1010 01 из двоичной системы в десятичную. озиционные системы счисления


Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Самой короткой системой счисления является двоичная. Она полностью основана на позиционной форме записи числа. Основной характеристикой считается принцип удвоения цифры при выполнении перехода от определённой позиции к последующей. Из одной системы счисления в другую можно осуществить перевод как при помощи специальной программы, так и вручную.

Вконтакте

Историческое признание

Появление двоичной СС в истории связано с учёным математиком В.Г. Лейбницем. Именно он впервые заговорил о правилах выполнения операций с числовыми значениями данного рода. Но первоначально этот принцип остался невостребованным . Мировое признание и применение алгоритм получил на заре возникновения вычислительных машин.

Удобство и несложность выполнения операций привели к необходимости более детального изучения данного подраздела арифметики, который стал незаменимым при развитии компьютерной технологии с программным обеспечением. Впервые такие механизмы появились на немецком и французском рынках.

Внимание! Конкретную точку над превосходством двоичной системы по отношению десятичной, именно в данной отрасли, было поставлено в 1946 году и обосновано в статье А. Бекса, Х. Гольдстайна и Дж.Фон Неймана.

Перевод числа из десятичной системы счисления в двоичную.

Особенности двоичной арифметики

Вся двоичная СС основана на применении только двух символов , которые очень точно совпадают с особенностями цифровой схемы. Каждый из символов отвечает за определённое действие, которое зачастую подразумевает два состояния:

  • наличие отверстия или его отсутствие, к примеру, перфокарты или перфоленты;
  • на магнитных носителях отвечает за состояние намагничивания или размагничивания;
  • по уровню сигнала, высокий или низкий.

В науке, в которой применяется СС, введена определённая терминология, суть ее состоит в следующем:

  • Бит – двоичный разряд , который состоит из двух составляющих, несущих в себе определённый смысл. Размещённый слева, определяется как старший и является приоритетным, а справа – младшим, являющийся менее весомым.
  • Байт – это единица, которая состоит из восьми битов .

Многие модули воспринимают и обрабатывают информацию порциями или словами . Каждое слово имеет разный вес и может состоять из 8-ми, 16-ти или 32-х битов .

Правила переводов из одной системы в другую

Одним из важнейших факторов арифметики машин является перевод из одной СС в другую . Поэтому обратим внимание на основные алгоритмы выполнения процесса, который покажет, как перевести число в двоичную систему.

Переводим десятичную систему в двоичную

Первоначально обратимся к вопросу, как осуществить перевод системы из десятичной в двоичную систему счисления. Для этого существует правило перевода из десятичных чисел в двоичный код, которое подразумевает математические действия .

Необходимо число, записанное в десятичном виде разделить на 2 . Деление выполнять до тех пор, пока в частном не останется единица . Если необходима двоичная система счисления перевод осуществляется так:

186:2=93 (ост. 0)

93:2=46 (ост. 1)

46:2=23 (ост. 0)

23:2=11 (ост. 1)

11:2=5 (ост. 1)

5:2=2 (ост.1)

После того, как процесс деления закончен, то единицу в частном и все остатки записываем последовательно в обратном делению порядке . То есть, 18610=1111010. Правило перевода десятичных чисел в СС надо соблюдать всегда.

Перевод числа из десятичной системы в двоичную.

Перевод из десятичной СС в восьмеричную

Аналогичный процесс проводится при переводе из десятичной СС в восьмеричную. Его ещё называют «правилом замещения ». Если в предыдущем примере деление данных осуществлялось на 2, то здесь необходимо делить на 8. Алгоритм перевода числа X10 в восьмеричную состоит из следующих шагов:

  1. Число X10 начинают делить на 8. Полученное частное берём для следующего деления, а остаток записывается, как бит младшего порядка .
  2. Продолжаем деление до тех пор, пока не получим в результат частного равного нулю или остаток, который по своему значению меньше восьми . При этом все остатки записываем, как младшие порядки бита .

К примеру, необходимо перевести число 160110 в восьмеричное.

1601:8=200 (ост. 1)

200:8=25 (ост. 0)

25:8=3 (ост.1)

Итак, получим: 161010=31018.

Перевод из десятичной системы в восьмеричную.

Записываем десятичное число шестнадцатеричным

Перевод из десятичной в шестнадцатиричную СС осуществляется аналогично с использованием системы замещения. Но кроме цифр применяют ещё и буквы латинского алфавита A, B, C, D, E, F. Где A обозначает остаток 10, а F остаток 15. Десятичное число делят на 16. К примеру, переводим 10710 в шестнадцатеричную:

107:16=6 (ост. 11 – заменяем В)

6 – меньше, чем шестнадцать. Деление прекращаем и записываем 10710=6В16.

Переходим из другой системы в двоичную

Следующий вопрос, как преобразовать из восьмеричной в двоичную запись числа. Перевод чисел из любой системы в двоичную выполняется достаточно просто. Помощником в этом деле выступает таблица для систем счисления .

В одном из наших материалов мы рассмотрели определение . Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

Позиционные системы счисления

Название системы

Основание

Алфавит

Двоичная

Троичная

Четверичная

Пятеричная

Восьмеричная

Десятичная

0,1,2,3,4,5,6,7,8,9

Двенадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В

Шестнадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F

Тридцатишестиричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F,G, H,I,J,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z


Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число


Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.


Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

Способ №1.

Допустим, требуется перевести число 637 десятичной системы в двоичную систему.


Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.


В нашем случае это 9, т.к. 2 9 =512 , а 2 10 =1024 , что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.


Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256 . Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.


2 7 =128 > 125 , значит и восьмой разряд будет нулём.


2 6 =64 , то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.


2 5 =32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.


2 4 =16 < 29 - пятый разряд 1 => 1001111ххх. Остаток 29-16=13.


2 3 =8 < 13 => 10011111хх. 13-8=5


2 2 =4 < 5 => 10011111хх, остаток 5-4=1.


2 1 =2 > 1 => 100111110х, остаток 2-1=1.


2 0 =1 => 1001111101.


Это и будет конечный результат.

Способ №2.

Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

  1. Разделим a n−1 a n−2 ...a 1 a 0 =a n−1 ⋅2 n−1 +a n−2 ⋅2 n−2 +...+a 0 ⋅2 0 на 2.
  2. Частное будет равно an−1 ⋅2n−2+...+a1 , а остаток будет равен
  3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
  4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a 0 ,a 1 ,a 2 ,...,a n−1 , которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
  5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.


Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:


Получили 11 10 =1011 2 .

Пример:

Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:



363 10 =101101011 2



В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.







2024 © gtavrl.ru.