Компьютерное моделирование числовой и символьной информации. Компью́терное модели́рование


Начнем с определения слова моделирование.

Моделирование – процесс построения и использования модели. Под моделью понимают такой материальный или абстрактный объект, который в процессе изучения заменяет объект-оригинал, сохраняя его свойства, важные для данного исследования.

Компьютерное моделирование как метод познания основано на математическом моделировании. Математическая модель – это система математических соотношений (формул, уравнений, неравенств и знаковых логических выражений) отображающих существенные свойства изучаемого объекта или явления.

Очень редко удается использовать математическую модель для конкретных расчетов без использования вычислительной техники, что с неизбежностью требует создания некоторой компьютерной модели.

Рассмотрим процесс компьютерного моделирования более подробно.

2.2. Представление о компьютерном моделировании

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование как новый метод научных исследований основывается на:

1. Построении математических моделей для описания изучаемых процессов;

2. Использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

2.3. Построение компьютерной модели

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов – сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Итак, к основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования:

на данном этапе происходит сбор информации, формулировка вопроса, определение целей, формы представления результатов, описание данных.

2. Анализ и исследование системы:

анализ системы, содержательное описание объекта, разработка информационной модели, анализ технических и программных средств, разработка структур данных, разработка математической модели.

3. Формализация, то есть переход к математической модели, создание алгоритма:

выбор метода проектирования алгоритма, выбор формы записи алгоритма, выбор метода тестирования, проектирование алгоритма.

4. Программирование:

выбор языка программирования или прикладной среды для моделирования, уточнение способов организации данных, запись алгоритма на выбранном языке программирования (или в прикладной среде).

5. Проведение серии вычислительных экспериментов:

отладка синтаксиса, семантики и логической структуры, тестовые расчеты и анализ результатов тестирования, доработка программы.

6. Анализ и интерпретация результатов:

доработка программы или модели в случае необходимости.

Существует множество программных комплексов и сред, которые позволяют проводить построение и исследование моделей:

Графические среды

Текстовые редакторы

Среды программирования

Электронные таблицы

Математические пакеты

HTML-редакторы

2.4. Вычислительный эксперимент

Эксперимент – это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий, чтобы определить, как реагирует экспериментальный образец на эти действия. Вычислительный эксперимент предполагает проведение расчетов с использованием формализованный модели.

Использование компьютерной модели, реализующей математическую, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объектом проводится вычислительный эксперимент с его моделью. Задавая конкретный набор значений исходных параметров модели, в результате вычислительного эксперимента получают конкретный набор значений искомых параметров, исследуют свойства объектов или процессов, находят их оптимальные параметры и режимы работы, уточняют модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно, изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях. Для исследований поведения объекта при новом наборе исходных данных необходимо проведение нового вычислительного эксперимента.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

2.5. Моделирование в различных средах

2.5.1. Моделирование в среде программирования

Моделирование в среде программирование включает в себя основные этапы компьютерного моделирования. На этапе построения информационной модели и алгоритма необходимо определить, какие величины являются входными параметрами, а какие – результатами, а также определить тип этих величин. При необходимости составляется алгоритм в виде блок-схемы, который записывается на выбранном языке программирования. После этого проводится вычислительный эксперимент. Для этого необходимо загрузить программу в оперативную память компьютера и запустить на выполнение. Компьютерный эксперимент обязательно включает в себя анализ полученных результатов, на основании которого могут корректироваться все этапы решения задачи (математическая модель, алгоритм, программа). Одним из важнейших этапов является тестирование алгоритма и программы.

Отладка программы (английский термин debugging (отладка) означает «вылавливание жучков» появился в 1945 году, когда в электрические цепи одного из первых компьютеров «Марк-1» попал мотылек и заблокировал одно из тысяч реле) – это процесс поиска и устранения ошибок в программе, производимы по результатам вычислительного эксперимента. При отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования.

В современных программных системах отладка осуществляется с использованием специальных программных средств, называемыми отладчиками.

Тестирование – это проверка правильности работы программы в целом, либо составных её частей. В процессе тестирования проверяется работоспособность программы, не содержащей явных ошибок.

Как бы тщательно ни была отлажена программа, решающим этапом, устанавливающим её пригодность для работы, является контроль программы по результатам её выполнения на системе тестов. Программу можно считать правильной, если для выбранной системы тестовых исходных данных во всех случаях получаются правильные результаты.

2.5.2. Моделирование в электронных таблицах

Моделирование в электронных таблицах охватывает очень широкий класс задач в разных предметных областях. Электронные таблицы – универсальный инструмент, позволяющий быстро выполнить трудоемкую работу по расчету и пересчету количественных характеристик объекта. При моделировании с использованием электронных таблиц алгоритм решения задачи несколько трансформируется, скрываясь за необходимостью разработки вычислительного интерфейса. Сохраняется этап отладки, включающий устранение ошибок данных, в связях между ячейками, в вычислительных формулах. Возникают также дополнительные задачи: работа над удобством представления на экране и, если необходим вывод полученных данных на бумажные носители, над их размещением на листах.

Процесс моделирования в электронных таблицах выполняется по общей схеме: определяются цели, выявляются характеристики и взаимосвязи и составляется математическая модель. Характеристики модели обязательно определяются по назначению: исходные (влияющие на поведение модели), промежуточные и то, что требуется получить в результате. Иногда представление объекта дополняется схемами, чертежами.

Для наглядного отображения зависимости результатов расчетов от исходных данных используют диаграммы и графики.

В тестировании используется некоторый набор данных, для которого известен точный или приближенный результат. Эксперимент заключается во введении исходных данных, которые удовлетворяют целям моделирования. Анализ модели позволит выяснить, насколько расчеты отвечают целям моделирования.

2.5.3. Моделирование в среде СУБД

Моделирование в среде СУБД обычно преследует следующие цели:

Хранение информации и своевременное ее редактирование;

Упорядочение данных по некоторым признакам;

Создание различных критериев выбора данных;

Удобное представление отобранной информации.

В процессе разработки модели на основе исходных данных формируется структура будущей базы данных. Описываемые характеристики и их типы сводятся в таблицу. Количество столбцов таблицы определяется количеством параметров объекта (поля таблицы). Количество строк (записи таблицы) соответствует количеству строк описываемых однотипных объектов. Реальная база данных может иметь не одну, а несколько таблиц, связанных между собой. Эти таблицы описывают объекты, входящие в некоторую систему. После определения и задания структуры базы данных в компьютерной среде переходят к ее наполнению.

В ходе эксперимента происходит сортировка данных, поиск и фильтрация, создание расчетных полей.

Компьютерная информационная панель предоставляет возможность создания различных экранных форм и форм для вывода информации в печатном виде – отчетов. Каждый отчет содержит информацию, отвечающую цели конкретного эксперимента. Он позволяет группировать информацию по заданным признакам, в любом порядке, с введением итоговых полей расчета.

Если полученные результаты не соответствуют планируемым, можно провести дополнительные эксперименты с изменением условий сортировки и поиска данных. Если появляется необходимость изменить базу данных можно скорректировать ее структуру: изменять, добавлять и удалять поля. В результате появляется новая модель.

2.6. Использование компьютерной модели

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности, таких как проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

2.7. Заключение

В заключение можно подчеркнуть, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

3. Список используемой литературы

1. С. Н. Колупаева. Математическое и компьютерное моделирование. Учебное пособие. – Томск, Школьный университет, 2008. – 208с.

2. А. В. Могилев, Н. И. Пак, Е. К. Хеннер. Информатика. Учебное пособие. – М.: Центр «Академия», 2000. – 816с.

3. Д. А. Поселов. Информатика. Энциклопедический словарь. – М.: Педагогика-Пресс, 1994. 648с.

4. Официальный сайт издательства "Открытые Системы". Интернет университет информационных технологий. – Режим доступа: http://www.intuit.ru/ . Дата обращения: 5.10.2010 г.

Физическая наука неразрывно связана с математическим моделированием со времен Исаака Ньютона (XVII–XVIII вв.). И.Ньютон открыл фундаментальные законы механики, закон всемирного тяготения, описав их на языке математики. И.Ньютон (наряду с Г.Лейбницем) разработал дифференциальное и интегральное исчисления, ставшие основой математического аппарата физики. Все последующие физические открытия (в термодинамике, электродинамике, атомной физике и пр.) представлялись в форме законов и принципов, описываемых на математическом языке, т.е. в форме математических моделей.

Можно сказать, что решение любой физической задачи теоретическим путем есть математическое моделирование. Однако возможность теоретического решения задачи ограничивается степенью сложности ее математической модели. Математическая модель тем сложнее, чем сложнее описываемый с ее помощью физический процесс, и тем сложнее становится использование такой модели для расчетов.

В простейшей ситуации решение задачи можно получить “вручную” аналитически. В большинстве же практически важных ситуаций найти аналитическое решение не удается из-за математической сложности модели. В таком случае используются численные методы решения задачи, эффективная реализация которых возможна только на компьютере. Иначе говоря, физические исследования на основе сложных математических моделей производятся путем компьютерного математического моделирования. В связи с этим в ХХ веке наряду с традиционным делением физики на теоретическую и экспериментальную возникло новое направление - “вычислительная физика”.

Исследование на компьютере физических процессов называют вычислительным экспериментом. Тем самым вычислительная физика прокладывает мост между теоретической физикой, из которой она черпает математические модели, и экспериментальной физикой, реализуя виртуальный физический эксперимент на компьютере. Использование компьютерной графики при обработке результатов вычислений обеспечивает наглядность этих результатов, что является важнейшим условием для их восприятия и интерпретации исследователем.

Физика, как учебная дисциплина, предоставляет наиболее широкий спектр применения ЭВТ в качестве средства обучения. Это моделирование физических процессов (демонстрационное и лабораторное), обучающие системы, компьютерный контроль, тренажеры, генераторы индивидуальных заданий при решении задач. Также это могут быть справочно-информационные системы, системы управления экспериментом и, наконец, проведение различных расчетов (в частности, при обработке результатов лабораторного практикума).

Компьютер позволяет строить динамические модели, т. к. он реагирует на действия пользователя подобно реакции реального объекта. Компьютерные модели обеспечивают большую гибкость при проведении эксперимента во время решения экспериментальных задач, позволяют замедлить или ускорить ход времени, сжать или растянуть пространство, дополнить модель графиком, таблицей, мультипликацией, повторить или изменить ситуацию.

Компьютер, как средство управления техническим объектом, занимаю-щее особое место в совершенствовании техники и методики физического экс-перимента, может выполнять следующие функции:

Средство измерения;

Контроль над физическими процессами или поведением объекта;

Управление физическим экспериментом или техническим объектом;

Различная обработка результатов эксперимента.

Эффективность компьютерного обучения обусловлена рядом факторов: дидактическими возможностями компьютера, учебным потенциалом мульти-медийных технологий и такой организацией учебного процесса, при которой возможности новых информационных технологий обнаруживают себя наиболее полно.

Мультимедийные технологии могут быть использованы в рамках реализации таких моделей учебной деятельности, как самостоятельное и управляемое открытие знания. Существующие электронные средства разработки мультимедийных приложений могут быть использованы в учебном процессе для создания мультимедийных дидактических пособий. Применение в учебном процессе такого дидактического средства как мультимедийная учебная презентация позволяет увеличить степень усвоения студентами получаемой учебной информации.

В качестве подобного мультимедийного приложения могут быть использованы flash – технологии, использование которых в настоящее время актуально.

Flash является наиболее востребованной технологией, позволяющей со-здавать различные мультимедиа и интерактивные приложения для всевозможных сфер деятельности. Flash - это пакет для создания и формат для сохранения двумерной анимированной компьютерной графики.

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).
В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

Свойство 1. Целостность и членимость.

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаи-модействующих между собой элементов.
У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

Свойство 2. Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней сре-дой).
Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

Свойство 3. Организация.

Свойство характеризуется наличием определенной организации – формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

  • сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;
  • наличие управления, разветвленной информационной сети и интенсивных потоков информации;
  • наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

Свойство 4. Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, кото-рые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства систе-мы хотя и зависят от свойств элементов, но не определяются ими полностью.
Примеры СС в экономической сфере многочисленны: организационно – производственная система, предприятие; социально – экономическая система, например регион; и др.
Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализакомпьютерное моделирование .
Имитационное моделирование является наиболее эффективным и универ-сальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель , которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Исследование современных СС предполагает различные классы моделей . Развитие информационных технологий можно интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения, например, информационные системы, системы распознавания образов, системы искусственного интеллекта, системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования :

  • концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;
  • физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических процессов и явлений;
  • структурно – функциональное моделирование – моделями являются схемы (графы, блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
  • математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;
  • имитационное (программное) моделирование – в этом случае логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все перечисленные виды моделирования или отдельные приемы). Так, например, имитационное моделирование включает в себя концептуальное (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) моделирование для описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (экспериментального натурного или лабораторного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования трактуется шире традиционного понятия “моделирование на ЭВМ” . Приведем его.

Компьютерное моделирование – это метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерное моделирование можно рассматривать как:

  • математическое моделирование;
  • имитационное моделирование;
  • стохастическое моделирование.

Под термином “компьютерная модель” понимают условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели, описанные с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, будем называть математическими. Компьютерные модели, описанные с помощью взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта, будем называть структурно-функциональными ;

Компьютерные модели (отдельную программу, совокупность программ, программный комплекс), позволяющие, с помощью последовательности вычислений и графического отображения результатов ее работы, воспроизводить (имитировать) процессы функционирования объекта (системы объектов) при условии воздействия на объект различных, как правило, случайных факторов, будем называть имитационными .

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального . Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем), в котором доминирующая роль отводится системным аналитикам. В отличие от математического моделирования на ЭВМ, где методологической основой являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и др.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы . Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование предлагает совокупность методологических подходов и технологических средств, используемых для подготовки и принятия решений в различных областях исследования.

Выбор метода моделирования для решения постановленной задачи или исследования системы является актуальной задачей, с которой системный аналитик должен уметь справляться.

С этой целью уточним место имитационных моделей и их специфику среди моделей других классов. Кроме того, уточним некоторые понятия и определения, с которыми имеет дело системный аналитик в процессе моделирования. С этой целью рассмотрим процедурно-технологическую схему построения и исследования моделей сложных систем . Эта схема (приведенная на стр.6) включает, характерные для любого метода моделирования, следующие этапы определения:

  1. Системы (предметная, проблемная область);
  2. Объекта моделирования;
  3. Целевого назначения моделей;
  4. Требований к моделям;
  5. Формы представления;
  6. Вида описания модели;
  7. Характера реализации модели;
  8. Метода исследования модели.

Первые три этапа характеризуют объект и цель исследования и практически определяют следующие этапы моделирования. При этом большое значение приобретает корректное описание объекта и формулировка цели моделирования из предметной области исследования.

Предметная (проблемная) область . Исследование различных систем: математических, экономических, производственных, социальных, систем массового обслуживания, вычислительных, информационных и многих других.

Модель должна строиться целенаправленно. Целенаправленная модель представляет собой замену действительности с той степенью абстракции, которая необходима для поставленной цели. То есть, модель, прежде всего, должна отражать те существенные свойства и те стороны моделируемого объекта, которые определены задачей. При этом важно правильно обозначить и сформулировать проблему, четко определить цельисследования, проводимого с помощью моделирования.

Требования к моделям . Моделирование связано с решением реальных задач и необходимо быть уверенным, что результаты моделирования с достаточной степенью точности отражают истинное положение вещей, т.е. модель адекватна реальной действительности.

Хорошая модель должна удовлетворять некоторым общепринятым требованиям. Такая модель должна быть:

  • адекватной;
  • надежной;
  • простой и понятной пользователю;
  • целенаправленной;
  • удобной в управлении и обращении;
  • функционально полной с точки зрения возможностей решения главных задач;
  • адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные;
  • допускающей изменения (в процессе эксплуатации она может усложняться).

В зависимости от целевой направленности модели, для нее задаются специальные требования. Наиболее характерными являются: целостность, отражение информационных свойств, многоуровневость, множественность (многомодельность), расширяемость, универсальность, осуществимость (реальная возможность построения самой модели и ее исследования), реализуемость (например, на ЭВМ, возможность материализации модели в виде реальной системы в задачах проектирования), эффективность (затраты временных, трудовых, материальных и других видов ресурсов на построение моделей и проведение экспериментов находятся в допустимых пределах или оправданы). Значимость или приоритетность требований к модели непосредственно вытекают из назначения модели. Например, в исследовательских задачах, задачах управления, планирования и описания важным требованием является адекватность модели объективной реальности. В задачах проектирования и синтеза уникальных систем важным требованием является реализуемость модели, например в САПР или систему поддержки принятия решений (СППР).

Цель моделирования и задание требований к модели определяют форму представления модели.

Любая модель (прежде чем стать объективно существующим предметом) должна существовать в мысленной форме, быть конструктивно разработанной, переведена в знаковую форму и материализована. Таким образом, можно выделить три формы представления моделей:

  • мысленные (образы);
  • знаковые (структурные схемы, описания в виде устного и письменного изложения, логические, математические, логико-математические конструкции);
  • материальные (лабораторные и действующие макеты, опытные образцы).

Особое место в моделировании занимают знаковые , в частности логические, математические, логико-математические модели, а также модели, воссозданные на основе описания, составленного экспертами. Знаковые модели используются для моделирования разнообразных систем. Это направление связано с развитием вычислительных систем. Ограничимся ими в дальнейшем рассмотрении.

Следующий этап процедурной схемы – это выбор вида описания и
построения модели.
Для знаковых форм такими описаниями могут быть:

  • отношение и исчисление предикатов, семантические сети, фреймы, методы искусственного интеллекта и др. - для логических форм .
  • алгебраические, дифференциальные, интегральные, интегрально-дифференциальные уравнения и др. - для математических форм .

Характер реализации знаковых моделей бывает :

  • аналитический (например, система дифференциальных уравнений может быть решена математиком на листе бумаги);
  • машинный (аналоговый или цифровой);
  • физический (автоматный).

В каждом из них, в зависимости от сложности модели, цели моделирования, степени неопределенности характеристик модели, могут иметь место различные по характеру способы проведения исследований (экспериментов), т.е., методы исследования. Например, при аналитическом исследовании применяются различные математические методы. При физическом или натурном моделировании применяется экспериментальный метод исследования.

Анализ применяемых и перспективных методов машинного экспериментирования позволяет выделить расчетный, статистический, имитационный и самоорганизующийся методы исследований.

Расчетное (математическое) моделирование применяется при исследовании математических моделей и сводится к их машинной реализации при различных числовых исходных данных. Результаты этих реализаций (расчетов) выдаются в графической или табличной формах. Например, классической схемой является машинная реализация математической модели, представленной в виде системы дифференциальных уравнений, основанная на применении численных методов, с помощью которых математическая модель приводится к алгоритмическому виду, программно реализуется на ЭВМ, для получения результатов проводится расчет.

Имитационное моделирование отличается высокой степенью общности, создает предпосылки к созданию унифицированной модели, легко адаптируемой к широкому классу задач, выступает средством для интеграции моделей различных классов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

2.2. Задача 2. Моделирование автоволновых процессов

Заключение

Список литературы

Введение

Моделирование в научных исследованиях стало использоваться еще в глубокой древности и постепенно захватывало все новые области научных знаний. У каждого физика возникло желание «увидеть невидимое», то есть заглянуть в протекание физического явления и увидеть механизм, даже тогда когда он скрыт от непосредственного восприятия. И вот тут на помощь пришли компьютерные технологии, а именно компьютерное моделирование, позволяющее создать и увидеть «виртуальные» эксперименты, модели.

Методы компьютерного моделирования появились в физике в конце 50-х - начале 60-х годов. Главные из них - динамический метод и метод Монте -Карло. Развитие методов машинного моделирования оказало сильное влияние на физику, так как впервые появилась возможность теоретически исследовать системы с достаточно сложным взаимодействием частиц друг с другом. Сегодня эти методы успешно применяют в физике твердого тела, в физике фазовых переходов. При помощи этих методов исследуют свойства жидкостей, плотной плазмы, поверхностные явления, прохождения излучения через вещество и другие процессы. Все это привело к тому, что в настоящее время принято подразделять физику на экспериментальную, теоретическую, вычислительную. Вычислительная физика занимает промежуточное положение между экспериментальной и теоретической: объект ее изучения с одной стороны - не реальный эксперимент, с другой стороны - не совсем теория, так как модели вычислительной физики содержат мало приближений, и является весьма реалистическими. Поэтому в этой связи часто говорят о виртуальном или компьютерном эксперименте. Вплоть до конца 80-х методы машинного моделирования были доступны не многим, компьютерный эксперимент был достаточно дорог, он требовал больших затрат машинного времени кроме того, быстродействие ЭВМ и их оперативная память были сравнительно малы, что сильно ограничили их графические возможности полноценного диалога между машиной и пользователем. Но компьютерный бум произошедший за последнее десятилетие, породил серию дешевых и доступных компьютеров. Резкое увеличение их быстродействия сделало актуальным применение методов машинного моделирования и в образовании, причем не только для обучения будущих специалистов по этим вопросам, но и для создания учебных физических моделей, которые могли применяться любыми пользователями с любой компьютерной поддержкой.

Актуальность курсовой работы. В связи с массовым оборудованием компьютерами школ по общероссийской программе компьютеризации, углубился интерес к использованию компьютеров в предметном обучении. Компьютер как техническое средство открывает большие возможности для улучшения учебного процесса. Однако, применение компьютера в обучении по предметам, в частности, физике не получило широкого распространения и носит ограниченный характер. С одной стороны, это связано с недостаточной методической разработкой программных средств и обучающих программ. Выявление данной проблематики наблюдается в диссертационных исследованиях A.M. Короткова, Л.Ю. Кравченко, Е.А. Локтюшиной, Н.А. Гомулиной, А.С. Каменева, Ш.Д. Махмудовой. С другой стороны, что предлагаемые разработчиками компьютерные программы по физике, в большем количестве являются закрытыми для пользователя: включают готовый банк задач, тестов, теорию и демонстрации, которые не всегда сочетаются с методикой преподавания учителя и зачастую не увязаны с учебным процессом ни организационно, ни методически. Программы же, позволяющие достичь открытости для пользователя обычно не поддерживают решение физических задач или достаточно громоздки в обучении, требуют знания языков программирования - Pascal, C++, Delphi или численных методов - Mathcad, Excel. Поэтому остается актуальным поиск общих подходов и методов, повышающих эффективность обучения физике с помощью компьютера. В частности, актуальна проблема создания такой среды, в которой органично сочетаются традиционные и компьютерные методы обучения. Одним из эффективных методов обучения решению физических задач, является метод компьютерного моделирования, который интегрирует дидактические возможности в обучении решению задач и является средством развития умственных и творческих способностей учащихся. А внедрение новых образовательных технологий в учебный процесс позволяет наряду с традиционными методами решения задач применить моделирование.

Целью курсовой работы изучение и исследование особенностей компьютерного моделирования в области физики.

Исходя из цели, поставлены следующие задачи курсовой работы: изучить основные понятия о компьютерном моделировании; систематизировать материал по компьютерному моделированию в области физики; рассмотреть компьютерное моделирование на примере решения конкретных задач.

Структура курсовой работы. Курсовая работа состоит из содержания, введения, двух глав, заключения и списка литературы.

1. Теоретическая часть. Компьютерное моделирование

1.1 Понятие о компьютерном моделировании

С развитием вычислительной техники все важнее становится роль компьютерного моделирования в решении прикладных и научных задач. Для проведения компьютерных экспериментов создается подходящая математическая модель и подбираются соответствующие средства разработки программного обеспечения. Выбор языка программирования оказывает огромное влияние на осуществление полученной модели.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть крайне полезен, за исключением разве физического моделирования, где компьютер вообще-то тоже может использоваться, но, скорее, для целей управления процессом моделирования. Например, при математическом моделировании выполнение одного из основных этапов - построение математических моделей по экспериментальным данным - в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие приобрело компьютерное, структурно-функциональное моделирование. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта.

Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.

Начнем с термина «компьютерная модель».

В настоящее время под компьютерной моделью чаще всего понимают :

§ условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

§ отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных, факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе применения ее компьютерной модели.

Суть компьютерного моделирования заключена в приобретении количественных и качественных результатов по имеющейся модели. Качественные выводы, приобретаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Основные функции компьютера при моделировании:

§ выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;

§ выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

§ выполнять роль средства конструирования компьютерных обучающе-моделирующих сред;

§ выполнять роль средства моделирования для получения новых знаний;

§ выполнять роль «обучения» новых моделей (самообучающиеся модели).

Одним из видов компьютерного моделирования является вычислительный эксперимент.

Компьютерная модель - это модель реального процесса или явления, реализованная компьютерными средствами. Если состояние системы меняется со временем, то модели называют динамическими, в противном случае - статическими .

Процессы в системе могут протекать по-разному в зависимости от условий, в которых находится система. Наблюдать за поведением реальной системы при различных условиях бывает трудно, а иногда и невозможно. В таких случаях, построив модель, можно многократно возвращаться к начальному состоянию и наблюдать за ее поведением. Этот метод исследования систем называется имитационным моделированием.

Примером имитационного моделирование может являться вычисление числа =3,1415922653... методом Монте-Карло. Этот метод позволяет находить площади и объемы фигур (тел), которые сложно вычислить другими методами. Предположим, что требуется определить площадь круга. Опишем вокруг него квадрат (площадь которого, как известно, равна квадрату его стороны) и будем случайным образом бросать в квадрат точки, проверяя каждый раз, попала ли точка в круг или нет. При большом числе точек отношение площади круга к площади квадрата будет стремиться к отношению числа точек, попавших в круг, к общему числу брошенных точек.

Теоретическая основа этого метода была известна давно, однако до появления компьютеров этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную - очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами, ибо одним из механических приборов для получения случайных величин является рулетка.

Следует заметить, что данный метод вычисления площади круга будет давать корректный результат, только если точки будут не просто случайно, но еще и равномерно разбросанными по всему квадрату. Для моделирования равномерно распределенных в интервале от 0 до 1 случайных чисел используется датчик случайных чисел - специальная компьютерная программа. На самом деле эти числа определяются по некоторому алгоритму и уже в силу этого они не являются вполне случайными. Получаемые таким способом числа часто называют псевдослучайными. Вопрос о качестве датчиков случайных чисел весьма непрост, однако для решения не слишком сложных задач обычно достаточно возможностей датчиков, встроенных в большинство систем программирования и электронных таблиц.

Заметим, что располагая датчиком равномерно распределенных случайных чисел, генерирующим числа r из интервала в массив xxii[i] и вычисляют скорости элементов в момент времени t+Дt:

зi(t+Дt)=зi(t)+ v2[(оi+1-2оi +оi-1)/h2]Дt.

записывая их в массив о[i].

5. В цикле перебираются все элементы и вычисляются их смещения по формуле:

оi(t+Дt)=оi(t)+ зi(t+Дt)Дt.

6. В цикле перебирают все элементы, стирают их предыдущие изображения и рисуют новые.

7. Возвращение к операции 2. Если цикл по t закончился, - выход из цикла.

4. Компьютерная программа. Предлагаемая программа моделирует прохождение и отражение импульса от "границы раздела двух сред".

program PROGRAMMA1;

uses crt, graph;

const n=200; h=1; dt=0.05;

var i, j, DriverVar,

ModeVar, ErrorCode: integer;

eta,xi,xxii: array of real;

Procedure Graph_Init;

begin {- Инициализация графики -}

DriverVar:=Detect;

InitGraph(DriverVar,ModeVar,"c:\bp\bgi");

ErrorCode:=GraphResult;

if ErrorCode<>grOK then Halt(1);

Procedure Raschet; {Расчет смещения}

begin for i:=2 to N-1 do

if i

eta[i]:=eta[i]+vv*(xi-2*xi[i]+xi)/(h*h)*dt;

for i:=2 to N-1 do xi[i]:=xi[i]+eta[i]*dt;

xi[N]:=0; {Конец закреплен}

{ xi[N]:=xi;}{ незакрепленный}

begin {- Вывод на экран -}

setcolor(black);

line(i*3-3,240-round(xxii*50),i*3,240-round(xxii[i]*50));

setcolor(white);

line(i*3-3,240-round(xi*50),i*3,240-round(xi[i]*50));

BEGIN {- Основная программа -}

if t<6.28 then xi:=2*sin(t) else xi:=0;

Raschet; For i:=1 to N do Draw;

until KeyPressed; CloseGraph;

Рассмотренная выше компьютерная модель позволяет выполнить серию численных экспериментов и изучить следующие явления: 1) распространение и отражение волны (одиночного импульса, цуга) от закрепленного и незакрепленного конца упругой среды; 2) интерференция волн (одиночных импульсов, цугов), возникающая в результате отражения падающей волны либо излучения двух когерентных волн; 3) отражение и прохождение волны (одиночного импульса, цуга) через границу раздела двух сред; 4) изучение зависимости длины волны от частоты и скорости распространения; 5) наблюдение изменения фазы отраженной волны на р при отражении от среды, в которой скорость волны меньше.

2.2 Задача 2. Моделирование автоволновых процессов

1. Задача: Имеется двумерная активная среда, состоящая из элементов, каждый из которых может находиться в трех различных состояниях: покое, возбуждении и рефрактерности. При отсутствии внешнего воздействия, элемент находится в состоянии покоя. В результате воздействия элемент переходит в возбужденное состояние, приобретая способность возбуждать соседние элементы. Через некоторое время после возбуждения элемент переключается в состояние рефрактерности, находясь в котором он не может быть возбужден. Затем элемент сам возвращается в исходное состояние покоя, то есть снова приобретает способность переходить в возбужденное состояние. Необходимо промоделировать процессы, происходящие в двумерной активной среде при различных параметрах среды и начальном распределении возбужденных элементов.

2. Теория. Рассмотрим обобщенную модель Винера-Розенблюта. Мысленно разобьем экран компьютера на элементы, определяемые индексами i, j и образующими двумерную сеть. Пусть состояние каждого элемента описывается фазой yi,j (t), и концентрацией активатора uij (t), где t - дискретный момент времени.

Если элемент находится в покое, то будем считать, что yi,j (t) = 0. Если вследствие близости возбужденных элементов концентрация активатора uij (t) достигает порогового значения h, то элемент возбуждается и переходит в состояние 1. Затем на следующем шаге он переключается в состояние 2, затем - в состояние 3 и т.д., оставаясь при этом возбужденным. Достигнув состояния r, элемент переходит в состояние рефрактерности. Через (s - r) шагов после возбуждения элемент возвращается в состояние покоя.

Будем считать, что при переходе из состояния s в состояние покоя 0 концентрация активатора становится равной 0. При наличии соседнего элемента, находящегося в возбужденном состоянии, она увеличивается на 1. Если p ближайших соседей возбуждены, то на соответствующем шаге к предыдущему значению концентрации активатора прибавляется число возбужденных соседей:

uij (t + Дt) = uij (t) + p.

Можно ограничиться учетом ближайших восьми соседних элементов.

3. Алгоритм. Для моделирования автоволновых процессов в активной среде необходимо составить цикл по времени, в котором вычисляются фазы элементов среды в последующие моменты времени и концентрация активатора, стирается предыдущее распределение возбужденных элементов и строится новое. Алгоритм модели представлен ниже.

1. Задают число элементов активной среды, ее параметры s, r, h, начальное распределение возбужденных элементов.

2. Начало цикла по t. Дают приращение по времени: переменной t присваивают значение t + Дt.

3. Перебирают все элементы активной среды, определяя их фазы yi,j (t + Дt) и концентрацию активатора ui,j (t + Дt) в момент t + Дt.

4. Очищают экран и строят возбужденные элементы активной среды.

5. Возвращение к операции 2. Если цикл по t закончился - выход из цикла.

4. Компьютерная программа. Ниже представлена программа, моделирующая активную среду и происходящие в ней процессы. В программе заданы начальные значения фазы yi,j (t + Дt) всех элементов активной среды, а также имеется цикл по времени, в котором рассчитываются значения yi,j (t + Дt) в следующий момент t + Дt и осуществляется графический вывод результатов на экран. Параметры среды r = 6, s = 13, h = 5, то есть каждый элемент кроме состояния покоя может находиться в 6 возбужденных состояниях и 7 состояниях рефрактерности. Пороговое значение концентрации активатора равно 5. Программа строит однорукавную волну, осциллятор и препятствие.

Program PROGRAMMA2;

uses dos, crt, graph;

Const N=110; M=90; s=13; r=6; h=5;

Var y, yy, u: array of integer;

ii, jj, j, k, Gd, Gm: integer; i: Longint;

Gd:= Detect; InitGraph(Gd, Gm, "c:\bp\bgi");

If GraphResult <> grOk then Halt(1);

setcolor(8); setbkcolor(15);

(* y:=1; { Одиночная волна } *)

For j:=1 to 45 do { Однорукавная волна }

For i:=1 to 13 do y:=i;

(* For j:=1 to M do { Двурукавная волна }

For i:=1 to 13 do begin y:=i;

If j>40 then y:=14-i; end; *)

If k=round(k/20)*20 then y:=1; {Осциллятор 1}

(* If k=round(k/30)*30 then y:=1; {Осциллятор 2} *)

For i:=2 to N-1 do For j:=2 to M-1 do begin

If (y>0) and (y

If y=s then begin yy:=0; u:=0; end;

If y <> 0 then goto met;

For ii:=i-1 to i+1 do For jj:=j-1 to j+1 do begin

If (y>0) and (y<=r) then u:=u+1;

If u>=h then yy:=1; end;

met: end; Delay(2000); {Задержка}

For i:=21 to 70 do begin

yy:=0; yy:=0; {Препятствие}

circle(6*i-10,500-6*60,3); circle(6*i-10,500-6*61,3); end;

For i:=1 to N do For j:=1 to M do

begin y:=yy; setcolor(12);

If (y>=1) and (y<=r) then circle(6*i-10,500-6*j,3);

If (y>6) and (y<=s) then circle(6*i-10,500-6*j,2);

until KeyPressed;

Заключение

Практически во всех естественных и социальных науках построение и использование моделей является мощным орудием исследований. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения оказывается построение модели, отображающей лишь какую-то часть реальности и потому многократно более простой, чем эта реальность. Предметом исследования и разработки информатики является методология информационного моделирования, связанная с использованием компьютерной техники и технологий. В этом смысле говорят о компьютерном моделировании. Межпредметное значение информатики в значительной степени проявляется именно через внедрение компьютерного моделирования в различные научные и прикладные области: физику и технику, биологию и медицину, экономику, управление и многие другие.

В настоящее время, с развитием компьютерной техники и подорожанием составляющих экспериментальных установок, роль компьютерного моделирования в физике значительно возрастает. Не вызывает сомнения необходимость наглядной демонстрации исследуемых в процессе обучения зависимостей для их лучшего понимания и запоминания. Также актуальным является обучение учащихся в образовательных учреждениях основам компьютерной грамотности и компьютерного моделирования. На современном этапе компьютерное моделирование в области физики является очень популярной формой образования.

Список литературы

1. Боев В.Д., Сыпченко Р.П., Компьютерное моделирование. - ИНТУИТ.РУ, 2010. - 349 с.

2. Булавин Л.А., Выгорницкий Н.В., Лебовка Н.И. Компьютерное моделирование физических систем. - Долгопрудный: Издательский Дом «Интеллект», 2011. - 352 c.

3. Гулд Х., Тобочник Я. Компьютерное моделирование в физике: В 2-х частях. Часть первая. - М.: Мир, 2003. - 400 с.

4. Десненко С.И., Десненко М.А. Моделирование в физике: Учебно-

методическое пособие: В 2 ч. - Чита: Изд-во ЗабГПУ, 2003. - Ч I. - 53 с.

5. Кузнецова Ю.В. Спецкурс «Компьютерное моделирование в физике» / Ю.В. Кузнецова // Физика в шк. - 2008. - №6. - 41 с.

6. Лычкина Н.Н. Современные тенденции в имитационном моделировании. - Вестник университета, серия Информационные системы управления №2 - М., ГУУ., 2000. - 136 с.

7. Максвелл Дж. К. Статьи и речи. М.: Наука, 2008. - 422 с.

8. Новик И.Б. Моделирование и его роль в естествознании и технике. - М., 2004.-364 с.

9. Ньютон И. Математические начала натуральной философии/ Пер. А.Н. Крылова, 2006. - 23 с.

10. Разумовская Н.В. Компьютер на уроках физики / Н.В. Разумовская // Физика в шк. - 2004. - №3. - с. 51-56

11. Разумовская Н.В. Компьютерное моделирование в учебном процессе: Автореф. дис. канд. пед. наук/Н.В. Разумовская-СПб., 2002. - 19 с.

12. Тарасевич Ю.Ю. Математическое и компьютерное моделирование. АСТ-Пресс, 2004. - 211 с.

13. Толстик А. М. Роль компьютерного эксперимента в физическом образовании. Физическое образование в вузах, т.8, №2, 2002, с. 94-102

Размещено на Allbest.ru

Подобные документы

    Общие сведения о математических моделях и компьютерном моделировании. Неформальный переход от рассматриваемого технического объекта к его расчетной схеме. Примеры компьютерного моделирования простейших типовых биотехнологических процессов и систем.

    реферат , добавлен 24.03.2015

    Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.

    курсовая работа , добавлен 21.12.2013

    Значение компьютерного моделирования, прогнозирования событий, связанных с объектом моделирования. Совокупность взаимосвязанных элементов, важных для целей моделирования. Особенности моделирования, знакомство со средой программирования Турбо Паскаль.

    курсовая работа , добавлен 17.05.2011

    Введение в интернет-технологии и компьютерное моделирование. Создание WEB страниц с использованием HTML. Создание динамических WEB страниц с использованием JavaScript. Работа с графикой в Adobe Photoshop и Flash CS. Основы компьютерного моделирования.

    презентация , добавлен 25.09.2013

    Моделирование термодинамической системы с распределенными параметрами, случайных процессов и систем. Статистическое (имитационное) моделирование физических процессов, его результаты. Компьютерное моделирование систем управления с помощью пакета VisSim.

    методичка , добавлен 24.10.2012

    Создание Web-страниц с использованием HTML, с использованием JavaScript и PHP. Работа с графикой в Adobe Photoshop и Flash CS. Базы данных и PHP. Пример реализации "Эконометрической модели экономики России" под web. Основы компьютерного моделирования.

    презентация , добавлен 25.09.2013

    Основные понятия компьютерного моделирования. Функциональная схема робота. Системы компьютерной математики. Исследование поведения одного звена робота с использованием системы MathCAD. Влияние значений изменяемого параметра на амплитуду угла поворота.

    курсовая работа , добавлен 26.03.2013

    Понятия структурного программирования и алгоритма решения задачи. Краткая история развития языков программирования от машинных до языков ассемблера и языков высокого уровня. Процедурное программирование на C#. Методы и программы для моделирования.

    учебное пособие , добавлен 26.10.2010

    Исследование метода математического моделирования чрезвычайной ситуации. Модели макрокинетики трансформации веществ и потоков энергии. Имитационное моделирование. Процесс построения математической модели. Структура моделирования происшествий в техносфере.

    реферат , добавлен 05.03.2017

    Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.

Начнем с определения слова моделирование.

Моделирование – процесс построения и использования модели. Под моделью понимают такой материальный или абстрактный объект, который в процессе изучения заменяет объект-оригинал, сохраняя его свойства, важные для данного исследования.

Компьютерное моделирование как метод познания основано на математическом моделировании. Математическая модель – это система математических соотношений (формул, уравнений, неравенств и знаковых логических выражений) отображающих существенные свойства изучаемого объекта или явления.

Очень редко удается использовать математическую модель для конкретных расчетов без использования вычислительной техники, что с неизбежностью требует создания некоторой компьютерной модели.

Рассмотрим процесс компьютерного моделирования более подробно.

2.2. Представление о компьютерном моделировании

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование как новый метод научных исследований основывается на:

1. Построении математических моделей для описания изучаемых процессов;

2. Использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

2.3. Построение компьютерной модели

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов – сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Итак, к основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования:

на данном этапе происходит сбор информации, формулировка вопроса, определение целей, формы представления результатов, описание данных.

2. Анализ и исследование системы:

анализ системы, содержательное описание объекта, разработка информационной модели, анализ технических и программных средств, разработка структур данных, разработка математической модели.

3. Формализация, то есть переход к математической модели, создание алгоритма:

выбор метода проектирования алгоритма, выбор формы записи алгоритма, выбор метода тестирования, проектирование алгоритма.

4. Программирование:

выбор языка программирования или прикладной среды для моделирования, уточнение способов организации данных, запись алгоритма на выбранном языке программирования (или в прикладной среде).

5. Проведение серии вычислительных экспериментов:

отладка синтаксиса, семантики и логической структуры, тестовые расчеты и анализ результатов тестирования, доработка программы.

6. Анализ и интерпретация результатов:

доработка программы или модели в случае необходимости.

Существует множество программных комплексов и сред, которые позволяют проводить построение и исследование моделей:

Графические среды

Текстовые редакторы

Среды программирования

Электронные таблицы

Математические пакеты

HTML-редакторы

2.4. Вычислительный эксперимент

Эксперимент – это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий, чтобы определить, как реагирует экспериментальный образец на эти действия. Вычислительный эксперимент предполагает проведение расчетов с использованием формализованный модели.

Использование компьютерной модели, реализующей математическую, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объектом проводится вычислительный эксперимент с его моделью. Задавая конкретный набор значений исходных параметров модели, в результате вычислительного эксперимента получают конкретный набор значений искомых параметров, исследуют свойства объектов или процессов, находят их оптимальные параметры и режимы работы, уточняют модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно, изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях. Для исследований поведения объекта при новом наборе исходных данных необходимо проведение нового вычислительного эксперимента.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

2.5. Моделирование в различных средах

2.5.1. Моделирование в среде программирования

Моделирование в среде программирование включает в себя основные этапы компьютерного моделирования. На этапе построения информационной модели и алгоритма необходимо определить, какие величины являются входными параметрами, а какие – результатами, а также определить тип этих величин. При необходимости составляется алгоритм в виде блок-схемы, который записывается на выбранном языке программирования. После этого проводится вычислительный эксперимент. Для этого необходимо загрузить программу в оперативную память компьютера и запустить на выполнение. Компьютерный эксперимент обязательно включает в себя анализ полученных результатов, на основании которого могут корректироваться все этапы решения задачи (математическая модель, алгоритм, программа). Одним из важнейших этапов является тестирование алгоритма и программы.

Отладка программы (английский термин debugging (отладка) означает «вылавливание жучков» появился в 1945 году, когда в электрические цепи одного из первых компьютеров «Марк-1» попал мотылек и заблокировал одно из тысяч реле) – это процесс поиска и устранения ошибок в программе, производимы по результатам вычислительного эксперимента. При отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования.

В современных программных системах отладка осуществляется с использованием специальных программных средств, называемыми отладчиками.

Тестирование – это проверка правильности работы программы в целом, либо составных её частей. В процессе тестирования проверяется работоспособность программы, не содержащей явных ошибок.

Как бы тщательно ни была отлажена программа, решающим этапом, устанавливающим её пригодность для работы, является контроль программы по результатам её выполнения на системе тестов. Программу можно считать правильной, если для выбранной системы тестовых исходных данных во всех случаях получаются правильные результаты.

2.5.2. Моделирование в электронных таблицах

Моделирование в электронных таблицах охватывает очень широкий класс задач в разных предметных областях. Электронные таблицы – универсальный инструмент, позволяющий быстро выполнить трудоемкую работу по расчету и пересчету количественных характеристик объекта. При моделировании с использованием электронных таблиц алгоритм решения задачи несколько трансформируется, скрываясь за необходимостью разработки вычислительного интерфейса. Сохраняется этап отладки, включающий устранение ошибок данных, в связях между ячейками, в вычислительных формулах. Возникают также дополнительные задачи: работа над удобством представления на экране и, если необходим вывод полученных данных на бумажные носители, над их размещением на листах.

Процесс моделирования в электронных таблицах выполняется по общей схеме: определяются цели, выявляются характеристики и взаимосвязи и составляется математическая модель. Характеристики модели обязательно определяются по назначению: исходные (влияющие на поведение модели), промежуточные и то, что требуется получить в результате. Иногда представление объекта дополняется схемами, чертежами.







2024 © gtavrl.ru.