярные графические форматы. С помощью простых инструментов XnConvert можно регулировать яркость, гамму и контрастность. В приложении можно менять размер фотографий, накладывать фильтры и ряд популярных эффектов. Пользователь может добавлять водяные знаки и заниматься ретушью. При помощи приложения можно удалять мета-данные, обрезать файлы и вращать их. XnConvert поддерживает журнал, в котором пользователь увидит всю подробную информацию о своих недавних манипуляциях с изображениями.

Что такое QVGA? Изначально термин расшифровывается так: Quarter Video Graphics Array. По своей сути QVGA является термином, обозначающим определенный вид разрешения для компьютерных мониторов. А именно: 320 Ч 240 (или 240 х 320) пикселей.

Quarter VGA (как его иногда называют) используется чаще всего в портативных устройствах: в сотовых телефонах, различных карманных игровых приставках, КПК, мультимедийных плеерах.

Так как устройства в большинстве своём используются в режиме «портрет» (альбомный), то в таких случаях упоминается разрешение 240 Ч 320. Это происходит оттого, что дисплеи обычно больше в высоту, чем в ширину. Термин QVGA получил свое название, исходя из того, что количество пикселей в этом режиме представляет собой одну четвертую часть (quarter – от англ. четверть) от разрешения 640 Ч 480. Данное разрешение - максимальное для формата видеоадаптера IBM VGA, ставшего основным промышленным стандартом в конце 80-х.

Формат QVGA используется и в цифровом видео для режимов более экономной записи. Такой режим используется специально для цифровых камер и устройств мобильной связи. При этом режим QVGA не относят к формату видеофайлов. Каждый кадр на дисплее устройства - это изображение размером 320 Ч 240. Скорость QVGA видео обычно 15, реже 30 кадров в секунду.

Главным «конкурентом» QVGA стал VGA. Часто спорят, что же лучше, но ответ стандартный – лучше VGA, но и дороже.

Итак, как мы помним, QVGA - вид разрешения экрана, размером 320 на 240 пикселей. А формат VGA имеет размеры 640 на 480.

Но иногда это не принципиально важно. Так, например, при прослушивании музыки не особенно важно, какое разрешение у экрана. Разрешение QVGA подходит для электронных книг. Это также не критично при выборе мобильного телефона, тогда как для любителей игр разрешение экрана имеет большое значение для качества самой игры.

Самое большое преимущество VGA перед QVGA – это качество видео. Для просмотра фильмов лучше выбирать первый формат. А вот в остальных случаях происходит «уменьшение» картинки или шрифта, что может показаться неудобным.

Важно знать, что программы и игры, предназначенные для VGA разрешения, не будут работать на QVGA, либо будут работать некорректно. Тогда как игры, видео, текст формата QVGA будут воспроизводиться на VGA устройствах без проблем.



Но пока мониторов, поддерживающих этот интерфейс, на рынке попросту нет. А что же есть? В этой статье будет рассказано о основных современных интерфейсах для подключения мониторов и ТВ-панелей, их особенностях и отличиях, а также даны советы, как выбрать интерфейс подключения под конкретные нужды и не прогадать.

Примечание: на картинке до ката – панель подключения монстро-монитора Dell UltraSharp U2711 .

Краткий ликбез

Все существующие интерфейсы отличаются друг от друга тремя основными параметрами: типом передаваемого сигнала (аналоговый или цифровой), максимальным поддерживаемым разрешением и пропускной способностью. Конечно, всего параметров гораздо больше, но именно эти три дают базовое понимание, что умеет тот или иной интерфейс.

В соревновании аналоговых интерфейсов и цифровых вторые давно одержали убедительную победу. Цифровой сигнал доходит до выводящего устройства без особых искажений, что позволяет получать качественную картинку без помех. К тому же любая современная видеокарта выдаёт изначально только цифровой сигнал, и его преобразование в аналоговый - а на мониторе, если, конечно, речь не идёт о электронно-лучевом антиквариате, снова в цифровой - ведёт к значительной потере качества. Впрочем, аналоговое подключение на сегодняшний день всё ещё занимает своё место под солнцем.

Что касается пропускной способности и разрешения, то эти два параметра тесно взаимосвязаны. Чем больше пропускная способность, обеспечиваемая интерфейсом, тем больше и максимальное разрешение изображения. Если кто-то не понимает, что мы сейчас имеем в виду под термином «пропускная способность», то поясняем: это количество байт информации, которое интерфейс за секунду после получения сигнала способен передать на монитор. Очевидно, что интерфейсы, рассчитанные на обеспечение работы широкоформатных мониторов и ЖК/плазменных телевизоров с их большими разрешениями, обязаны иметь высокую пропускную способность.

4K2K, 3D-контент и способы его воспроизведения

Прежде чем мы начнём разговор о, собственно, способах подключения мониторов и телевизоров, хочется затронуть модную и актуальную тему: сверхвысокие разрешения и 3D в потребительской электронике.

4K2K - это современный стандарт, подразумевающий разрешение 3880×2160 точек - четыре кадра 1920×1080, стандарта, который долгое время правил бал среди видео высокой чёткости. Соответственно, каждый кадр в несжатом виде требует вчетверо более высокую пропускную способность видеоинтерфейса. А если учесть моду на 48 FPS и 3D-видео… (умножьте на два и ещё на два, если хотите по 48 кадров для каждого глаза, да ещё и в 3D).

Во-первых, 4K2K контента сейчас - кот наплакал. Поэтому наслаждаться в нативном разрешенении чем-либо кроме демороликов, идущих в комплект к вашему дорогущему телевизору, будет затруднительно. Для этого многие производители ставят специальный чип, позволяющий растягивать FullHD-контент до 4K2K по специальным алгоритмам: быть может, не так круто, как прямая трансляция 4K2K, но очень и очень хорошо для апскейла. Спросите у любого пользователя GT, кто имеет такой телевизор – соврать не дадут.

Во-вторых, 3D бывает двух разных видов - с пассивными и активными очками. В первом случае контент получает чересстрочную развёртку, а поляризационные очки, инерция, яркая картинка и интересное кино заставляет вас забыть о том, что полукадры идут с «нечестным» разрешением. Во втором же случае используется удвоенная частота кадров, и вот тут нас поджидает главная проблема: не все видеоинтерфейсы способны передать FullHD-картинку с 48 кадрами в секунду.

Современные способы подключения

Начать обзор основных используемых интерфейсов следует с VGA . Это самый старший из используемых сегодня массовых типов интерфейса - он был разработан аж в 1987 году. С тех пор, правда, был несколько усовершенствован вслед за развитием мониторов.

Это единственный аналоговый интерфейс, всё ещё активно применяемый сегодня - его «коллеги» S-Video, YP b P r и цифро-аналоговый SCARТ уже не встречаются в новых современных устройствах. Почти все крупные производители компьютеров планируют полностью отказаться от VGA уже в этом году. В сущности, плюсов по сравнению с другими типами у него просто нет - это морально и технически устаревший стандарт, который вот-вот исчезнет с рынка. Максимальное поддерживаемое разрешение - 1280×1024 пикселей. Чаще всего встречается в офисных мониторах и разных проекторах .

Самые популярные цифровые интерфейсы на сегодняшний день - это DVI и HDMI .

DVI существует в трёх разновидностях: DVI-D (только цифровой сигнал), DVI-A (только аналоговый) и DVI-I (оба типа сигнала). Данный интерфейс обеспечивает хорошее качество изображения, встроен практически во все современные мониторы и видеокарты. Его недостаток - сильная зависимость качества сигнала от длины кабеля.

Оптимальную передачу данных по DVI обеспечивают кабели длиной до 10 метров, чего иногда недостаточно (впрочем, для использования в станционарных домашних компьютерах обычно этого хватает с головой). Максимальное поддерживаемое разрешение - 1920×1080 для одноканальных и 2560×1600 для двухканальных моделей.


HDMI - более современная и развитая альтернатива DVI. В отличие от «младшего брата», умеет передавать не только видео, но и звуковые сигналы, поэтому разъёмы этого типа есть на всех широкоформатных мониторах со встроенными колонками, проекторах, плазмах. Учтите, что при «стыковке» разных версий HDMI итоговый набор функционала будет соответствовать более старой.

Здесь, кстати, кроется серьёзный минус HDMI - многие кабели старого производства никак не промаркированы, и многие возможности (в частности, поддержка 3D) HDMI версий 1.4 и старше просто не заработают, так как кабель запросто может оказаться устаревшим. Для корректной работы интерфейса необходимо совмещение версий всех трёх элементов подключения (вход, кабель, выход), в противном случае пропускная способность самого «младшего» элемента будет аналогична бутылочному горлышку. В заключение заметим, что, как и DVI, HDMI страдает от недостаточной рекомендуемой длины кабеля (до 5 метров).

Из более современных интерфейсов в первую очередь обращает на себя внимает DisplayPort . Этот вид подключения был разработан в 2006 году и планировался как замена DVI (но не HDMI, так как эти интерфейсы ориентированы на разные сегменты рынка).

Последние версии (1.2 и только начинающая набирать популярность 1.3) поддерживают режим FullHD 3D и ультравысокое разрешение 4K2K, обеспечивают высочайшую скорость передачи данных, позволяют подключать профессиональные экраны c 48-битным цветом, к тому же обеспечивают двойной уровень защиты передаваемого контента. Что немаловажно, DisplayPort позволяет подключать целые цепочки мониторов к одному разъёму при помощи технологии MutiStream , причём без потери качества картинки.

Максимальная длина кабеля ограничена тремя метрами для полного разрешения и 10–15 метрами для FullHD.

VGA, DVI, HDMI и теперь уже и DisplayPort - база интерфейсов для подключения мониторов и телевизоров на сегодняшний день. Однако есть и менее распространённые варианты, среди которых в первую очередь следует отметить продукт Apple и Intel - универсальный порт Thunderbolt и последнюю высокоскоростную версию USB - 3.1 с разъёмами Type-C.

Thunderbolt - интерфейс подключения, объединяющий в рамках одного коннектора разъёмы DisplayPort и PCI-Express. Скорости передачи данных очень высокие - 10 гигабит/сек для первого поколения и 20 гигабит/сек для второго. Видеосигнал передаётся по TB с использованием протоколов DP - соответственно, как и DisplayPort, Thunderbolt способен обеспечить разрешение 4K2K (в MacPro при помощи TB можно подключить сразу три монитора с таким разрешением), поддержку 3D и вообще всё, что умеют последние версии DP. Кстати, анонсированные не так давно мониторы с разрешением до 5120×2880 планируется оснащать именно Thunderbolt. Оба поколения интерфейса полностью совместимы друг с другом и с другими интерфейсами с помощью переходников.

Вообще, Thunderbolt выглядит крайне перспективным универсальным периферийным интерфейсом, по своим характеристикам способным обеспечить все потребности топовых мониторов и новейших телевизоров. Пока что, правда, его распространенность в гаджетах оставляет желать лучшего.

Максимальная длина кабеля - 20 метров, правда, стоит такой провод около пятисот долларов, поддерживает только вторую версию протокола и содержит в себе как медные линии, так и оптоволокно. Кабели более стандартных размеров - двух и трёхметровые стоят вполне разумных денег.

Экран без проводов

Современные технологии позволяют обеспечить великолепную картинку на мониторе или телевизоре и без проводного подключения. Если ваш монитор или ТВ поддерживают беспроводную передачу данных, вы можете рассмотреть для себя и такой вариант. Из софта, обеспечивающего работу монитора по беспроводной сети, обычно на слуху у рядовых юзеров три стандарта - Miracast, DLNA и WiDi. Что и немудрено, они самые популярные на текущий момент. По ним сейчас и пробежимся.

Miracast - самый распространённый стандарт передачи данных по беспроводной сети, использующий Wi-Fi. В отличие от многих конкурентов, не требует буферного устройства - передача осуществляется напрямую, что крайне удобно. Другое важное преимущество заключается в том, что передача идёт не файлами, а пакетами сырых данных. Miracast сравнительно «молод», но его уже внедряют в свои девайсы более 500 компаний-производителей, что даёт право считать его практически универсальным. Максимальное поддерживаемое разрешение - 1920×1200 пикселей. Конечно, по современным меркам это немного, но для беспроводной передачи - оптимальный вариант.

DLNA (Digital Living Network Alliance) - очень широко распространённая технология передачи данных по беспроводной сети. Она интегрирована во многие смартфоны, современные телевизоры, ноутбуки и даже в игровые приставки. Позволяет свободно осуществлять передачу данных между устройствами, подключёнными в единую сеть, в том числе и, конечно же, передавать видео с устройств на экраны. Серьёзным минусом DLNA являются специфические поддерживаемые стандарты кодировки - почти всегда программа запускает перекодирование перед воспроизведением, что тратит время и ресурсы устройств.

WiDi (Intel Wireless Display) - разработка Intel, по возможностям представляет собой аналог DLNA. Очень простой в настройке продукт, что делает его идеальным вариантом для создания домашнего кинотеатра или хранения коллекции фильмов. Основной минус - многие отмечают ощутимое время задержки сигнала, что делает WiDi неудачным выбором для игр на большом экране.

Как выбирать интерфейс для подключения

Выбор интерфейса для подключения монитора или ТВ к компьютеру всегда должен исходить из ваших потребностей и целей - впрочем, как и выбор вообще любого аксессуара и комплектующих для цифровой техники. Спросите себя, что вам требуется. Вы намерены смотреть с широкоформатного монитора фильмы в высоком качестве? Работать с 3D-графикой? Или вы вообще не запускаете на компьютере ничего тяжелее Word"а, и вам от картинки на мониторе нужно только одно - чтобы она была?

Понятное дело, даже если у вас на видеокарте и мониторе/телевизоре есть разъёмы VGA по соседству с каким-нибудь цифровым интерфейсом - брать кабели под аналоговый стандарт не надо. VGA - уже почти история, оставьте его доживать там, где он пока существует: в проекторах и самых плохеньких моделях мониторов. Ориентируйтесь только на цифровые интерфейсы.

Абсолютное большинство нынешних девайсов имеют разъёмы под DVI и HDMI, а топовые модели - и DisplayPort, поэтому выбирать придётся в первую очередь из этой троицы. Базовый совет такой - для вывода сигнала на настольные мониторы не в ультравысоком разрешении достаточно DVI, а для воспроизведения на плазму, проектор, Blu-Ray-проигрыватель и т.д. стоит использовать HDMI, так как кроме видео он может передавать и другие данные (звук, специальные субтитры и так далее). DisplayPort по возможностям передачи картинки кладёт на обе лопатки что DVI, что HDMI, но пока остаётся уделом профессиональной и околопрофессиональной техники. Кроме того, с выводом звука бывают проблемы: не вся техника поддерживает технологию audio/video interconnect. Его ближайший родственник Thunderbolt может ещё больше: прокинуть не только картинку, но и, скажем, USB-хаб.

Краткая памятка

VGA: поддерживает максимальное разрешение 1280×1024 пикселей, не умеет в Full HD, не говоря уж про 3D, годится только для использования на простейшем офисном компьютере или проекторе. И да, морально устарел.

DVI: встроен буквально в каждую современную видеокарту и монитор , что является его огромным плюсом. Существует в одно- и двухканальном вариантах, отличающихся по максимальному разрешению (1920×1080 и 2560×1600 соответственно). Поддерживает цифровой и аналоговый сигналы в зависимости от разновидности (DVI-A для аналога, DVI-D для цифры и DVI-I для того и другого). Подойдёт, если вы хотите играть и смотреть фильмы на большом хорошем мониторе. Существуют технологии подключения 4K2K экранов двумя кабелями, так что выбрасывать DVI на свалку истории рано.

HDMI: Идеальный выбор для подключения ТВ к ресиверу, компьютеру или ноутбуку, так как передаёт также аудиосигналы и некоторые виды субтитров. Имеется почти в любой современной воспроизводящей технике. Поддерживает FullHD 3D, максимальное разрешение 3840×2160 (4K2K), до 32 каналов аудио. Актуальная версия – 2.0. Для создания домашнего кинотеатра смело выбирайте HDMI.

DisplayPort: Данный стандарт почти во всём превосходит «потребительский» HDMI, но пока остаётся уделом профессионалов и гиков. Недорогих моделей мониторов с DisplayPort попросту не существует. Если вы дизайнер или моделлер, то это ваш выбор, так как данный интерфейс не только обладает высокой пропускной способностью и поддерживает 4K2K и Full HD 3D, но и позволяет без потери качества подключать в единую цепочку несколько мониторов, что удобно, если у вас ноутбук, и дополнительных разъёмов на него не поставить. Последняя на текущий момент версия DP – 1.3, но наиболее часто встречаются разъёмы и провода версии 1.2.

Thunderbolt: На данный момент это скорее также профессиональный интерфейс, чем массовый. Важнейший плюс – полная совместимость с DP и передача данных его же протоколом. Thunderbolt можно порекомендовать в первую очередь пользователям







2024 © gtavrl.ru.