Самые популярные субд. Краткий обзор реляционных систем управления базами данных


Базы данных - это логически смоделированные хранилища любых типов данных. Каждая база данных, не являющаяся бессхемной, следует модели, которая задаёт определённую структуру обработки данных. СУБД - это приложения (или библиотеки), управляющие базами данных различных форм, размеров и типов.

Чтобы лучше разобраться в СУБД, ознакомьтесь с .

Реляционные системы управления базами данных

Реляционные системы реализуют реляционную модель работы с данными, которая определяет всю хранимую информацию как набор связанных записей и атрибутов в таблице.

СУБД такого типа используют структуры (таблицы) для хранения и работы с данными. Каждый столбец (атрибут) содержит свой тип информации. Каждая запись в базе данных, обладающая уникальным ключом, передаётся в строку таблицы, и её атрибуты отображаются в столбцах таблицы.

Отношения и типы данных

Отношения можно определить как математические множества, содержащие наборы атрибутов, отображающие хранящуюся информацию.

Каждый элемент, формирующий запись, должен удовлетворять определённому типу данных (целое число, дата и т.д.). Различные РСУБД используют разные типы данные, которые не всегда взаимозаменяемы.

Такого рода ограничения обычны для реляционных баз данных. Фактически, они и формируют суть отношений.

Популярные РСУБД

В этой статье мы расскажем о 3 наиболее популярных РСУБД:

  • SQLite: очень мощная встраиваемая РСУБД.
  • MySQL: самая популярная и часто используемая РСУБД.
  • PostgreSQL: самая продвинутая и гибкая РСУБД.

SQLite

SQLite - это изумительная библиотека, встраиваемая в приложение, которое её использует. Будучи файловой БД, она предоставляет отличный набор инструментов для более простой (в сравнении с серверными БД) обработки любых видов данных.

Когда приложение использует SQLite, их связь производится с помощью функциональных и прямых вызовов файлов, содержащих данные (например, баз данных SQLite), а не какого-то интерфейса, что повышает скорость и производительность операций.

Поддерживаемые типы данных

  • NULL: NULL-значение.
  • INTEGER: целое со знаком, хранящееся в 1, 2, 3, 4, 6, или 8 байтах.
  • REAL: число с плавающей запятой, хранящееся в 8-байтовом формате IEEE.
  • TEXT: текстовая строка с кодировкойUTF-8, UTF-16BE или UTF-16LE.
  • BLOB: тип данных, хранящийся точно в таком же виде, в каком и был получен.

Note: для получения более подробной информации ознакомьтесь с документацией .

Преимущества

  • Файловая: вся база данных хранится в одном файле, что облегчает перемещение.
  • Стандартизированная: SQLite использует SQL; некоторые функции опущены (RIGHT OUTER JOIN или FOR EACH STATEMENT), однако, есть и некоторые новые.
  • Отлично подходит для разработки и даже тестирования: во время этапа разработки большинству требуется масштабируемое решение. SQLite, со своим богатым набором функций, может предоставить более чем достаточный функционал, при этом будучи достаточно простой для работы с одним файлом и связанной сишной библиотекой.

Недостатки

  • Отсутствие пользовательского управления: продвинутые БД предоставляют пользователям возможность управлять связями в таблицах в соответствии с привилегиями, но у SQLite такой функции нет.
  • Невозможность дополнительной настройки: опять-таки, SQLite нельзя сделать более производительной, поковырявшись в настройках - так уж она устроена.

Когда стоит использовать SQLite

  • Встроенные приложения: все портируемые не предназначенные для масштабирования приложения - например, локальные однопользовательские приложения, мобильные приложения или игры.
  • Система доступа к дисковой памяти: в большинстве случаев приложения, часто производящие прямые операции чтения/записи на диск, можно перевести на SQLite для повышения производительности.
  • Тестирование: отлично подойдёт для большинства приложений, частью функционала которых является тестирование бизнес-логики.

Когда не стоит использовать SQLite

  • Многопользовательские приложения: если вы работаете над приложением, доступом к БД в котором будут одновременно пользоваться несколько человек, лучше выбрать полнофункциональную РСУБД - например, MySQL.
  • Приложения, записывающие большие объёмы данных: одним из ограничений SQLite являются операции записи. Эта РСУБД допускает единовременное исполнение лишь одной операции записи.

MySQL

MySQL - это самая популярная из всех крупных серверных БД. Разобраться в ней очень просто, да и в сети о ней можно найти большое количество информации. Хотя MySQL и не пытается полностью реализовать SQL-стандарты, она предлагает широкий функционал. Приложения общаются с базой данных через процесс-демон.

Поддерживаемые типы данных

  • TINYINT: очень маленькое целое.
  • SMALLINT: маленькое целое.
  • MEDIUMINT: целое среднего размера.
  • INT или INTEGER: целое нормального размера.
  • BIGINT: большое целое.
  • FLOAT: знаковое число с плавающей запятой одинарной точности.
  • DOUBLE, DOUBLE PRECISION, REAL: знаковое число с плавающей запятой двойной точности.
  • DECIMAL, NUMERIC: знаковое число с плавающей запятой.
  • DATE: дата.
  • DATETIME: комбинация даты и времени.
  • TIMESTAMP: отметка времени.
  • TIME: время.
  • YEAR: год в формате YY или YYYY.
  • CHAR: строка фиксированного размера, дополняемая справа пробелами до максимальной длины.
  • VARCHAR: строка переменной длины.
  • TINYBLOB, TINYTEXT: BLOB- или TEXT-столбец длиной максимум 255 (2^8 – 1) символов.
  • BLOB, TEXT: BLOB- или TEXT-столбец длиной максимум 65535 (2^16 – 1) символов.
  • MEDIUMBLOB, MEDIUMTEXT: BLOB- или TEXT-столбец длиной максимум 16777215 (2^24 – 1) символов.
  • LONGBLOB, LONGTEXT: BLOB- или TEXT-столбец длиной максимум 4294967295 (2^32 – 1) символов.
  • ENUM: перечисление.
  • SET: множества.

Преимущества

  • Простота: MySQL легко устанавливается. Существует много сторонних инструментов, включая визуальные, облегчающих начало работы с БД.
  • Много функций: MySQL поддерживает большую часть функционала SQL.
  • Безопасность: в MySQL встроено много функций безопасности.
  • Мощность и масштабируемость: MySQL может работать с действительно большими объёмами данных, и неплохо походит для масштабируемых приложений.
  • Скорость: пренебрежение некоторыми стандартами позволяет MySQL работать производительнее, местами срезая на поворотах.

Недостатки

  • Известные ограничения: по определению, MySQL не может сделать всё, что угодно, и в ней присутствуют определённые ограничения функциональности.
  • Вопросы надёжности: некоторые операции реализованы менее надёжно, чем в других РСУБД.
  • Застой в разработке: хотя MySQL и является open-source продуктом, работа над ней сильно заторможена. Тем не менее, существует несколько БД, полностью основанных на MySQL (например, MariaDB). Кстати, подробнее о родстве MariaDB и MySQL можно из нашего с создателем обеих РСУБД - Джеймсом Боттомли.

Когда стоит использовать MySQL

  • Распределённые операции: когда вам нужен функционал бо́льший, чем может предоставить SQLite, стоит использовать MySQL.
  • Высокая безопасность: функции безопасности MySQL предоставляют надёжную защиту доступа и использования данных.
  • Веб-сайты и приложения: большая часть веб-ресурсов вполне может работать с MySQL, несмотря на ограничения. Этот инструмент весьма гибок и прост в обращении, что только на руку в длительной перспективе.
  • Кастомные решения: если вы работаете над очень специфичным продуктом, MySQL подстроится под ваши потребности благодаря широкому спектру настроек и режимов работы.

Когда не стоит использовать MySQL

  • SQL-совместимость: поскольку MySQL не пытается полностью реализовать стандарты SQL, она не является полностью совместимой с SQL. Из-за этого могут возникнуть проблемы при интеграции с другими РСУБД.
  • Конкурентность: хотя MySQL неплохо справляется с операциями чтения, одновременные операции чтения-записи могут вызвать проблемы.
  • Недостаток функций: в зависимости от выбора движка MySQL может недоставать некоторых функций.

PostgreSQL

PostgreSQL - это самая продвинутая РСУБД, ориентирующаяся в первую очередь на полное соответствие стандартам и расширяемость. PostgreSQL, или Postgres, пытается полностью соответствовать SQL-стандартам ANSI/ISO.

PostgreSQL отличается от других РСУБД тем, что обладает объектно-ориентированным функционалом, в том числе полной поддержкой концепта ACID (Atomicity, Consistency, Isolation, Durability).

Будучи основанным на мощной технологии Postgres отлично справляется с одновременной обработкой нескольких заданий. Поддержка конкурентности реализована с использованием MVCC (Multiversion Concurrency Control), что также обеспечивает совместимость с ACID.

Хотя эта РСУБД не так популярна, как MySQL, существует много сторонних инструментов и библиотек для облегчения работы с PostgreSQL.

Поддерживаемые типы данных

  • bigint: знаковое 8-байтное целое.
  • bigserial: автоматически инкрементируемое 8-битное целое.
  • bit [(n)]: битовая строка фиксированной длины.
  • bit varying [(n)]: битовая строка переменной длины.
  • boolean: булевская величина.
  • box: прямоугольник на плоскости.
  • bytea: бинарные данные.
  • character varying [(n)]: строка символов фиксированной длины.
  • character [(n)]:
  • cidr: сетевой адрес IPv4 или IPv6.
  • circle: круг на плоскости.
  • date: календарная дата.
  • double precision: число с плавающей запятой двойной точности.
  • inet: адрес хоста IPv4 или IPv6.
  • integer: знаковое 4-байтное целое.
  • interval [(p)]: временной промежуток.
  • line: бесконечная прямая на плоскости.
  • lseg: отрезок на плоскости.
  • macaddr: MAC-адрес.
  • money: денежная величина.
  • path: геометрический путь на плоскости.
  • point: геометрическая точка на плоскости.
  • polygon: многоугольник на плоскости.
  • real: число с плавающей запятой одинарной точности.
  • smallint: знаковое 2-байтное целое.
  • serial: автоматически инкрементируемое 4-битное целое.
  • text: строка символов переменной длины.
  • time [(p)] : время суток (без часового пояса).
  • time [(p)] with time zone: время суток (с часовым поясом).
  • timestamp [(p)] : дата ивремя (без часового пояса).
  • timestamp [(p)] with time zone: дата и время (с часовым поясом).
  • tsquery: запрос текстового поиска.
  • tsvector: документ текстового поиска.
  • txid_snapshot: снэпшот ID пользовательской транзакции.
  • uuid: уникальный идентификатор.
  • xml: XML-данные.

Преимущества

  • Полная SQL-совместимость .
  • Сообщество: PostgreSQL поддерживается опытным сообществом 24/7.
  • Поддержка сторонними организациями: несмотря на очень продвинутые функции, PostgreSQL используется в многих инструментах, связанных с РСУБД.
  • Расширяемость: PostgreSQL можно программно расширить за счёт хранимых процедур.
  • Объектно-ориентированность: PostgreSQL - не только реляционная, но и объектно-ориентированная СУБД.

Недостатки

  • Производительность: В простых операциях чтения PostgreSQL может уступать своим соперникам.
  • Популярность: из-за своей сложности инструмент не очень популярен.
  • Хостинг: из-за вышеперечисленных факторов проблематично найти подходящего провайдера.

Когда стоит использовать PostgreSQL

  • Целостность данных: если приоритет стоит на надёжность и целостность данных, PostgreSQL - лучший выбор.
  • Сложные процедуры: если ваша БД должна выполнять сложные процедуры, стоит выбрать PostgreSQL в силу её расширяемости.
  • Интеграция: если в будущем вам предстоит перемещать всю базу на другое решение, меньше всего проблем возникнет с PostgreSQL.

Когда не стоит использовать PostgreSQL

  • Скорость: если всё, что нужно - это быстрые операции чтения, не стоит использовать PostgreSQL.
  • Простые ситуации: если вам не требуется повышенная надёжность, поддержка ACID и всё такое, использование PostgreSQL - это стрельба из пушки по мухам.

1. Какие тренды в развитии серверных СУБД вы бы могли отметить в 2015–2016 годах?

Виталий Чесноков , QSOFT
Самые главные тренды в развитии современных СУБД: использование виртуализации и GRID-технологии, самодиагностика и автоматическое исправление, использование NoSQL-СУБД в Big Data, использование NewSQL-СУБД, выполнение C/C++ кода в адресном пространстве СУБД.

За последние несколько лет многократно выросли объемы данных, подходящих для обработки и хранения в БД. Был принято изменение закона «О персональных данных», гласящее, что персональные данные граждан РФ необходимо хранить на территории РФ. В некоторых западных странах так же действуют подобные законы. Все это приводит нас к необходимости кластеризации и разбиения данных на части.

Повсеместно растет процент использования NoSQL-СУБД, где это возможно, ввиду высокой скорости работы с данными и возможности сравнительно простой кластеризации. Получает распространение новый тип СУБД - NewSQL. В основные беспрецедентные функции NewSQL входят: возможность асинхронной мастер-мастер репликации, заменяющей классическую master-slave схему и обеспечивающей большую гибкость для высоконагруженных проектов; упрощение администрирования и обеспечение динамического управления базой; поддержка хранимых процедур на C/C++ и возможность выполнения C/C++ кода в адресном пространстве СУБД (обеспечивают практически неограниченную расширяемость и невероятный прирост в производительности); улучшение средств диагностики и отладки.

К тому же использование виртуализации в СУБД дает необходимую отказоустойчивость и возможность масштабирования.

Николай Фетюхин , MST
Переход к NoSQL и специализация баз данных. Например, можно обратить внимание на Redis и Tarantool. Последний содержит даже свой сервер приложений. Интересный тренд - совмещенные СУБД и backend, как Parse от Facebook. Также плавная миграция баз данных в облака.

Петр Урваев , SimbirSoft
Функции, успешно себя зарекомендовавшие в одних СУБД, через некоторое время реализуются и в других продуктах. Например, материализованные представления, вначале появившиеся в Oracle DBMS, через некоторое время были реализованы в MS SQL Server, а затем появились и в PostgreSQL. Преимущества, которые предоставляют NoSQL-решения постепенно также реализуются в реляционных СУБД. Например, в последних версиях PostgreSQL реализована поддержка работы с данными в формате JSON.

Евгений Гусев , ITECH
Изменения последних лет в сегменте СУБД носили как частный - применительно к отдельным лидирующим продуктам, так и структурный характер, так что трендов множество. Во-первых, гетерогенность. Переход к модели микросервисов дал возможность гибко подбирать средства решения задачи хранения данных, не ограничиваясь одним. Во-вторых, развитие NoSQL, in-memory storages. В-третьих, Big Data - революция, потребовавшая переосмыслить как методику хранения данных, так и само понятие «данные». В-четвертых, колоночные (column-oriented) БД.

2. По-вашему мнению, существует ли тенденция перехода СУБД в «облака»? Какие существуют плюсы и минусы данного подхода?

Виталий Чесноков , QSOFT
Да, безусловно такая тенденция существует. Для начала нужно разделять два принципиальных подхода в работе СУБД в облаке.

Первый - разворачивание в облаке виртуальной машины с СУБД. Можно загрузить на нее собственный образ или воспользоваться заранее заготовленным, с уже оптимизированной СУБД. По сути такая виртуальная машина принципиально не отличается от обычного физического сервера. Основным преимуществом по сравнению с физическим сервером является легкость масштабирования, как вертикального (можно в любой момент выделить для данной «виртулки» больше ресурсов), так и горизонтального (создание новой «виртуалки» занимает всего несколько минут). Еще один существенный плюс - высокая доступность облачных виртуальных машин (99,9%–99,99%). Также облачные хостеры предоставляют множество дополнительных услуг, таких как мониторинг, резервное копирование, панель управления сервером и т.д.

Принципиально иным подходом является облачная СУБД. В данном случае клиент покупает не сервер, а просто услугу использования СУБД. Текущий рынок публичных облачных СУБД, составляющий $400 млн, к 2017 году увеличится до $1,2 млрд. Основные плюсы данного подхода: оплата не предоставленных ресурсов (которые могут и «простаивать»), а лишь реально использованных: объем хранимых данных, количество обрабатываемых СУБД операций; нет необходимости настраивать и администрировать СУБД - эти задачи полностью лежат на хостере; нет необходимости задумываться о масштабировании; хостер предоставляет множество удобных и интуитивно понятных инструментов для управления СУБД; высокая доступность. Основным минусом является отсутствие возможности тонкой настройки СУБД.

Также можно отдельно выделить такой подвид облачной СУБД как DbaaS (Database as a Service). Практически всегда конкретный DbaaS - это одна определенная СУБД, предоставляемая в облаке непосредственными разработчиками. Отсюда очевидно выводится и разница в бизнес-моделях: облачные СУБД подходят для масштабных типовых задач, а DbaaS - для специализированных, под конкретную марку движка БД, с возможностью прямого общения с его разработчиками. Кроме того, DbaaS позволяет значительно точнее подобрать систему под нужную нагрузку, в частности за счет регулирования количества клиентских подключений.

Николай Апурин , Artwell
Тенденция существует. Большинство крупных (общероссийских) систем уже используют облачные БД.

Николай Фетюхин , MST
Тенденция слабая. Использование облаков хоть и снижает некоторые издержки, но приводит к новым расходам. Использование облака может быть выгодно лишь для проектов со слабой посещаемостью.

Плюсы облаков: легкая масштабируемость, высокая отказоустойчивость, доступность серверов во всем мире, легкое клонирование и разворачивание данных. Минусы: пока облака, как продукт, «сырые» - невозможно физически контролировать данные, так как они находятся под управлением поставщика облака.

Петр Урваев , SimbirSoft
Тенденция перехода СУБД в облака существует как часть общего тренда по переносу в облака всей IT-инфраструктуры организаций. Основным плюсом такого подхода является возможность передать сопровождение БД. К минусам можно отнести хранение важных данных на неподконтрольной площадке. Пользователь облачного хранилища при необходимости уничтожения хранящихся данных не может быть уверен, что данные действительно стерты.

Евгений Гусев , ITECH
Существует и является одной из первичных. Плюсов у размещения БД в облаке масса: простота шардинга и репликации, возможность эффективно в контексте производительности отделить данные от бизнес-логики, легкое и понятное управление вычислительными мощностями и целый ряд других. Критичных минусов, основываясь на опыте, мы не видим. Чем большими объемами данных приходится оперировать, чем больше требуется горизонтального масштабирования, тем более оправданным становится использование облаков.

3. Какие факторы влияют на выбор СУБД? Для каких проектов больше подходят SQL базы данных, а для каких - NoSQL?

Виталий Чесноков , QSOFT
Основным фактором при выборе между SQL и NoSQL-СУБД являются нужды приложения. Для одних задач лучше подходит SQL, для других - NoSQL.

Можно выделить несколько ключевых различий между этими типами СУБД. Формат данных в SQL очень строгий, есть четкие схемы таблиц с указанием, где используется какой тип данных. В NoSQL нет заранее заданных схем документов - любая информация может быть добавлена в любой документ.
В SQL существуют сложные связи между различными таблицами. Данные в одной таблице часто являются ссылкой на данные в другой (принцип нормализации данных). В NoSQL, как правило, каждый документ является изолированной информационной единицей и хранит в себе все имеющиеся данные (принцип денормализации).
В SQL есть встроенные механизмы поддержки целостности данных (например, нельзя удалить запись из таблицы, если на нее ссылаются в других таблицах). В NoSQL таких механизмов нет, поэтому важна денормализация данных (в идеале - каждый документ хранит абсолютно всю информацию о каком-либо объекте).
В SQL есть механизм транзакций, который позволяет выполнить несколько SQL-запросов по принципу «все или ничего». В NoSQL подобный механизм существует только в пределах одного документа.
В идеальном случае NoSQL работает быстрее, чем SQL, за счет более простого метода хранения данных, который позволяет получить всю информацию об объекте простым запросом одного документа. Однако есть проблема, связанная с тем, что наиболее популярные NoSQL-СУБД появились достаточно недавно. Следствием этого является меньшее количество информации по этим СУБД и большее количество пока нерешенных проблем.
NoSQL гораздо проще масштабировать за счет отсутствия сложных логических связей между документами. К тому же большая часть NoSQL-СУБД изначально создавалась с упором на механизмы масштабирования.

В итоге NoSQL лучше подходит для проектов с большим объемом данных, который можно легко разделить на отдельные самостоятельные объекты. Дает высокую скорость и масштабируемость. SQL подходит для проектов, где различные данные имеют сложные логические связи друг с другом и крайне важна их целостность.

Николай Апурин , Artwell
NoSQL - для нестандартных вычислений с огромным объемом данных. Но как показала практика, объемы до 20 миллионов записей отлично перерабатываются SQL-базами.

Николай Фетюхин , MST
Технологии NoSQL активно используются известными компаниями, в том числе в высоконагруженных проектах. Сохранение данных и простые выборки при использовании NoSQL будут действительно быстрыми. В случае более сложных запросов задачу придется решать на стороне продукта, что усложняет сам продукт. В чистом виде мы не выбираем NoSQL. Усложнение логики продукта и эмуляции базовых вещей SQL приводит к удорожанию проекта. И не каждое NoSQL-решение обеспечивает безопасность данных в критических ситуациях.

Петр Урваев , SimbirSoft
Выбор БД зачастую зависит от предпочтений архитектора, возможной нагрузки, необходимого функционала. SQL-БД позволяют четко определять схемы хранения данных и извлекать данные с использованием сложных запросов, NoSQL-БД позволяют хранить данные в менее упорядоченном формате и поддерживают горизонтальное масштабирование. Зачастую в распределенных системах используются одновременно SQL и NoSQL базы данных, каждая из которых решает свои задачи.

Евгений Гусев , ITECH
В современном состоянии SQL / NoSQL - скорее не конкурирующие, а дополняющие друг друга сущности. Использование в одном приложении SQL-решений, когда требуется работать со сложными данными в их взаимосвязи, и NoSQL, когда на передний план выходит скорость работы с неструктурированной информацией, - совершенно естественная практика.

4. Как вы оцениваете степень распространения платных лицензий СУБД среди пользователей? В каких случаях имеет смысл покупать лицензию?

Виталий Чесноков , QSOFT
Есть два различных варианта разделения СУБД па платные и бесплатные.

Первый - бесплатные версии коммерческих СУБД (есть у MS SQL, Oracle и т.д.) По сути это урезанная версия СУБД, в которой отсутствует часть функционала. Здесь основной фактор выбора очень прост - нужен ли данному проекту данный функционал. Реже бывает бесплатная версия, которая не отличается от коммерческой по функционалу, но реже обновляется (Couchbase Server).

Второй - бесплатные СУБД, для которых есть аналогичные коммерческие продукты (MySQL от Oracle, Percona Server или MariaDB). В данном случае преимущество коммерческого продукта обычно заключается в наличии более серьезной технической поддержки. С точки зрения функционала платные и бесплатные СУБД мало отличаются друг от друга, хотя и у тех, и у других могут быть свои инструменты, отсутствующие в других версиях.

В итоге есть две основные причины выбрать платную СУБД: наличие функционала, которого нет в бесплатных аналогах, и возможность обратиться за помощью в техническую поддержку производителя.

Николай Апурин , Artwell
Зачем платить, если есть бесплатные? Тем не менее, много решений, которые могут работать только с платными БД. В основном, это иностранные практики.

Николай Фетюхин , MST
Вопрос неоднозначный. Часто и платные СУБД имеют бесплатные версии, и бесплатные имеют компоненты, которые можно приобрести за деньги. Разница чаще всего во встроенных инструментах аналитики и мониторинга БД. Поэтому платные СУБД больше подходят для крупных проектов с большими распределенными системами.

Петр Урваев , SimbirSoft
Платные лицензии СУБД предпочтительнее бесплатных, когда проект полагается на возможности конкретной БД, и для него важно, чтобы используемые возможности работали так, как заявлено, а проблемы в их работе оперативно устранялись. Сейчас коммерческие и свободные БД используются одинаково часто, а большинство новых проектов выбирают свободные БД, поскольку возможности по работе с данными и стабильность примерно находятся на одном уровне у платных и бесплатных СУБД.

Microsoft Access – это интерактивная реляционная СУБД (relational database management system – RDBMS) для WINDOWS. Это программа, которую вы можете использовать для хранения и извлечения данных в зависимости от отношений, которые вы установили. Работа с ней упрощена посредством манипулятора мыши. Графические возможности оболочки производят большое впечатление при изготовлении высококачественных отчетов и распечаток. Все это благодаря поддержки True-type шрифтов и встраивания OLE-объектов (Object Linking and Embeding) в рамках среды WINDOWS. OLE – объект представляет собой ссылку на определенную информацию, которая остается в своей первоначальной форме. OLE-объектом может быть EXCEL –таблица, Paintbrush – иллюстрация или Sound –файл.

Новинкой программы Access является Cue Cards – Система суфлирования. Это обучающая система, предоставляющая пользователю рекомендации по выходу из реальных ситуаций при решении прикладных задач. При знании английского языка пользователь всегда сможет получить подсказку о том, что следует делать далее.

Access также предоставляет в распоряжение пользователя механизмы работы с базами данных различных форматов. К примеру, можно прямо обращаться к базам данных dBASE, Paradox или Btrieve без конвертирования их в формат, используемый Access. В состав пакета Access также входит язык Access Basic (встроенный диалект языка Visual Basic), дающий возможность формирования специализированных систем управления базами данных.

Теперь перейдем к более подробному рассмотрению системы Access. Основными понятиями или объектами этой системы являются: таблицы, запросы, формуляры, отчеты, макросы и модули. И, конечно же, главным понятием будет база данных (database).

Для создания базы данных необходимо выполнить следующие шаги:

Активизируйте окно Microsoft Access и выберите в меню File директиву New Database (или щелкните кнопкой New Database в строке пиктограмм). Microsoft Access высвечивает диалоговое окно New Database и автоматически дает имя вашей базе данных, которое вы можете заменить.

В строке File Name, напечатайте ваш вариант имени базы данных. Оно может содержать до 8 символов без пробелов. Microsoft Access автоматически добавляет расширение. MDB к имени вашей базы данных, если Вы этого не сделали.

Если вы хотите хранить базу данных в определенном месте, выберите соответствующую директорию в списке директорий Directories list.

Нажмите на кнопку OK.

Microsoft Access создает пустой файл базы данных и открывает окно базы данных Database window.

Базу данных можно наполнить объектами различного рода и выполнять операции с ними. Но с базой данных можно выполнять операции как с неделимым образованием. Все операции такого рода – операции управления базой данных – сосредоточены в меню File прикладного окна Access или в окне базы данных.

При открытии базы данных можно ограничить возможные операции с базой данных только чтением и ограничить круг пользователей, имеющих доступ к базе данных только собственной персоной. Если необходимо только просмотреть базу данных и содержащиеся в ней объекты, но не изменять их, то при открытии базы данных необходимо активизировать контрольный индикатор Read Only. Если необходимо предотвратить изменения данных и объектов данной базы данных со стороны других пользователей, то при открытии базы данных необходимо установить опцию Exlusive.

Если пользователь закончил работу с базой данных, то ее следует закрыть при помощи директивы Close Database в меню File, с помощью двойного щелчка мышью на кнопке вызова управляющего меню окна базы данных или нажатием клавиш (Ctrl + F4).

Таблицы.

Следующим шагом в построении базы данных будет ее заполнение, т. е. создание объектов и присвоение последним необходимых свойств. Какого бы типа ни были ваши данные, вам придется хранить их в одной или нескольких таблицах.

Таблицы являются основной формой представления информации, содержащейся в базе данных. Без таблицы нельзя спроектировать формуляр, на базе таблиц составляются запросы и отчеты.

Каждому полю, включаемому в запись, приписывается тип данных, определяющий вид информации, которая будет храниться в данном поле. Тип данных вносится в колонку Data Type, причем его можно выбрать из списка доступных типов.

В готовую спецификацию можно вносить изменения. Но при этом следует постараться внести все исправления в спецификацию до начала заполнения базы данных, т. к. попытка изменить параметры полей, заполненной базы может повлечь за собой потерю или искажение данных.

В Access-таблицы можно встроить объекты из других поддерживающих интерфейс OLE прикладных программ и связать эти объекты с их родительскими программами.

При встраивании объекта Access сохраняет объект в таблице. Двойным щелчком мышью на объекте запускается прикладная программа, с помощью которой он был изготовлен – в ней можно произвести изменения в объекте. После завершения работы с родительской программой объект в измененной форме будет сохранен в таблице.

Таблицы, находящиеся в базе данных, созданной другой программой, можно импортировать в Access, также можно и экспортировать Access-таблицы, сохраняя их в форматах, понятных другим прикладным программам управления базами данных. Но прежде чем непосредственно приступить к импорту или экспорту, необходимо совершить соответствующие установки импорта или экспорта.

Запросы.

Запросы служат для селекции и фильтрации набора данных. Они позволяют выбрать из базы только необходимую информацию, т. е. ту, которая соответствует определенному критерию(условию) и нужна для решения конкретной задачи. Например, вам может понадобиться информация о поставщиках и поставляемых ими товарах. Вы можете создать запрос типа "Какие товары поставляют московские поставщики" или "Кто из петербургских поставщиков сигарет продал за последний квартал наибольшую партию". Результат обработки программой Access такого запроса представляет собой таблицу называемую Dynaset. В эту таблицу включены выбранные из основной таблицы(или нескольких таблиц) блоки данных, которые удовлетворяют критериям запроса. Dynaset – динамический, временный набор данных, поэтому при каждом выполнении запроса он строится вновь на основе "свежих" табличных данных.

Выделяют два типа запросов:

QBE-запросы (Query by Example –Запрос по образцу). Пользователь дает им определения, специфицируя отдельные параметры в окне проектирования с использованием подсказок(образцов).

SQL - запросы (Structured Query Language – Структурированный язык запросов). Пользователь формулирует их с использованием инструкций и функций, выстраивая описание. QBE-запрос Access легко транслирует в соответствующий SQL-запрос. Обратная операция тоже не составляет труда. Вообще для Access безразлично, с каким типом запроса работает пользователь.

Запросы можно создавать с помощью Конструктора запросов, а также без помощи Конструктора запросов. Однако первый способ ускоряет проектирование нескольких специальных типов запросов.

Критерии отбора – это инструкции, посредством которых пользователь сообщает Access, какие блоки данных должны отбираться по запросу и индицироваться в Dynaset. Критерии могут задаваться для одного или нескольких полей запроса.

Пользователь может воспользоваться запросом для проведения вычислений с блоками данных. Он может задать в каждом поле некоторую функцию, обрабатывающую содержимое этого поля. Результат обработки выдается в Dynaset. Функция обработки задается в строке Total, которая появляется после нажатия в пиктографическом меню кнопки с греческой литерой "сигма". Саму функцию можно выбрать в этой строке, развернув список возможных значений.

После того как запрос спроектирован, его можно выполнить, щелкнув мышью в строке пиктограмм на кнопке с восклицательным знаком или вызывая в меню Query директиву Run. Access индицирует отобранные по запросу в Dynaset блоки в виде таблицы.

С помощью структурированного языка запросов SQL в рамках Access пользователь может сформулировать сколь угодно сложные по структуре критериев и вычислений запросы. Этот же язык позволяет управлять обработкой запросов. SQL-запрос представляет собой последовательность инструкций, в которую могут включаться выражения и вызовы агрегатных функций.

Если пользователь хочет иметь разработанный проект запроса в своем распоряжении и во время следующих сеансов работы, то он должен его сохранить с помощью директивы Save в меню File. Если проект сохраняется впервые, то после обращения к этой директиве появится диалоговое окно Save As. В нем следует назначить запросу имя, под которым он будет сохранен и включен в список запросов в окне банка данных. Имя запроса не должно совпадать с именем таблицы.

Если данный запрос уже был однажды сохранен и пользователь выбрал директиву Save, то старая версия будет заменена новым, измененным проектом запроса. Если изменения не должны испортить предыдущую версию, а должны быть сохранены в другом запросе, то следует вызвать директиву Save As и назначить сохраняемому проекту новое имя. Для сохранения табличного представления запроса следует выбрать директиву Save Query в меню File. Эта директива сохраняет изменения в проекте имеющегося запроса и заменяет предыдущую версию запроса на активную версию. Для того чтобы сохранить запрос впервые или создать копию активного запроса, Dynaset которого виден на экране, следует выбрать директиву Save Query As.

Наряду с запросами выбора, с помощью Access можно реализовать также запросы действий, параметрические запросы и запросы кросс-таблиц.

Формуляры.

Просмотр базы данных в виде таблицы в режиме заполнения дает пользователю возможность оценить базу как единое целое, сравнить записи и т.п. Часто, однако, возникает необходимость работы с отдельными записями базы. В этом случае присутствие на экране других записей (как это имеет место в режиме заполнения) только мешает и отвлекает. Работа с отдельными записями посредством формуляров позволяет сосредоточиться только на относящейся к делу информации.

Формуляр представляет собой бланк, подлежащий заполнению, или маску, накладываемую на набор данных. Бланк-формуляр позволяет упростить процесс заполнения базы данных, благодаря чему появляется возможность поручить ввод информации персоналу невысокой квалификации. Маска-формуляр позволяет ограничить объем информации, доступной пользователю, обращающемуся к базе.

Внешний вид, структура и режимы работы отдельных управляющих элементов и формуляров определяются значениями характеристик этих объектов. Характеристики объектов доступны пользователю через окно характеристик. Для установки или изменения характеристик элемента его надлежит маркировать и из меню View вызвать директиву Properties.

Для индикации инструментального окна установите в меню View опцию Toolbox. Каждый инструмент, а точнее, создаваемый с его помощью элемент управления/оформления, располагает собственным окном характеристик, и в нем в виде списка представлены стандартные установки для соответствующего управляющего элемента.

Включаемые в формуляр поля можно выбрать из списка полей, который будет виден на экране после обращения к директиве Field List в менюView.

При проектировании формуляра в него можно вставить управляющие элементы. Каждый управляющий элемент может быть связан с некоторым объектом в таблице, на которой базируется форма.

Отчеты.

Отчет – это информация, которую вы оформили в соответствии с Вашими спецификациями. Отчет позволяет извлекать и представлять данные как значимую информацию, которую вы можете использовать и распространять. Примерами отчетов могут служить почтовые адреса, накладные, суммы продаж или списки телефонов. С помощью Microsoft Access вы можете спроектировать отчет который представит информацию в том виде, в котором Вы пожелаете. Вы можете использовать множество различных элементов проектирования, таких как текст, данные, рисунки, линии, поля и графики для создания вашего отчета. От вас зависит, как и какие элементы использовать для построения отчета.

Microsoft Access обеспечивает несколько способов получения информации из вашей базы данных - используя запрос, формуляр или отчет. Вы можете выбрать тот метод, который наиболее подходит к решению вашей задачи.

Отчеты также являются эффективным средством для распечатки информации регулярного использования. Вы можете создать проект отчета и сохранить его для дальнейшего использования. Проект отчета останется неизменным, но каждый раз вы будете получать распечатку текущих данных.

Перед тем как создать отчет, подумайте о том откуда ваш отчет будет извлекать данные. Если все данные из одной таблицы, то ваш отчет будет основываться на этой таблице. Если же вам необходимы данные более чем из одной таблицы, то ваш отчет должен основываться на запросе.

Вы можете создавать отчеты как при помощи, так и без помощи Конструктора Отчетов. Конструктор намного ускорит процесс создания отчета, так как он сделает за Вас основную работу.

В прототип отчета в процессе проектирования можно встроить управляющие элементы. Управляющие элементы, встроенные в прототип отчета, могут использоваться для оформления заголовков, надписей и иллюстраций.

Для встраивания управляющих элементов в отчет на экране должно присутствовать инструментальное меню Toolbox (опция View/Toolbox). В инструментальном меню выбирается кнопка создаваемого управляющего элемента. После этого следует выполнить мышью щелчок в той позиции прототипа отчета, где надлежит разместить данный управляющий элемент. Access размещает выбранный элемент, приписывая ему по умолчанию стандартные значения характеристик (размер, цвет и т.п.).

Для изменения стандартных значений характеристик управляющего элемента можно обратиться к окну характеристик, предварительно маркировав настраиваемый элемент.

Зависимый управляющий элемент в отчете связан с полем в соответствующей таблице. С помощью зависимого управляющего элемента можно ввести данные в поле или индицировать и актуализировать их в отчете.

Связывание управляющего элемента можно выполнить одним из двух способов:

Если пользователь хочет, чтобы Access автоматически создала управляющий элемент, связанный с базовой для данного отчета таблицей, то следует воспользоваться списком полей таблицы. Он виден на экране, если установлена опция View/Field List. Управляющий элемент, изготовленный с помощью списка полей, имеет те же значения характеристик, что и поле таблицы, с которым он связан. Для выполнения связывания следует отбуксировать выбранное поле или поля из списка в отчет. Там надлежит поместить курсор мыши в позицию, где должен находиться левый верхний угол управляющего элемента (но не поля названного данного управляющего элемента), и затем отпустить кнопку мыши. Access создает для каждого поля, выбранного в списке полей, связанный управляющий элемент (текстовое поле).

Если задним числом необходимо связать с полем уже имеющийся, несвязанный управляющий элемент, то это можно выполнить с помощью окна характеристик. В этом окне после маркирования управляющего элемента в прототипе отчета перечислены характеристики этого элемента. При занесении имени связываемого поля в это окно в качестве значения характеристики ControlSource выполняется связывание.

Сохраняя только его проект, структуру отчета, без данных.

В меню File выберите директиву Save.

Если отчет не был назван, напечатайте имя в строке Report Name.

Нажмите OK.

Сохраняя результат, полный отчет - проект вместе с данными – в файле, который вы сможете использовать в других поддерживаемых Windows приложениях, например, Microsoft Excel.

В меню File выберите Output To.

Следуйте инструкциям в диалоговых полях Output To.

Вся жизнедеятельность человека неразрывно связана со множеством информационных каталогов и баз данных. Библиотечный реестр, записная книжка, адреса в мобильном телефоне или планшете - вот далеко не полный перечень структурированной информации, которой мы пользуемся. Но компьютеры любят точность, поэтому дадим определение.

Итак, база данных (БД) - набор логически взаимосвязанных данных, описывающий информационное состояние объектов в различных предметных областях и обрабатываемые компьютерной техникой.

Системой управления базами данных является программная и языковая среда для создания, управления и обработки информационных баз. Назначение СУБД:

  • работа с базами на внешней (диски, ленты и т. д.) и оперативной памяти;
  • совместный доступ пользователей;
  • контроль изменений, архивирование и восстановление баз;
  • предоставление языка доступа для ;
  • утилиты для создания, модификации и управления базами.

Если говорить проще, то база данных определяет методику хранения информации , а СУБД предоставляет средства для ее обработки . Дополнительно системы управления базами разделяются на системы общего применения , которые могут обрабатывать различные данные и специализированные , разработанные под конкретную предметную область или тип информации. Примером специализированных систем управления базами данных являются объектно-ориентированные.

Реляционные системы управления

С момента появления компьютерных баз данных было создано множество моделей их работы, но реляционная модель оказалась самой универсальной. Она представляет собой связанный набор информационных таблиц, гарантирует целостность и минимальную избыточность информации. Табличная модель оказалась применима к большинству предметных областей, и рынок реляционных систем управления базами данных стал развиваться быстрыми темпами. На рисунке показан пример реляционной структуры «База студентов».

Все реляционные СУБД поддерживают ANSI стандарт языка SQL и базовые принципы реляционной модели, что обеспечивает работу приложений на разных СУБД. Дополнительно крупные СУБД имеют свои дополнения расширения SQL. Примеры системы управления для крупных проектов - это и ORACLE.

Реляционная модель успешно используется и в разработке Интернет-проектов. Примерами являются СУБД MySQL и PostgreSQL.

Технология NoSQL

Увеличение объемов информации и усложнение взаимосвязей привело к появлению новых систем управления базами данных. Информация перестала быть независимой друг от друга, и иногда вообще невозможно жестко описать ее структуру. Реляционные базы уже не могут справляться с такими задачами. Это привело к появлению нового типа информационных баз и систем управления ими, получивших общее название NoSQL («нет SQL»).

  1. «Ключ-Значение» . Самые популярные СУБД - Redis, Voldemort, Tokyo Cabinet и Dynomite.
  2. Клоны СУБД BigTable. Разработана Google для внутреннего использования в поисковой системе. Официально BigTableне предлагается, но есть СУБД на ее основе. Это Hadoop, Hypertable и Cassandra.
  3. Документо-ориентированные. Наиболее популярны Berkeley DB XML, MongoD, eXist и CouchDB.
  4. Базы на основе Используется в Neo4j, Sones graphDB и AllegroGraph.

Будущее СУБД

Рынок продолжает развиваться и все больше склоняется к использованию NoSQL-решений. Конечно, на «классическом» SQL реализовано огромное количество программных систем различной сложности, и за ним стоят такие гиганты рынка как Microsoft и ORACLE. Но с большой долей уверенности можно предположить, что NoSQL в ближайшие годы смогут значительно потеснить лидеров в разработке сложных информационных систем.

В данной статье рассмотрим виды систем управления базами данных. База данных – совместно используемый набор логически связанных данных (и описание этих данных), предназначенный для удовлетворения информационных потребностей организации. Выделяют следующие виды баз данных, например, серверные и локальные, реляционные и не реляционные, поддерживающие транзакции и без них, и тп.

Ознакомимся с самыми популярными и актуальными на данный момент системами управления БД.

По способу доступа к БД выделяют следующие типы систем управления базами данных: файл-серверные (данная технология ныне мало используется, в ее основе – доступ к СУБД через локальную сеть, как преимущество низкая нагрузка на ЦП сервера, к данному виду баз данных относят Microsoft Access, Paradox, dBase, FoxPro, Visual FoxPro), клиент-серверные (доступ к БД осуществляется непосредственно, так как СУБД размещается на сервере вместе с БД, недостаток – повышенные требования к железу, к данному виду баз данных относят Oracle, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР), встраиваемые (являются частью программного продукта, не нужно делать самостоятельную установку, не рассчитаны для большого количества пользователей, предназначены для локального хранения информации, к данному виду БД относят OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Sav Zigzag, Microsoft SQL Server Compact, ЛИНТЕР).

Основные и популярные реляционные базы данных: SQLite, MySQL, PostgreSQL . Однако рассмотрим основные отличия между ними и функциональные возможности каждой, в зависимости от того, какие цели разработки вы преследуете.


Начнем с SQLite – быстрая и мощная система управления БД, которая легко встраивается в приложения. Имеет большой набор инструментов для работы с файлами , по сравнению с другими СУБД, так как сама является по сути файлом. Использует технологию обслуживающих библиотек, в результате чего система очень быстрая. Система имеет открытый исходный код – Open Source.

Типы данных SQLite: NULL, INTEGER, REAL, TEXT, BLOB. К достоинствам SQLite можно отнести: возможность быстро и легко переносить базу данных с машины на машину, ведь SQLite состоит из файла; используются стандарты SQL, хотя некоторые из их возможностей не учтены; отменно показывает свои функции при разработке и тестировании. Но как и любая другая система SQLite имеет недостатки : нет системы пользователей, которая используется крупными СУБД; нет функции увеличить производительность.

Зачем используют SQLite? Прежде всего для встроенных приложений, если вам нужно легко их переносить и не важна масштабируемость, например, это могут быть игры или мобильные приложения; чтобы иметь прямой доступ к диску; для тестирования, чтобы замедлить приложение.


Об этой системе наверное слышали все, кто имеет хоть какое-то отношение к веб-индустрии – MySQL очень популярная и полноценная СУБД , которая отличается своей широкой функциональностью. Серверная СУБД отлично работает с разными видами сайтов и приложений. Однако работать с системой очень просто, так как предоставляется очень много информации и документации по изучению MySQL. Кроме того разработано много плагинов и расширений, которые дополнительно облегчают работу с данной системой. Весь функционал SQL не реализован в MySQL, но инструментов для разработки веб-приложений предостаточно. Типы данных: TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT, FLOAT, DOUBLE, DECIMAL и другие.

Преимущественные особенности MySQL: простота и легкость работы с данной СУБД; множество полезных функций; легкость масштабирования; быстрая и безопасная работа.

Недостатки MySQL: медленная разработка проекта, что часто вызывает жалобы со стороны пользователей; иногда возникают проблемы с надежностью и имеются некоторые ограничения по функционалу, который нужен отдельным приложениям.

Для чего нужен MySQL ? Если для реализации вашего проекта не хватает функционала SQLite, MySQL станет для вас отменным решением, так как имеет свободный доступ к исходному коду и множество функций. Имеет хорошую систему защиты доступа к данным, чем обеспечивается безопасность. MySQL проверена временем и хорошо подходит для разработки индивидуальных решений.

Третья, но не менее популярная в своих кругах – по сравнению с предыдущими более профессиональная СУБД, которая распространяется свободно и по максимальным критериям соответствует SQL . В системе поддерживается реляционный подход к БД. К примеру: Atomicity, Consistency, Isolation, Durability (ACID). В Postgre отмечается большая производительность, кроме того систему легко расширить с помощью так называемых хранимых процедур. Данная СУБД не столь популярна как MySQL, но установить ее очень легко с помощью стандартных менеджеров пакетов ОС. Типы данных в Postgre: bigint, bigserial, bit, bit varying, boolean, box, bytea, character varying, circle и другие.

Плюсы использования PostgreSQL : бесплатное ПО с открытым исходным кодом; многочисленное сообщество, где можно получить необходимую поддержку по интересующим вопросам; огромное количество дополнений; кроме того, что данная СУБД реляционная, она еще и объектно-ориентированная.

Недостатки PostgreSQL : может замедлять работу сервера по сравнению с конкурирующими БД; не всякий хостинг поддерживает работу с данной СУБД, так как она не является столь популярной. Но в компании Hyper Host™ данная база данных поддерживается, поэтому Вы можете смело выбирать наши , если используете PostgreSQL.

Для каких целей используется PostgreSQL?

1)Когда ваша информация должна быть целостной и храниться в надежном месте.

2)Если вы используете сложные пользовательские процедуры.

3) Если планируете переход на платные СУБД, с данной системы этот переход можно будет сделать без особых усилий, так как Postgre отлично интегрируется с другими СУБД.

4) В Postgre присутствует сложная структура данных, что дает больше возможностей для работы с ними.

Надеемся, данная информация стала для Вас полезной и Вы уже определились какая СУБД нужна для Вашего проекта. Но если еще остались вопросы, обращайтесь, мы будем рады помочь! Хотим также напомнить, что хостинг компании Hyper Host™ поддерживает работу со всеми выше перечисленными системами 😉

В работе с сервером станут полезными инструкции “” и “?”.

7961 раз(а) 2 Сегодня просмотрено раз(а)







2024 © gtavrl.ru.