Как работает транзистор? Биполярные транзисторы: схемы включения. Схема включения биполярного транзистора с общим эмиттером Что можно сделать с помощью транзистора


Пожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются.

Различают два вида транзисторов: биполярные и полевые . Биполярные транзисторы управляются током, а не напряжением. Бывают мощные и маломощные, высокочастотные и низкочастотные, p-n-p и n-p-n структуры... Транзисторы выпускаются в разных корпусах и бывают разных размеров, начиная от чип SMD (на самом деле есть намного меньше чем чип) которые предназначены для поверхностного монтажа, заканчивая очень мощными транзисторами. По рассеиваемой мощности различают маломощные до 100 мВт, средней мощности от 0,1 до 1 Вт и мощные транзисторы больше 1 Вт.

Когда говорят о транзисторах, то обычно имеют в виду биполярные транзисторы. Биполярные транзисторы изготавливаются из кремния или германия. Биполярными они названы потому, что их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Транзисторы на схемах обозначаются следующим образом:

Одну из крайних областей транзисторной структуры называют эмиттером. Промежуточную область называют базой, а другую крайнюю - коллектором. Эти три электрода образуют два p-n перехода: между базой и коллектором - коллекторный, а между базой и эмиттером - эмиттерный. Как и обычный выключатель, транзистор может находиться в двух состояниях - во "включенном" и "выключенном". Но это не значит, что они имеют движущиеся или механические части, переключаются они из выключенного состояния во включенное и обратно с помощью электрических сигналов.

Транзисторы предназначены для усиления, преобразования и генерирования электрических колебаний. Работу транзистора можно представить на примере водопроводной системы. Представьте смеситель в ванной, один электрод транзистора - это труба до краника (смесителя), другой (второй) – труба после краника, там где у нас вытекает вода, а третий управляющий электрод – это как раз краник, которым мы будем включать воду.
Транзистор можно представить как два последовательно соединенных диода, в случае NPN аноды соединяются вместе, а в случае PNP – соединяются катоды.

Различают транзисторы типов PNP и NPN, PNP транзисторы открываются напряжением отрицательной полярности, NPN - положительной. В NPN транзисторах основные носители заряда - электроны, а в PNP - дырки, которые менее мобильны, соответственно NPN транзисторы быстрее переключаются.

Uкэ = напряжение коллектор-эмиттер
Uбэ = напряжение база-эмиттер
Ic = ток коллектора
Iб = ток базы

В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях: 1) открытом 2) закрытом. Различают четыре режима работы транзистора. Основным режимом является активный режим, при котором коллекторный переход находится в закрытом состоянии, а эмиттерный – в открытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного, выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный - открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты.

При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.

Некоторые параметры биполярных транзисторов

Постоянное/импульсное напряжение коллектор – эмиттер.
Постоянное напряжение коллектор – база.
Постоянное напряжение эмиттер – база.
Предельная частота коэффициента передачи тока базы
Постоянный/импульсный ток коллектора.
Коэффициент передачи по току
Максимально допустимый ток
Входное сопротивление
Рассеиваемая мощность.
Температура p-n перехода.
Температура окружающей среды и пр…

Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб<0).

К биполярным транзисторам могут быть отнесены однопереходные транзисторы, таковым является например КТ117. Такой транзистор представляет собой трехэлектродный полупроводниковый прибор с одним р-n переходом. Однопереходный транзистор состоит из двух баз и эмиттера.

В последнее время в схемах часто стали применять составные транзисторы, называют их парой или транзисторами Дарлингтона, они обладают очень высоким коэффициентом передачи тока, состоят они из двух или более биполярных транзисторов, но выпускаются и готовые транзисторы в одном корпусе, таким является например TIP140. Включаются они с общим коллектором, если соединить два транзистора, то они будут работать как один, включение показано на рисунке ниже. Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора.

Некоторые недостатки составного транзистора: низкое быстродействие, особенно перехода из открытого состояния в закрытое. Прямое падение напряжения на переходе база-эмиттер почти в два раза больше чем в обычном транзисторе. Ну и само собой, потребуется больше места на плате.

Проверка биполярных транзисторов

Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Проверка транзистора обычно осуществляется омметром, проверяют оба p-n перехода транзистора: коллектор – база и эмиттер – база. Для проверки прямого сопротивления переходов p-n-p транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. Транзисторы так же можно прозванивать цифровым мультиметром в режиме прозвонки диодов. Для NPN красный щуп прибора "+" присоединяем к базе транзистора, и поочередно прикасаемся черным щупом "-" к коллектору и эмиттеру. Прибор должен показывать некоторое сопротивление, примерно от 600 до 1200. Затем меняем полярность подключения щупов, в этом случае прибор ничего не должен показывать. Для структуры PNP порядок проверки будет обратным.

Несколько слов хочу сказать про MOSFET транзисторы (metal–oxide–semiconductor field-effect transistor), (Метал Оксид Полупроводник (МОП)) – это полевые транзисторы, не путать с обычными полевиками! У полевых транзисторов три вывода: G - затвор, D - сток, S – исток. Различают N канальный и Р, в обозначении данных транзисторов имеется диод Шоттки, он пропускает ток от истока к стоку, и ограничивает напряжение сток – исток.

Применяются они в основном для коммутации больших токов, управляются они не током, как биполярные транзисторы, а напряжением, и как правило, имеет очень малое сопротивление открытого канала, сопротивление канала величина постоянная и не зависит от тока. MOSFET транзисторы специально разработаны для ключевых схем, можно сказать как замена реле, но в некоторых случаях можно и усиливать, применяются в мощных усилителях НЧ.

Плюсы у данных транзисторов следующие:
Минимальная мощность управления и большой коэффициент усиления по току
Лучшие характеристики, например большая скорость переключения.
Устойчивость к большим импульсам напряжения.
Схемы, где применяются такие транзисторы, обычно более простые.

Минусы:
Стоят дороже, чем биполярные транзисторы.
Боятся статического электричества.
Наиболее часто для коммутации силовых цепей применяют MOSFET с N-каналом. Напряжение управления должно превышать порог 4 В, вообще, необходимо 10-12 В для надежного включения MOSFET. Напряжение управления - это напряжение, приложенное между затвором и истоком для включения MOSFET транзистора.

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым, например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы узнали как устроен транзистор, в общих чертах рассмотрели технологии изготовления германиевых и кремниевых транзисторов и разобрались как они маркируются .

Сегодня мы проведем несколько опытов и убедимся, что биполярный транзистор действительно состоит из двух диодов , включенных встречно, и что транзистор является усилителем сигнала .

Нам понадобится маломощный германиевый транзистор структуры p-n-p из серии МП39 – МП42, лампа накаливания, рассчитанная на напряжение 2,5 Вольта и источник питания на 4 – 5 Вольт. Вообще, для начинающих радиолюбителей я рекомендую собрать небольшой регулируемый , с помощью которого Вы будете питать свои конструкции.

1. Транзистор состоит из двух диодов.

Чтобы убедиться в этом, соберем небольшую схему: базу транзистора VT1 соединим с минусом источника питания, а вывод коллектора с одним из выводов лампы накаливания EL . Теперь если второй вывод лампы соединить с плюсом источника питания, то лампочка загорится.

Лампочка загорелась потому, что на коллекторный переход транзистора мы подали прямое — пропускное напряжение, которое открыло коллекторный переход и через него потек прямой ток коллектора . Величина этого тока зависит от сопротивления нити накала лампы и внутреннего сопротивления источника питания.

А теперь рассмотрим эту же схему, но транзистор изобразим в виде пластины полупроводника.

Основные носители заряда в базе электроны , преодолевая p-n переход, попадают в дырочную область коллектора и становятся неосновными. Ставшие неосновными, электроны базы поглощаются основными носителями в дырочной области коллектора дырками . Таким же образом дырки из области коллектора, попадая в электронную область базы, становятся неосновными и поглощаются основными носителями заряда в базе электронами .

На контакт базы, соединенный с отрицательным полюсом источника питания, будет поступать практически неограниченное количество электронов , пополняя убывание электронов из области базы. А контакт коллектора, соединенный с положительным полюсом источника питания через нить накала лампы, способен принять такое же количество электронов, благодаря чему будет восстанавливаться концентрация дырок в области базы .

Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через коллекторный переход будет течь ток коллектора . И чем больший будет этот ток, тем ярче будет гореть лампа.

Лампочка будет гореть и в случае, если ее включить в цепь эмиттерного перехода. На рисунке ниже показан именно этот вариант схемы.

А теперь немного изменим схему и базу транзистора VT1 подключим к плюсу источника питания. В этом случае лампа гореть не будет, так как p-n переход транзистора мы включили в обратном направлении. А это значит, что сопротивление p-n перехода стало велико и через него течет лишь очень малый обратный ток коллектора Iкбо не способный раскалить нить накала лампы EL . В большинстве случаев этот ток не превышает нескольких микроампер.

А чтобы окончательно убедиться в этом, опять рассмотрим схему с транзистором, изображенным в виде пластины полупроводника.

Электроны, находящиеся в области базы , переместятся к плюсу источника питания, отдаляясь от p-n перехода. Дырки, находящиеся в области коллектора , также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится , отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей базы и коллектора присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через коллекторный переход будет протекать ток во много раз меньший, чем прямой, и этого тока не будет хватать, чтобы зажечь нить накала лампы.

2. Работа транзистора в режиме переключения.

Сделаем еще один опыт, показывающий один из режимов работы транзистора.
Между коллектором и эмиттером транзистора включим последовательно соединенные источник питания и ту же лампу накаливания. Плюс источника питания соединим с эмиттером, а минус через нить накала лампы с коллектором. Лампа не горит. Почему?

Все очень просто: если приложить напряжение питания между эмиттером и коллектором, то при любой полярности один из переходов окажется в прямом, а другой в обратном направлении и будет мешать прохождению тока. В этом не трудно убедиться, если взглянуть на следующий рисунок.

На рисунке видно, что эмиттерный переход база-эмиттер включен в прямом направлении и находится в открытом состоянии и готов принять неограниченное количество электронов. Коллекторный переход база-коллектор, наоборот, включен в обратном направлении и препятствует прохождению электронов к базе.

Отсюда следует, что основные носители заряда в области эмиттера дырки , отталкиваемые плюсом источника питания, устремляются в область базы и там взаимопоглощаются (рекомбинируют) с основными носителями заряда в базе электронами . В момент насыщения, когда с той и с другой стороны свободных носителей заряда не останется, их движение прекратится, а значит, перестает течь ток. Почему? Потому что со стороны коллектора не будет подпитки электронами.

Получается, что основные носители заряда в коллекторе дырки притянулись отрицательным полюсом источника питания, а некоторые из них взаимно поглотились электронами , поступающими со стороны минуса источника питания. А в момент насыщения, когда с обеих сторон не останется свободных носителей заряда, дырки, за счет своего преобладания в области коллектора, заблокируют дальнейший проход электронам к базе.

Таким-образом между коллектором и базой образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Конечно, благодаря магнитному полю и тепловому воздействию мизерный ток все же протекать будет, но сила этого тока так мала, что не способна раскалить нить накала лампы.

Теперь в схему добавим проволочную перемычку и ей замкнем базу с эмиттером. Лампочка, включенная в коллекторную цепь транзистора, опять не будет гореть. Почему?

Потому что при замыкании базы и эмиттера перемычкой коллекторный переход становится просто диодом, на который подается обратное напряжение. Транзистор находится в закрытом состоянии и через него идет лишь незначительный обратный ток коллектора Iкбо .

А теперь схему еще немного изменим и добавим резистор сопротивлением 200 – 300 Ом, и еще один источник напряжения в виде пальчиковой батарейки.
Минус батарейки соедините через резистор с базой транзистора, а плюс батарейки с эмиттером. Лампа загорелась.

Лампа загорелась потому, что мы подключили батарейку между базой и эмиттером, и тем самым подали на эмиттерный переход прямое отпирающее напряжение. Эмиттерный переход открылся и через него пошел прямой ток, который открыл коллекторный переход транзистора. Транзистор открылся и по цепи эмиттер-база-коллектор потек коллекторный ток , во много раз больший тока цепи эмиттер-база . И благодаря этому току лампочка загорелась.

Если же мы поменяем полярность батарейки и на базу подадим плюс, то эмиттерный переход закроется, а вместе с ним закроется и коллекторный переход. Через транзистор потечет обратный коллекторный ток Iкбо и лампочка потухнет.

Резистор ограничивает ток в базовой цепи. Если ток не ограничивать и на базу подать все 1,5 вольта, то через эмиттерный переход потечет слишком большой ток, в результате которого может произойти тепловой пробой перехода и транзистор выйдет из строя. Как правило, для германиевых транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для кремниевых не более 0,7 вольта.

И опять разберем эту же схему, но транзистор представим в виде пластины полупроводника.

При подаче отпирающего напряжения на базу транзистора открывается эмиттерный переход и свободные дырки из эмиттера начинают взаимопоглощаться с электронами базы , создавая небольшой прямой базовый ток .

Но не все дырки, вводимые из эмиттера в базу, рекомбинируют с ее электронами. Как правило, область базы делается тонкой , а при изготовлении транзисторов структуры p-n-p концентрацию дырок в эмиттере и коллекторе делают во много раз большей, чем концентрацию электронов в базе , поэтому лишь малая часть дырок поглощается электронами базы.

Основная же масса дырок эмиттера проходит базу и попадает под действие более высокого отрицательного напряжения действующего в коллекторе, и уже вместе с дырками коллектора перемещается к его отрицательному контакту, где и взаимопоглощается вводимыми электронами отрицательным полюсом источника питания GB .

В результате этого сопротивление коллекторной цепи эмиттер-база-коллектор уменьшится и в ней течет прямой коллекторный ток во много раз превышающий базовый ток цепи эмиттер-база .

Чем больше больше дырок вводится из эмиттера в базу, тем значительнее ток в коллекторной цепи. И, наоборот, чем меньше отпирающее напряжение на базе, тем меньший ток в коллекторной цепи.

Если в момент работы транзистора в базовую и коллекторную цепи включить миллиамперметр, то при закрытом транзисторе токов в этих цепях практически не было бы.

При открытом же транзисторе ток базы составлял бы 2-3 mA, а ток коллектора был бы около 60 – 80 mA. Все это говорит о том, что транзистор может быть усилителем тока .

В этих опытах транзистор находился в одном из двух состояний: открытом или закрытом. Переключение транзистора из одного состояния в другое происходило под действием отпирающего напряжения на базе . Такой режим транзистора называют режимом переключения или ключевым . Такой режим работы транзистора используют в приборах и устройствах автоматики.

На этом закончим, а в следующей части разберем работу транзистора в на примере простого усилителя звуковой частоты, собранного на одном транзисторе.
Удачи!

Литература:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор?.. Это очень просто! 1964г.

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей - электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками - основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика - работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC - V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Во всех экспериментах используются транзисторы КТ315Б, диоды Д9Б, миниатюрные лампы накаливания на 2,5В х 0,068А. Головные телефоны - высокоомные, типа ТОН-2. Переменный конденсатор - любой, ёмкостью 15...180 пФ. Батарея питания состоит из двух последовательно соединённых батарей по 4,5В типоразмера 3R12. Лампы можно заменить на последовательные соединённые светодиод типа АЛ307А и резистор номиналом 1 кОм.

ЭКСПЕРИМЕНТ 1
ЭЛЕКТРИЧЕСКАЯ СХЕМА (проводники, полупроводники и изоляторы)

Электрический ток - это направленное движение электронов от одного полюса к другому под действием напряжения (батарея 9 В).

Все электроны имеют одинаковый отрицательный заряд. Атомы различных веществ имеют различное число электронов. Большинство электронов прочно связано с атомами, но имеются и так называемые «свободные», или валентные, электроны. Если к концам проводника приложить напряжение, то свободные электроны начнут двигаться к положительному полюсу батареи.

В некоторых материалах перемещение электронов относительно свободное, их называют проводниками; в других - перемещение затруднено, их называют полупроводниками; в третьих - вообще невозможно, такие материалы называют изоляторами, или диэлектриками.

Металлы являются хорошими проводниками тока. Такие вещества, как слюда, фарфор, стекло, шёлк, бумага, хлопок, относятся к изоляторам.

К полупроводникам относятся германий, кремний и др. Проводниками данные вещества становятся при определённых условиях. Это свойство используется при производстве полупроводниковых приборов - диодов, транзисторов.

Рис. 1. Определение проводимости воды

Этот эксперимент демонстрирует работу простой электрической цепи и различие в проводимости проводников, полупроводников и диэлектриков.

Соберите схему, как показано на рис. 1, и выведите оголённые концы проводов на переднюю часть платы. Соедините оголённые концы вместе, лампочка будет гореть. Это говорит о том, что через цепь проходит электрический ток.

С помощью двух проводов можно проверить проводимость различных материалов. Для точного определения проводимости тех или иных материалов необходимы специальные приборы. (По яркости горения лампочки можно лишь определить, является ли исследуемый материал хорошим или плохим проводником.)

Присоедините оголённые концы двух проводников к куску сухого дерева на небольшом расстоянии друг от друга. Лампочка гореть не будет. Это означает, что сухое дерево является диэлектриком. Если оголённые концы двух проводников присоединить к алюминию, меди или стали, лампочка будет гореть. Это говорит о том, что металлы являются хорошими проводниками электрического тока.

Опустите оголённые концы проводников в стакан с водопроводной водой (рис. 1, а). Лампочка не горит. Это означает, что вода является плохим проводником тока. Если в воду добавить немного соли и повторить опыт (рис. 1, б), лампочка будет гореть, что говорит о протекании тока в цепи.

Резистор 56 Ом в этой схеме и во всех последующих экспериментах служит для ограничения тока в цепи.

ЭКСПЕРИМЕНТ 2
ДЕЙСТВИЕ ДИОДА

Целью данного эксперимента является наглядная демонстрация того, что диод хорошо проводит ток в одном направлении и не проводит - в обратном.

Соберите схему, как показано на рис. 2, а. Лампа будет гореть. Поверните диод на 180° (рис. 2, б). Лампочка гореть не будет.

А теперь попытаемся разобраться в физической сущности эксперимента.

Рис. 2. Действие полупроводникового диода в электронной цепи.

Полупроводниковые вещества германий и кремний имеют по четыре свободных, или валентных, электрона. Атомы полупроводника связываются в плотные кристаллы (кристаллическую решётку) (рис. 3, а).

Рис. 3. Кристаллическая решётка полупроводников.

Если в полупроводник, имеющий четыре валентных электрона, ввести примесь, например мышьяка, имеющего пять валентных электронов (рис. 3, б), то пятый электрон в кристалле окажется свободным. Такие примеси обеспечивают электронную проводимость, или проводимость n-типа.

Примеси, имеющие меньшую валентность, чем атомы полупроводника, обладают способностью присоединять к себе электроны; такие примеси обеспечивают дырочную проводимость, или проводимость p-типа (рис. 3, в).

Рис. 4. p-n-переходы в полупроводниковом диоде.

Полупроводниковый диод состоит из спая материалов p- и n- типов (p-n-переход) (рис. 4, а). В зависимости от полярности приложенного напряжения p-n-переход может либо способствовать (рис. 4, г), либо препятствовать (рис. 4, в) прохождению электрического тока. На границе двух полупроводников еще до подачи внешнего напряжения создаётся двоичный электрический слой с местным электрическим полем напряжённостью Е 0 (рис. 4, б).

Если через диод пропустить переменный ток, то диод будет пропускать только положительную полуволну (рис. 4 г), а отрицательная проходить не будет (см. рис. 4, в). Диод, таким образом, преобразует, или «выпрямляет», переменный ток в постоянный.

ЭКСПЕРИМЕНТ 3
КАК РАБОТАЕТ ТРАНЗИСТОР

Этот эксперимент наглядно демонстрирует основную функцию транзистора, являющегося усилителем тока. Небольшой управляющий ток в цепи базы может вызвать большой ток в цепи эмиттер - коллектор. Меняя сопротивление базового резистора, можно менять ток коллектора.

Соберите схему (рис. 5). Поставьте в схему поочерёдно резисторы: 1 МОм, 470 кОм, 100 кОм, 22 кОм, 10 кОм. Можно заметить, что с резисторами 1 МОм и 470 кОм лампочка не горит; 100 кОм - лампочка едва горит; 22 кОм - лампочка горит ярче; полная яркость наблюдается при подключении базового резистора 10 кОм.

Рис. 6. Транзистор со структурой n-p-n.

Рис. 7. Транзистор со структурой p-n-p.

Транзистор представляет собой, по существу, два полупроводниковых диода, имеющих одну общую область - базу. Если при этом общей окажется область с p-проводимостью, то получится транзистор со структурой n-p-n (рис. 6); если общая область будет с n-проводимостью, то транзистор будет со структурой p-n-p (рис. 7).

Область транзистора, излучающая (эмигрирующая) носители тока, называется эмиттером; область, собирающая носители тока, называется коллектором. Зона, заключённая между этими областями, называется базой. Переход между эмиттером и базой называется эмиттерным, а между базой и коллектором - коллекторным.

На рис. 5 показано включение транзистора типа n-p-n в электрическую цепь.

При включении в цепь транзистора типа p-n-p полярность включения батареи Б меняется на противоположную.

Для токов, протекающих через транзистор, существует зависимость

I э = I б + I к

Транзисторы характеризуются коэффициентом усиления по току, обозначаемым буквой β, представляет собой отношение приращения тока коллектора к изменению тока базы.

Значение β лежит в пределах от нескольких десятков до нескольких сотен единиц в зависимости от типа транзистора.

ЭКСПЕРИМЕНТ 4
СВОЙСТВА КОНДЕНСАТОРА

Изучив принцип действия транзистора, можно продемонстрировать свойства конденсатора. Соберите схему (рис. 8), но не присоединяйте электролитический конденсатор 100 мкФ. Затем подключите его на некоторое время в положение А (рис. 8, а). Лампочка загорится и погаснет. Это говорит о том, что в цепи шел ток заряда конденсатора. Теперь поместите конденсатор в положение В (рис. 8, б), при этом руками не касайтесь выводов, иначе конденсатор может разрядиться. Лампочка загорится и погаснет, произошёл разряд конденсатора. Теперь снова поместите конденсатор в положение А. Произошёл его заряд. Положите конденсатор на некоторое время (10 с) в сторону на изолирующий материал, затем поместите в положение В. Лампочка загорится и погаснет. Из этого эксперимента видно, что конденсатор способен накапливать и хранить электрический заряд долгое время. Накопленный заряд зависит от ёмкости конденсатора.

Рис. 8. Схема, объясняющая принцип действия конденсатора.

Рис. 9. Изменение напряжения и тока на конденсаторе во времени.

Произведите заряд конденсатора, установив его в положение А, затем разрядите его, присоединив к выводам конденсатора проводники с оголёнными концами (проводник держите за изолированную часть!), и поместите его в положение В. Лампочка не загорится. Как видно из этого эксперимента, заряженный конденсатор выполняет роль источника питания (батареи) в цепи базы, но после использования электрического заряда лампочка гаснет. На рис. 9 представлены зависимости от времени: напряжения заряда конденсатора; тока заряда, протекающего в цепи.

ЭКСПЕРИМЕНТ 5
ТРАНЗИСТОР В КАЧЕСТВЕ ВЫКЛЮЧАТЕЛЯ

Соберите схему согласно рис. 10, но пока не устанавливайте резистор R1 и транзистор Т1 в схему. Ключ В должен быть подсоединён к схеме в точке А и Е, чтобы точку соединения резисторов R3, R1 можно было замыкать на общий провод (минусовая шина печатной платы).

Рис. 10. Транзистор в схеме работает как выключатель.

Подключите батарею, лампочка в цепи коллектора Т2 будет гореть. Теперь замкните цепь выключателем В. Лампочка погаснет, так как выключатель соединяет точку А с минусовой шиной, тем самым уменьшая потенциал точки А, следовательно, и потенциал базы Т2. Если выключатель вернуть в исходное положение, лампочка загорится. Теперь отсоедините батарею и подсоедините Т1, резистор R1 не подсоединяйте. Подключите батарею, лампочка снова загорится. Как и в первом случае, транзистор Т1 открыт и через него проходит электрический ток. Поставьте теперь резистор R1 (470 кОм) в точках С и D. Лампочка погаснет. Снимите резистор, и лампочка загорится снова.

Когда напряжение на коллекторе Т1 падает до нуля (при установке резистора 470 кОм), транзистор открывается. База транзистора Т2 подключается через Т1 к минусовой шине, и Т2 закрывается. Лампочка гаснет. Таким образом, транзистор Т1 выполняет роль выключателя.

В предыдущих экспериментах транзистор использовался как усилитель, теперь он использован в качестве выключателя.

Возможности применения транзистора в качестве ключа (выключателя) приведены в экспериментах 6, 7.

ЭКСПЕРИМЕНТ 6
АВАРИЙНАЯ СИГНАЛИЗАЦИЯ

Особенностью данной схемы является то, что транзистор Т1, используемый в качестве ключа, управляется фоторезистором R2.

Имеющийся в данном наборе фоторезистор меняет своё сопротивление от 2 кОм при сильном освещении до нескольких сотен кОм в темноте.

Соберите схему согласно рис. 11. В зависимости от освещения помещения, где вы проводите эксперимент, подберите резистор R1 таким образом, чтобы лампочка горела нормально без затемнения фоторезистора.

Рис. 11. Схема аварийной сигнализации на основе фоторезистора.

Состояние транзистора Т1 определяется делителем напряжения, состоящим из резистора R1 и фоторезистора R2.

Если фоторезистор освещён, сопротивление его мало, транзистор Т1 закрыт, тока в его коллекторной цепи нет. Состояние транзистора Т2 определяется подачей положительного потенциала резисторами R3 и R4 на базу Т2. Следовательно, транзистор Т2 открывается, течёт коллекторный ток, лампочка горит.

При затемнении фоторезистора его сопротивление сильно увеличивается и достигает величины, когда делитель подаёт напряжение на базу Т1, достаточное для его открывания. Напряжение на коллекторе Т1 падает почти до нуля, через резистор R4 запирает транзистор Т2, лампочка гаснет.

На практике в подобных схемах в коллекторную цепь транзистора Т2 могут быть установлены другие исполнительные механизмы (звонок, реле и т. д.).

В этой и в последующих схемах может быть использован фоторезистор типа СФ2-9 или аналогичный.

ЭКСПЕРИМЕНТ 7
АВТОМАТИЧЕСКОЕ УСТРОЙСТВО ВКЛЮЧЕНИЯ СВЕТА

В отличие от эксперимента 6, в данном- эксперименте при затемнении фоторезистора R1 лампочка горит (рис. 12).

Рис. 12. Схема, включающая свет автоматически.

При попадании света на фоторезистор его сопротивление сильно уменьшается, что приводит к открыванию транзистора Т1, а следовательно, к закрытию Т2. Лампочка не горит.

В темноте лампочка включается автоматически.

Это свойство может использоваться для включения и выключения ламп в зависимости от освещённости.

ЭКСПЕРИМЕНТ 8
СИГНАЛЬНОЕ УСТРОЙСТВО

Отличительной особенностью данной схемы является большая чувствительность. В этом и ряде последующих экспериментов используется комбинированное соединение транзисторов (составной транзистор) (рис. 13).

Рис. 13. Оптоэлектронное сигнальное устройство.

Принцип действия данной схемы не отличается от схемы . При определённом значении сопротивления резисторов R1 + R2 и сопротивления фоторезистора R3 в цепи базы транзистора Т1 протекает ток. В цепи коллектора Т1 тоже течёт ток, но в (3 раз больший тока базы Т1. Допустим, что (β=100. Весь ток, идущий через эмиттер Т1, должен пройти через переход эмиттер - база Т2. Тогда ток коллектора Т2 в β раз больше тока коллектора Т1, ток коллектора Т1 в β раз больше тока базы Т1, ток коллектора Т2 приблизительно в 10 000 раз больше тока базы Т1. Таким образом, составной транзистор можно рассматривать как единый транзистор с очень большим коэффициентом усиления и большой чувствительностью. Второй особенностью составного транзистора является то, что транзистор Т2 должен быть достаточно мощным, в то время как управляющий им транзистор Т1 может, быть маломощным, так как ток, проходящий через него, в 100 раз меньше тока, проходящего через Т2.

Работоспособность схемы, приведённой на рис. 13, определяется освещённостью помещения, где проводится эксперимент, поэтому важно подобрать сопротивление R1 делителя верхнего плеча так, чтобы в освещённой комнате лампочка не горела, а горела при затемнении фоторезистора рукой, затемнении комнаты шторами или при выключении света, если эксперимент проводится вечером.

ЭКСПЕРИМЕНТ 9
ДАТЧИК ВЛАЖНОСТИ

В этой схеме (рис. 14) для определения влажности материала также используется составной транзистор, обладающий большой чувствительностью. Смещение базы Т1 обеспечивается резистором R1 и двумя проводниками с оголёнными концами.

Проверьте электрическую цепь, слегка сжимая пальцами обеих рук оголённые концы двух проводников, при этом не соединяя их друг с другом. Сопротивление пальцев достаточно для срабатывания схемы, и лампочка загорается.

Рис. 14. Схема датчика влажности. Неизолированные концы проводников пронизывают промокательную бумагу.

Теперь оголённые концы пропустите через промокательную бумагу на расстоянии примерно 1,5-2 см, другие концы присоедините к схеме согласно рис. 14. Затем увлажните промокательную бумагу между проводами водой. Лампочка загорается (В данном случае уменьшение сопротивления произошло за счёт растворения водой имеющихся в бумаге солей.).

Если промокательную бумагу пропитать соляным раствором, а затем высушить и повторить опыт, эффективность эксперимента повышается, концы проводников можно разнести на большее расстояние.

ЭКСПЕРИМЕНТ 10
СИГНАЛЬНОЕ УСТРОЙСТВО

Данная схема аналогична предыдущей, разница лишь в том, что лампа горит при освещении фоторезистора и гаснет при затемнении (рис. 15).

Рис. 15. Сигнальное устройство на фоторезисторе.

Схема работает следующим образом: при обычном освещении фоторезистора R1 лампочка будет гореть, так как сопротивление R1 мало, транзистор Т1 открыт. При выключении света лампочка погаснет. Свет карманного фонарика или зажжённых спичек заставит лампочку снова гореть. Чувствительность цепи регулируется увеличением или уменьшением сопротивления резистора R2.

ЭКСПЕРИМЕНТ 11
СЧЁТЧИК ИЗДЕЛИЙ

Этот эксперимент надо проводить в полузатемнённом помещении. Все время, когда свет падает на фоторезистор, индикаторная лампочка Л2 горит. Если поместить кусок картона между источником света (лампочкой Л1 и фоторезистором, лампочка Л2 гаснет. Если убрать картон, лампочка Л2 загорается вновь (рис. 16).

Рис. 16. Счётчик изделий.

Чтобы эксперимент прошёл удачно, надо отрегулировать схему, т. е. подобрать сопротивление резистора R3 (наиболее подходящим в этом случае является 470 Ом).

Эта схема практически может быть использована для счта партии изделий на конвейере. Если источник света и фоторезистор размещены таким образом, что между ними проходит партия изделий, цепь то включается, то выключается, так как поток света прерывается проходящими изделиями. Вместо индикаторной лампочки Л2 используется специальный счётчик.

ЭКСПЕРИМЕНТ 12
ПЕРЕДАЧА СИГНАЛА С ПОМОЩЬЮ СВЕТА

Рис. 23. Делитель частоты на транзисторах.

Транзисторы Т1 и Т2 открываются поочерёдно. Управляющий сигнал посылается в триггер. Когда транзистор Т2 открыт, лампочка Л1 не горит. Лампочка Л2 загорается, когда транзистор Т3 открыт. Но транзисторы Т3 и Т4 открываются и закрываются поочерёдно, следовательно, лампочка Л2 загорается при каждом втором управляющем сигнале, посылаемом мультивибратором. Таким образом, частота горения лампочки Л2 в 2 раза меньше частоты горения лампочки Л1.

Это свойство может использоваться в электрооргане: частоты всех нот верхней октавы органа делятся пополам и создаётся тон октавой ниже. Процесс может повторяться.

ЭКСПЕРИМЕНТ 18
СХЕМА «И» ПО ЕДИНИЦАМ

В этом эксперименте транзистор используется в качестве ключа, а лампочка является индикатором выхода (рис. 24).

Эта схема является логической. Лампочка будет гореть, если на базе транзистора (точка С) будет высокий потенциал.

Допустим, точки А и В не соединены с отрицательной шиной, они имеют высокий потенциал, следовательно, в точке С также высокий потенциал, транзистор открыт, лампочка горит.

Рис. 24. Логический элемент 2И на транзисторе.

Примем условно: высокий потенциал - логическая «1» - лампочка горит; низкий потенциал - логический «0» - лампочка не горит.

Таким образом, при наличии в точках А и В логических «1», в точке С тоже будет «1».

Теперь соединим точку А с отрицательной шиной. Её потенциал станет низким (упадёт до «0» В). Точка В имеет высокий потенциал. По цепи R3 - Д1 - батарея потечёт ток. Следовательно, в точке С будет низкий потенциал или «0». Транзистор закрыт, лампочка не горит.

Соединим с землёй точку В. Ток теперь течёт по цепи R3 - Д2 - батарея. Потенциал в точке С низкий, транзистор закрыт, лампочка не горит.

Если обе точки соединить с землёй, в точке С также будет низкий потенциал.

Подобные схемы могут быть использованы в электронном экзаменаторе и других логических схемах, где сигнал на выходе будет лишь при наличии одновременных сигналов в двух и более входных каналах.

Возможные состояния схемы отражены в таблице.

Таблица истинности схемы И

ЭКСПЕРИМЕНТ 19
СХЕМА «ИЛИ» ПО ЕДИНИЦАМ

Эта схема противоположна предыдущей. Чтобы в точке С был «0», необходимо, чтобы в точках А и В также был «0», т. е. точки А и В надо соединить с отрицательной шиной. В этом случае транзистор закроется, лампочка погаснет (рис. 25).

Если теперь только одну из точек, А или В, соединить с отрицательной шиной, то в точке С все равно будет высокий уровень, т. е. «1», транзистор открыт, лампочка горит.

Рис. 25. Логический элемент 2ИЛИ на транзисторе.

При подсоединении точки В к отрицательной шине ток пойдёт через R2, Д1 и R3. Через диод Д2 ток не пойдёт, так как он включён в обратном для проводимости направлении. В точке С будет около 9 В. Транзистор открыт, лампочка горит.

Теперь точку А соединим с отрицательной шиной. Ток пойдёт через R1, Д2, R3. Напряжение в точке С будет около 9 В, транзистор открыт, лампочка горит.

Таблица истинности схемы ИЛИ

ЭКСПЕРИМЕНТ 20
СХЕМА «НЕ» (ИНВЕРТОР)

Этот эксперимент демонстрирует работу транзистора в качестве инвертора - устройства, способного менять полярность выходного сигнала относительно входного на противоположный. В экспериментах и транзистор не являлся частью действующих логических схем, он лишь служил для включения лампочки. Если точку А соединить с отрицательной шиной, то потенциал её упадёт до,«0», транзистор закроется, лампочка погаснет, в точке В - высокий потенциал. Это означает логическую «1» (рис. 26).

Рис. 26. Транзистор работает как инвертор.

Если точка А не соединена с отрицательной шиной, т. е. в точке А - «1», то транзистор открыт, лампочка горит, напряжение в точке В близко к «0» или это составляет логический «0».

В этом эксперименте транзистор является составной частью логической схемы и может использоваться для преобразования схемы ИЛИ в ИЛИ-НЕ и схемы И в И-НЕ.

Таблица истинности схемы НЕ

ЭКСПЕРИМЕНТ 21
СХЕМА «И-НЕ»

Этот эксперимент сочетает в себе два эксперимента: 18 - схема И и 20 - схема НЕ (рис. 27).

Данная схема функционирует аналогично схеме , формируя на базе транзистора «1» или «0».

Рис. 27. Логический элемент 2И-НЕ на транзисторе.

Транзистор используется в качестве инвертора. Если на базе транзистора появляется «1», то на выходе точка - «0» и наоборот.

Если потенциалы в точке D сравнить с потенциалами в точке С , видно, что они инвертированы.

Таблица истинности схемы И-НЕ

ЭКСПЕРИМЕНТ 22
СХЕМА «ИЛИ-НЕ»

Этот эксперимент сочетает в себе два эксперимента: - схема ИЛИ и - схема НЕ (рис. 28).

Рис. 28. Логический элемент 2ИЛИ-НЕ на транзисторе.

Схема функционирует точно так же, как в эксперименте 20 (на базе транзистора вырабатывается «0» или «1»). Разница лишь в том, что транзистор используется в качестве инвертора: если «1» на входе транзистора, то «0» на его выходе и наоборот.

Таблица истинности схемы ИЛИ-НЕ

ЭКСПЕРИМЕНТ 23
СХЕМА «И-НЕ», СОБРАННАЯ НА ТРАНЗИСТОРАХ

Эта схема состоит из двух логических схем НЕ, коллекторы транзисторов которых соединены в точке С (рис. 29).

Если обе точки, А и В, соединить с отрицательной шиной, то их потенциалы станут равными «0». Транзисторы закроются, в точке С будет высокий потенциал, лампочка гореть не будет.

Рис. 29. Логический элемент 2И-НЕ.

Если лишь точку А соединить с отрицательной шиной, в точке В логическая «1», Т1 закрыт, а Т2 открыт, течёт коллекторный ток, лампочка горит, в точке С логический «0».

Если точку В соединить с отрицательной шиной, то на выходе также будет «0», лампочка будет гореть, в этом случае Т1 открыт, Т2 закрыт.

И, наконец, если точки А и В имеют логическую «1» (не соединены с отрицательной шиной), оба транзистора открыты. На их коллекторах «0», ток течёт через оба транзистора, лампочка горит.

Таблица истинности схемы И-НЕ

ЭКСПЕРИМЕНТ 24
ДАТЧИК ТЕЛЕФОНА И УСИЛИТЕЛЬ

В схеме эксперимента оба транзистора используются в качестве усилителя звуковых сигналов (рис.30).

Рис. 30. Индуктивный датчик телефона.

Сигналы улавливаются и подаются на базу транзистора Т1 с помощью индуктивной катушки L, затем они усиливаются и подаются в телефон. Когда вы закончили собирать схему на плате, расположите ферритовый стержень вблизи телефона перпендикулярно входящим проводам. Будет слышна речь.

В этой схеме и в дальнейшем в качестве индуктивной катушки L используется ферритовый стержень диаметром 8 мм и длиной 100-160 мм, марки 600НН. Обмотка содержит примерно 110 витков медного изолированного провода диаметром 0,15..0,3 мм типа ПЭЛ или ПЭВ.

ЭКСПЕРИМЕНТ 25
МИКРОФОННЫЙ УСИЛИТЕЛЬ

Если имеется в наличии лишний телефон (рис. 31), он может быть использован вместо катушки индуктивности в предыдущем эксперименте. В результате этого будем иметь чувствительный микрофонный усилитель.

Рис. 31. Микрофонный усилитель.

В пределах собранной схемы можно получить подобие устройства двусторонней связи. Телефон 1 можно использовать как приёмное устройство (подключение в точке А), а телефон 2 - как выходное устройство (подключение в точке В). При этом вторые концы обоих телефонов должны быть соединены с отрицательной шиной.

ЭКСПЕРИМЕНТ 26
УСИЛИТЕЛЬ ДЛЯ ПРОИГРЫВАТЕЛЯ

С помощью граммофонного усилителя (рис. 32) можно слушать записи, не нарушая покоя окружающих.

Схема состоит из двух каскадов звукового усиления. Входным сигналом является сигнал, идущий со звукоснимателя.

Рис. 32. Усилитель для проигрывателя.

На схеме буквой А обозначен датчик. Этот датчик и конденсатор С2 являются ёмкостным делителем напряжения для уменьшения первоначальной громкости. Подстроечный конденсатор С3 и конденсатор С4 являются вторичным делителем напряжения. С помощью С3 регулируется громкость.

ЭКСПЕРИМЕНТ 27
«ЭЛЕКТРОННАЯ СКРИПКА»

Здесь схема мультивибратора предназначена для создания электронной музыки. Схема аналогична . Главным отличием является то, что резистор смещения базы транзистора Т1 является переменным. Резистор 22 кОм (R2), соединённый последовательно с переменным резистором, обеспечивает минимальное сопротивление смещения базы Т1 (рис. 33).

Рис. 33. Мультивибратор для создания музыки.

ЭКСПЕРИМЕНТ 28
МИГАЮЩИЙ ЗУММЕР МОРЗЕ

В этой схеме мультивибратор предназначен для генерирования импульсов с тональной частотой. Лампочка загорается при включении питания схемы (рис. 34).

Телефон в этой схеме включается в цепь между коллектором транзистора Т2 через конденсатор С4 и отрицательной шиной платы.

Рис. 34. Генератор для изучения азбуки Морзе.

С помощью этой схемы можно практиковаться в изучении азбуки Морзе.

Если вас не устраивает тон звука, поменяйте местами конденсаторы С2 и С1.

ЭКСПЕРИМЕНТ 29
МЕТРОНОМ

Метроном - это прибор для задания ритма (темпа), например, в музыке. Для этих целей ранее применялся маятниковый метроном, который давал как визуальное, так и слышимое обозначение темпа.

В данной схеме указанные функции выполняет мультивибратор. Частота темпа равна примерно 0,5 с (рис. 35).

Рис. 35. Метроном.

Благодаря телефону и индикаторной лампочке есть возможность слышать и зрительно ощущать заданный ритм.

ЭКСПЕРИМЕНТ 30
ЗВУКОВОЕ СИГНАЛЬНОЕ УСТРОЙСТВО С АВТОМАТИЧЕСКИМ ВОЗВРАТОМ В ИСХОДНОЕ ПОЛОЖЕНИЕ

Эта схема (рис. 36) демонстрирует применение одновибратора, работа которого описана в эксперименте 14. В исходном состоянии транзистор Т1 открыт, а Т2 закрыт. Телефон здесь используется в качестве микрофона. Свист в микрофон (можно просто подуть) или лёгкое постукивание возбуждает переменный ток в цепи микрофона. Отрицательные сигналы, поступая на базу транзистора Т1, закрывают его, а следовательно, открывают транзистор Т2, в цепи коллектора Т2 появляется ток, и лампочка загорается. В это время происходит заряд конденсатора С1 через резистор R1. Напряжение заряженного конденсатора С2 достаточно для открывания транзистора Т1, т. е. схема возвращается в своё первоначальное состояние самопроизвольно, лампочка при этом гаснет. Время горения лампочки составляет около 4 с. Если конденсаторы С2 и С1 поменять местами, то время горения лампочки увеличится до 30 с. Если резистор R4 (1 кОм) заменить на 470 кОм, то время увеличится с 4 до 12 с.

Рис. 36. Акустическое сигнальное устройство.

Этот эксперимент можно представить в виде фокуса, который можно показать в кругу друзей. Для этого необходимо снять один из микрофонов телефона и положить его под плату около лампочки таким образом, чтобы отверстие в плате совпадало с центром микрофона. Теперь, если подуть на отверстие в плате, будет казаться, что вы дуете на лампочку и поэтому она загорается.

ЭКСПЕРИМЕНТ 31
ЗВУКОВОЕ СИГНАЛЬНОЕ УСТРОЙСТВО С РУЧНЫМ ВОЗВРАТОМ В ИСХОДНОЕ ПОЛОЖЕНИЕ

Эта схема (рис. 37) по принципу действия аналогична предыдущей, с той лишь разницей, что при переключении схема не возвращается автоматически в исходное состояние, а производится это с помощью выключателя В.

Рис. 37. Акустическое сигнальное устройство с ручным сбросом.

Состояние готовности схемы или исходное состояние будет, когда транзистор Т1 открыт, Т2 закрыт, лампа не горит.

Легкий свист в микрофон даёт сигнал, который запирает транзистор Т1, при этом открывая транзистор Т2. Сигнальная лампочка загорается. Она будет гореть до тех пор, пока транзистор Т2 не закроется. Для этого необходимо закоротить базу транзистора Т2 на отрицательную шину («землю») с помощью ключа В. К подобным схемам можно подключать другие исполнительные устройства, например реле.

ЭКСПЕРИМЕНТ 32
ПРОСТЕЙШИЙ ДЕТЕКТОРНЫЙ ПРИЁМНИК

Начинающему радиолюбителю конструирование радиоприёмников следует начинать с простейших конструкций, например с детекторного приёмника, схема которого представлена на рис. 38.

Работает детекторный приёмник следующим образом: электромагнитные волны, посылаемые в эфир радиостанциями, пересекая антенну приёмника, наводят в ней напряжение с частотой, соответствующей частоте сигнала радиостанции. Наведённое напряжение поступает во входной контур L, С1. Другими словами, этот контур называется резонансным, так как он заранее настраивается на частоту желаемой радиостанции. В резонансном контуре входной сигнал усиливается в десятки раз и после этого поступает на детектор.

Рис. 38. Детекторный приёмник.

Детектор собран на полупроводниковом диоде, который служит для выпрямления модулированного сигнала. Низкочастотная (звуковая) составляющая пройдёт через головные телефоны, и вы услышите речь или музыку в зависимости от передачи данной радиостанции. Высокочастотная составляющая продетектированного сигнала, минуя головные телефоны, пройдёт через конденсатор С2 на землю. Ёмкость конденсатора С2 определяет степень фильтрации высокочастотной составляющей продетектированного сигнала. Обычно ёмкость конденсатора С2 выбирают таким образом, чтобы для звуковых частот он представлял большое сопротивление, а для высокочастотной составляющей его сопротивление было мало.

В качестве конденсатора С1 можно использовать любой малогабаритный конденсатор переменной ёмкости с пределами измерения 10...200 пФ. В данном конструкторе для настройки контура используется керамический подстроечный конденсатор типа КПК-2 ёмкостью от 25 до 150 пФ.

Катушка индуктивности L имеет следующие параметры: число витков - 110±10, диаметр провода - 0,15 мм, тип - ПЭВ-2, диаметр каркаса из изоляционного материала - 8,5 мм.

АНТЕННА

Правильно собранный приёмник начинает работать сразу при подключении к нему наружной антенны, которая представляет собой кусок медного провода диаметром 0,35 мм, длиной 15-20 м, подвешенного на изоляторах на некоторой высоте над землёй. Чем выше будет находиться антенна над землёй, тем лучше будет приём сигналов радиостанций.

ЗАЗЕМЛЕНИЕ

Громкость приёма возрастает, если к приёмнику подключить заземление. Провод заземления должен быть коротким и иметь небольшое сопротивление. Его конец соединяется с медной трубой, идущей в глубь грунта.

ЭКСПЕРИМЕНТ 33
ДЕТЕКТОРНЫЙ ПРИЁМНИК С УСИЛИТЕЛЕМ НИЗКОЙ ЧАСТОТЫ

Эта схема (рис. 39) аналогична предыдущей схеме детекторного приёмника с той лишь разницей, что здесь добавлен простейший усилитель низкой частоты, собранный на транзисторе Т. Усилитель низкой частоты служит для увеличения мощности сигналов, продетектированных диодом. Схема настройки колебательного контура соединена с диодом через конденсатор С2 (0,1 мкФ), а резистор R1 (100 кОм) обеспечивает диоду постоянное смещение.

Рис. 39. Детекторный приёмник с однокаскадным УНЧ.

Для нормальной работы транзистора используется источник питания напряжением 9 В. Резистор R2 необходим для того, чтобы обеспечить подачу напряжения на базу транзистора для создания необходимого режима его работы.

Для этой схемы, как и в предыдущем эксперименте, необходимы наружная антенна и заземление.

ЭКСПЕРИМЕНТ 34

ПРОСТОЙ ТРАНЗИСТОРНЫЙ ПРИЁМНИК

Приёмник (рис. 40) отличается от предыдущего тем, что вместо диода Д установлен транзистор, который одновременно работает и как детектор высокочастотных колебаний, и как усилитель низкой частоты.

Рис. 40. Однотранзисторный приёмник.

Детектирование высокочастотного сигнала в этом приёмнике осуществляется на участке база - эмиттер, поэтому специального детектора (диода) такой приёмник не требует. Транзистор с колебательным контуром связан, как и в предыдущей схеме, через конденсатор ёмкостью 0,1 мкФ и является развязывающим. Конденсатор С3 служит для фильтрации высокочастотной составляющей сигнала, которая также усиливается транзистором.

ЭКСПЕРИМЕНТ 35
РЕГЕНЕРАТИВНЫЙ ПРИЁМНИК

В этом приёмнике (рис. 41) регенерация используется для улучшения чувствительности и избирательности контура. Эту роль выполняет катушка L2. Транзистор в этой схеме включён несколько иначе, чем в предыдущей. Напряжение сигнала с входного контура поступает на базу транзистора. Транзистор детектирует и усиливает сигнал. Высокочастотная составляющая сигнала не сразу поступает на фильтрующий конденсатор С3, а проходит сначала через обмотку обратной связи L2, которая находится на одном сердечнике с контурной катушкой L1. Благодаря тому, что катушки размещены на одном сердечнике, между ними существует индуктивная связь, и часть усиленного напряжения высокочастотного сигнала из коллекторной цепи транзистора снова поступает во входной контур приёмника. При правильном включении концов катушки связи L2 напряжение обратной связи, поступающее в контур L1 за счёт индуктивной связи, совпадает по фазе с приходящим из антенны сигналом, и происходит как бы увеличение сигнала. Чувствительность приёмника при этом повышается. Однако при большой индуктивной связи такой приёмник может превратиться в генератор незатухающих колебаний, и в телефонах прослушивается резкий свист. Чтобы устранить чрезмерное возбуждение, необходимо уменьшить степень связи между катушками L1 и L2. Достигается это либо удалением катушек друг от друга, либо уменьшением числа витков катушки L2.

Рис. 41. Регенеративный приёмник.

Может случиться, что обратная связь не даёт желаемого эффекта и приём станций, хорошо слышимых ранее, при введении обратной связи прекращается вовсе. Это говорит о том, что вместо положительной обратной связи образовалась отрицательная и нужно поменять местами концы катушки L2.

На небольших расстояниях от радиостанции описываемый приёмник хорошо работает без внешней антенны, на одну магнитную антенну.

Если слышимость радиостанции низкая, к приёмнику все же нужно подключить наружную антенну.

Приёмник с одной ферритовой антенной необходимо установить так, чтобы приходящие от радиостанции электромагнитные волны создавали в катушке колебательного контура наибольший сигнал. Таким образом, когда вы при помощи переменного„конденсатора настроились на сигнал радиостанции, если слышимость плохая, поворачивайте схему для получения сигналов в телефонах нужной для вас громкости.

ЭКСПЕРИМЕНТ 36
ДВУХТРАНЗИСТОРНЫЙ РЕГЕНЕРАТИВНЫЙ ПРИЁМНИК

Эта схема (рис. 42) отличается от предыдущей тем, что здесь используется усилитель низкой частоты, собранный на транзисторах Т2.

С помощью двухтранзисторного регенеративного приёмника можно вести приём большого количества радиостанций.

Рис. 42. Регенеративный приёмник с усилителем низкой частоты.

Хотя в данном конструкторе (набор № 2) имеется лишь катушка для длинных волн, схема может работать как на средних, так и на коротких волнах, при использовании соответствующих подстроечных катушек. Их можно изготовить самим.

ЭКСПЕРИМЕНТ 37
«ПЕЛЕНГАТОР»

Схема этого эксперимента аналогична схеме эксперимента 36 без антенны и «земли».

Настройтесь на мощную радиостанцию. Возьмите плату в руки (она должна находиться горизонтально) и вращайте, пока не исчезнет звук (сигнал) или, по крайней мере, уменьшится до минимума. В этом положении ось феррита точно указывает на передатчик. Если теперь повернуть плату на 90°, сигналы будут хорошо слышны. Но более точно местонахождение радиостанции можно определить графоматематическим методом, используя при этом компас для определения угла по азимуту.

Для этого необходимо знать направление расположения передатчика с разных позиций - А и В (рис. 43, а).

Допустим, мы находимся в точке А, определили направление расположения передатчика, оно составляет 60°. Переместимся теперь в точку В, при этом замерим расстояние АВ. Определим второе направление расположения передатчика, оно составляет 30°. Пересечение двух направлений и является местонахождением передающей станции.

Рис. 43. Схема пеленгации радиостанции.

Если у вас есть карта с расположением на ней радиовещательных станций, то есть возможность точно определить ваше местонахождение.

Настройтесь на станцию А, пусть она будет расположена под углом 45°, а затем настройтесь на станцию В; её азимут, допустим, равен 90°. Учитывая эти углы, проведите на карте через точки А и В линии, их пересечение и даст ваше местонахождение (рис. 43, б).

Таким же способом корабли и самолёты ориентируются в процессе движения.

КОНТРОЛЬ ЦЕПИ

Чтобы во время экспериментов схемы работали надёжно, необходимо удостовериться, что батарея заряжена, все соединения чистые, а все гайки надёжно завинчены. Выводы батареи должны быть правильно соединены; при подключении необходимо строго соблюдать полярность электролитических конденсаторов и диодов.

ПРОВЕРКА КОМПОНЕНТОВ

Диоды могут быть проверены в ; транзисторы - в ; электролитические конденсаторы (10 и 100 мкФ) - в . Головной телефон также можно проверить, подключив его к батарее,- в наушнике будет слышно «потрескивание».

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.







2024 © gtavrl.ru.