Пользоваться макетной платой без пайки. Макетные платы


Breadboard (макетная (монтажная) беспаечная плата) – один из основных инструментов как для познающих основы схемотехники, так и для профессионалов.

В этой статье вы познакомитесь с тем, где и как использовать breadboard и какие они бывают. После ознакомления с приведенными основами, вы сможете собрать свою электросхему с использовнием макетной беспаечной платы.

Исторический экскурс

В начале 1960 создание прототипов микросхем выглядело примерно так:

На платформе устанавливались металлические стойки, на которые наматывались проводники. Процесс прототипирования был достаточно длительным и сложным. Но человечество не стоит на месте и был придуман более элегантный подход: Беспечные монтажные платы - breadboards!

Если знать, что bread переводится как хлеб, а board - доска, то одна из ассоциаций, которая может возникнуть при упоминании слова breadboard - это деревянная подставка, на которой нарезают хлеб (как на рисунке ниже). В принципе, вы недалеки от истины.


Так откуда появилось это название - breadboard? Много лет назад, когда электронные компоненты были большими и неуклюжими, многие "самодельщики" в своих "гаражах" собирали схемы с использованием подставок для нарезки хлеба (пример показан на рисунке ниже).


Постепенно электронные компоненты становились меньше и получилось свести прототипирование к использованию более ли менее стандартных проводников, коннекторов и микросхем. Подход несколько изменился, но название перекочевало.

Breadboard - это беспаечная монтажная плата. Это отличная платформа для разработки прототипов или временных электросхем, с использованием которой вам не понадобится паяльник и все связанные с этим проблемы и затраты времени на распайку.

Прототипирование (prototyping) - это процесс разработки и тестирования модели вашего будущего устройства. Если вы не знаете как будет себя вести ваше устройство при определенных заданных условиях, лучше сначала создать прототип и проверить его работоспособность.

Беспаечные монтажные платы используют как для создания простеньких электросхем, так и для сложных прототипов.

Еще одна сфера применения breadbord"ов - проверка новых деталей и компонентов - например, микросхем (ICs).

Как уже упоминалось выше, созданная вами электросхема вполне может меняться и в этом основное преимущество использования беспаечных монтажных плат. Например, в любой момент вы можете включить в схему дополнительный светодиод, который будет реагировать на те или иные условия в вашей цепи. На рисунке ниже показан пример электросхемы для проверки работоспособности чипа Atmega, который используется в платах Arduino Uno.


“Анатомия беспаечных монтажных плат”


Лучший способ объяснить как именно работает breadboard - выяснить как плата выглядит изнутри. Рассмотрим на примере миниатюрной платы.

На рисунке ниже показан breadboard, на котором снято основание на нижней части. Как вы видите, на плате установлены ряды металлических пластин.


Каждая металлическая пластина имеет вид, приведенный на рисунке ниже. То есть, это не просто пластина, а пластина с клипсами, которые прячутся в пластиковой части монтажной платы. Именно в эти клипсы вы подключаете ваши провода.


То есть, как только вы подключили проводник к одному из отверстий в отдельном ряде, этот контакт будет одновременно подключен и к остальным контактам в отдельном ряде.

Обратите внимание, что на одной рельсе пять клипс. Это общепринятый стандарт. Большинство беспаечных монтажных плат реализуются именно таким образом. То есть, вы можете подключить до пяти компонентов включительно к отдельной рельсе на breadboard"е и они будут связаны между собой. Но ведь на плате десять отверстий в ряде!? Почему мы ограничены пятью контактами? Вы, наверное, обратили внимание, что по центру монтажной платы есть отдельная рельса без пинов? Эта рельса изолирует пластины друг от друга. Зачем это делается, мы разберем немного позже. Сейчас важно запомнить, что рельсы изолированы друг от друга и мы ограничены пятью связанными контактами, а не десятью.

На рисунке ниже показан светодиод, установленный на беспаечную монтажную плату. Обратите внимание, что две ноги светодиода установлены на изолированных параллельных рельсах. В результате не будет замыкания контактов.


Давайте теперь рассмотрим breadboard больших размеров. На таких платах, как правило, предусматривают две вертикально расположенные рельсы. Так называемые рельсы для питания.


Эти рельсы аналогичны по исполнению с горизонтальными, но при этом соединены друг с другом по всей длине. При разработке проекта вам часто необходимо питание для многих компонентов. Именно эти рельсы используются для питания. Обычно их отмечают "+" и "-" и двумя разными цветами - красным и голубым. Как правило, рельсы соединяют между собой, чтобы получить одинаковое питание по обоим сторонам макетки (смотрите на рисунке ниже). Кстати, нет необходимости подключать плюс именно к рельсе с обозначением "+", это исключительно подсказка, которая поможет вам структурировать ваш проект.


Центральная рельса без контактов (для DIP-микросхем)

Центральная рельса без контактов изолирует две стороны беспаечной монтажной платы. Помимо изоляции, эта рельса выполняет вторую важную функцию. Большинство микросхем (ICs), изготавливаются в стандартных размерах. Для того, чтобы они занимали минимум места на монтажной плате, используется специальный форм-фактор под названием Dual in-line Package, или сокращенно - DIP.

У DIP-микросхем контакты расположены по двум сторонам и отлично садятся на две рельсы по центру breadboard"а. Именно в этом случае изоляция контактов - отличный вариант, который позволяет сделать разводку каждого контакта микросхемы на отдельную рельсу с пятью контактами.

На рисунке ниже показана установка двух DIP микросхем. Сверху - LM358, ниже - микроконтроллер ATMega328, который используется во многих платах Arduino .


Строки и столбцы (горизонтальные и вертикальные рельсы)

Наверняка вы обращали внимание, что на беспаечных монтажных платах нанесены числа и буквы возле строк (горизонтальных рельс) и столбцов (вертикальных рельс). Эти обозначения нанесены исключительно для удобства. Прототипы ваших устройств очень быстро обрастают дополнительными компонентами, а одна ошибка в подключении приводит к неработоспособности электрической схемы или даже к выходу из строя отдельных компонентов. Гораздо проще подключить контакт к рельсе, которая отмечена цифрой и буквой, чем отсчитывать контакты "на глаз".

Кроме того, во многих инструкциях номера рельс тоже указываются, что значительно облегчает сборку вашей схемы. Но не забывайте, что даже если вы используете инструкцию, номера контактов на макетке не обязаны совпадать!

Колки на макетках

Некоторые монтажные платы изготавливаются на отдельной подставке, на которой установлены специальные колки. Эти колки используются для подключения источника питания к вашему breadboard "у. Более детально подобные макетки рассмотрены ниже.

Другие фичи

Когда вы разрабатываете электрическую схему, не обязательно ограничиваться одним breadboard "ом. На многих монтажных платах предусмотрены специальные пазы и выступы по бокам. С помощью этих слотов, вы можете соединить несколько макеток и сформировать необходимое для вас рабочее пространство. На рисунке ниже показаны четыре мини breadboard "а, соединенных вместе.


На некоторых монтажных беспаечных платах предусмотрена самоклеющаяся основа на задней части. Очень полезная фича, если вы хотите надежно установить макетку на какой-то поверхности.

На некоторых больших макетках вертикальные рельсы, на которые подается питание, состоят из двух изолированных друг от друга частей. Очень удобно, если в вашем проекте надо два разных источника питания: например, 3.3 В и 5 В. Но надо быть предельно осторожным и перед использованием breadboard "а подключить один источник питания и проверить напряжение на двух концах вертикальной рельсы с помощью мультиметра.

Подаем питание на breadboard

Подавать питание на breadboard можно по разному.

Если вы работаете с Arduino, вы можете соединить пины 5 В (3.3 В) и Gnd с двумя разными рельсами макетки. На рисунке ниже показано подключение контакта Gnd с Arduino к рельсе мини макетной монтажной платы.


Как правило, Arduino запитывается от USB порта на компьютере или от внешнего источника питания, которые мы можем предать на рельсу макетки.

Монтажные беспаечные платы с колками

Выше уже упоминалось, что на некоторых монтажных платах устанавливают колки для подключения внешнего источника питания.

Для начала работы, необходимо подключить колки к рельсам на breadboard "е с помощью проводников. Колки не связаны ни с одной рельсой, что дает вам пространство для маневра: на какую именно рельсу подавать питание и землю.

Для подключения провода к колку, открутите пластиковый колпачок и поместите конец провода в отверстие (смотрите на фото ниже). После этого, закрутите колпачок обратно.


Как правило, вам будут необходимы два колка: для питания и для земли. Третий колок можно использовать, если вам понадобится альтернативный источник питания.

Колки соединены с рельсами, но это не конец. Теперь надо подключить внешний источник питания. Вариантов несколько.

Можно использовать специальные джеки, как это показано на фото ниже.


Можно использовать "крокодилов" и даже обычные проводники. Зависит исключительно от ваших предпочтений и деталей, которые есть у вас в наличии.

Один из достаточно универсальных вариантов - распаять контакты на джеке под ваш источник питания и подключить провода к колкам, как это показано ниже.


Можно использовать и специальные модули-стабилизаторы питания, которые выпускаются под беспаечные монтажные платы. Некоторые модули дают возможность запитывать макетку от USB порта, некоторые изготавливаются со стандартными джеками под блоки питания. На большинстве подобных модулей стабилизаторов питания предусмотрена регулировка напряжения. Например, можно выбрать напряжение, которое пойдет на рельсу: 3.3 В или 5 В. Один из вариантов подобных модулей регуляторов/стабилизаторов напряжения показан на рисунке ниже.


Простая электросхема с использованием беспаечной монтажной платы

Основы работы с беспаечной монтажной платой мы рассмотрели. Давайте рассмотрим пример простой электрической цепи, в которой будем использовать breadboard.

Ниже приведен список узлов, которые понадобятся для нашей цепи. Если у вас нет именно этих деталей, можете заменить их на аналогичные. Не забывайте: одну и ту же электрическую цепь можно собрать, используя разные компоненты.

  • Breadboard
  • Регулятор/стабилизатор напряжения
  • Блок питания
  • Светодиоды
  • Резисторы на 330 Ом 1/6 Вт
  • Коннекторы
  • Тактовые кнопки (квадрат 12 мм)

Собираем электрическую цепь

Фотография собранной электрической цепи с использованием беспаечной монтажной платы приведена ниже. В проекте используются две кнопки, резисторы и светодиоды. Обратите внимание, что две аналогичные цепи собраны по разному.


Красная плата слева - стабилизатор напряжения, который обеспечивает питание 5 В на рельсах макетки.

Схема собирается следующим образом:

  • К позитивной ноге (аноду) светодиода подключается питание 5 В от соответствующей рельсы breadboard "а.
  • Отрицательная нога (катод) светодиода, подключена к резистору 330 Ом.
  • Резистор подключен к тактовой кнопке.
  • Когда кнопка нажата, цепь замыкается с землей и светодиод зажигается.

При прототипировании важно разбираться в электрических схемах. Давайте кратко рассмотрим электрическую схему нашей небольшой электрической цепи.

Электрическая схема - это схематическое изображение, в котором используются универсальные обозначения для отдельных электрических компонентов и отображается последовательность их подключения. Подобные элекрические схемы можно получить, используя программу Fritzing .

Электрическая схема нашего проекта показана на рисунке ниже. Питание 5 В изображено стрелкой в верхней части схемы. 5 В подключается к светодиоду (треугольник и горизонтальная линия со стрелками). После этого светодиод подключается к резистору (R1). После этого установлена кнопка (S1), которая замыкает цепь. И в конце цепи - земля (Gnd - горизонтальная линия снизу).


Наверняка возникает вопрос: а зачем нам электрические схемы, если можно просто создать принципиальную схему подключения с использованием того же Fritzing? Например, как на подобном рисунке:


Как уже упоминалось выше, собрать одну и ту же схему можно по-разному, а вот электрическая принципиальная схема останется одинаковой. То есть, практическая имплементация может отличаться, что дает вам пространство для фантазии и более общее понимание процессов, которые происходят в вашем проекте.

В этом видео уроке рассказывается о том, что такое беспаечные макетные платы и для чего они используются. Это необходимый инструмент не только для новичков но и для опытных пользователей платформы Ардуино.

Купить макетные платы

Купить беспаечные макетные платы можно в магазине радиодеталей, на радиорынке или интернет магазине. Но самый выгодный вариант это конечно Алиекспрес. Там есть огромный выбор макетных плат,
а так же не высокие цены. Но нужно быть внимательным и покупать только у надежных продавцов. Ниже приведены ссылки на алиекспрес:

Макетная плата (BreadBord)

Беспаечные макетные платы очень удобны в обучении Arduino и прототипировании своих проектов. Благодаря этим платам можно собирать достаточно сложные схемы и при этом даже не брать в руки паяльник. Вы просто вставляете элементы схемы в отверстия макетной платы и все работает. Простые проекты можно сделать даже без использования проводов. Это сильно ускоряет процесс обучения или создания прототипа вашего устройства.

Вы можете собрать один проект, потом разобрать и собрать уже другой. Вам не нужны для этого паяльник и расходные материалы. Так же перед изготовлением полноценного устройства, лучше собрать его макет на беспаечной макетной плате. Это может выявить недочеты в схеме. Так же поможет написать прошивку, так как мы можете использовать светодиоды для отладки. Только после того как вы соберете прототип, напишите прошивку и убедитесь, что все работает так как вы и задумывали, можете собирать конечный вариант вашего устройства.

Как пользоваться макетной платой

Очень просто! Главное запомнить как соединены отверстия макетки. Там все просто и понятно. По краям идут горизонтальные линии питания, обычно они помечены синим и красным цветами для удобства. А посередине идет множество вертикально соединенных линий по 5 точек. На изображении ниже видно распиновку макетной платы.

Все люди в мире от мала до велика знают, что перед тем, как создать что-либо, надо сначала создать макет этого «что-либо», будь это макет здания, стадиона или даже небольшого сельского туалета. В электротехнике это называют прототипом. Прототип — это работающая модель устройства. Поэтому опытные электронщики, перед тем собрать устройство по схеме в интернете, выложенной не пойми кем и не пойми зачем, должны убедиться, что эта схема реально заработает. Поэтому, схему надо быстренько тяп-наляп собрать и убедиться в ее работоспособности, то есть собрать макет. Ну а для того, чтобы его собрать нам то как раз и понадобится макетная плата.

Виды макетных плат

Толстый картон

Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли:-), использовали толстый картон. Это самый быстрый и дешевый способ проверки схем. В картоне прорезались дырочки под выводы радиоэлементов и с другой стороны они соединялись с помощью проводов и других элементов, если те не влезали на лицевую сторону. Выглядело это примерно как-то так:

А — типа лицевая сторона, В — обратная сторона.

Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока «лепишь» эту схемку можно даже ненароком растеряться:-). Да и не красиво как-то.

Самодельные макетные платы

Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.


Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.

Одноразовые макетные платы

Производители все-таки это дело «чухнули», или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.



Кстати, их можно найти на Али сразу целым набором .

Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.


Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:


В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.

Беспаечные макетные платы

Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились беспаечные макетные платы.


Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.

Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре. Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело . Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык. Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.



Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (от английского — прыгать), нужны для соединения радиодеталей на самой макетной плате.


Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:


Здесь все просто, берем джампер и вставляем его легким движением руки



Давайте соберем простейшую схемку включения светодиода через кнопочку на макетной плате


Вот так она будет выглядеть


Выставляем на Блоке питания 5 Вольт и нажимаем на кнопочку. Светодиод загорается ярко-зеленым цветом. Значит схема работоспособная, и мы ее можем использовать по своему усмотрению.


Заключение

Беспаечные макетные платы завоевывают мир. Любую схему на них можно собрать и разобрать за считанные минуты. После сборки и проверки схемы на макетной плате, можно смело приступать к ее сборке в чистом виде. Думаю, у каждого уважаемого себя электронщика должна быть такая макетная. Но имейте ввиду, схемы с большим током в цепи лучше все таки на ней не проверять, так как контакты макетные платки могут просто-напросто выгореть — закон Джоуля-Ленца . Удачи вам в разработке и конструировании радиоэлектронных устройств!

Где купить макетную плату

Макетную плату с гибкими джамперами и даже с готовым блоком питания 5 Вольт можно сразу купить набором на Алиэкспрессе. Выбирайте на ваш вкус и цвет!


Если же не хотите , то проще всего будет купить одноразовую макетную плату и собрать на ней готовое устройство:


Это очень простой вариант использования. Конечно существуют программы, которые помогают создавать схемы и моделировать устройства и порой они намного выигрывают у беспаечных плат. Так как вы сами делаете любую, необходимую. Но и тут бывают небольшие минусы так как на практике параметры могут немного отличаться от исходных данных по различным причинам и убедиться вы сможете только тогда, когда устройство будет готово. Поэтому многие советуют сначала смоделировать устройство на компьютере, потом собрать на беспаечной макетной плате, а потом отправлять в производство. Поэтому если вы начинающий специалист или уже достигли определенных навыков в моделировании и производстве электронных устройств, вы сможете оценить ее по достоинству и иметь всегда под рукой, как необходимый инструмент. Она сможет превратить тяжелый процесс в довольно легкий и интересный, а также ускорить создание вашего изобретения.







2024 © gtavrl.ru.